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SUMMARY

As they enter mitosis, animal cells undergo profound
actin-dependent changes in shape to become round.
Here we identify the Cdk1 substrate, Ect2, as
a central regulator of mitotic rounding, thus uncover-
ing a link between the cell-cycle machinery that
drives mitotic entry and its accompanying actin re-
modeling. Ect2 is a RhoGEF that plays a well-estab-
lished role in formation of the actomyosin contractile
ring at mitotic exit, through the local activation of
RhoA. We find that Ect2 first becomes active in
prophase, when it is exported from the nucleus into
the cytoplasm, activating RhoA to induce the forma-
tion of a mechanically stiff and rounded metaphase
cortex. Then, at anaphase, binding to RacGAP1 at
the spindle midzone repositions Ect2 to induce local
actomyosin ring formation. Ect2 localization there-
fore defines the stage-specific changes in actin
cortex organization critical for accurate cell division.

INTRODUCTION

Cell division requires sequential changes in cell architecture,

which are coordinated by a small set of conserved mitotic

kinases (Ma and Poon, 2011). Although most recent attention

has focused on the changes in microtubule organization that

accompany spindle assembly and that drive chromosome

segregation, mitotic progression is also accompanied by pro-

found changes in cell shape. These begin at the onset of mitosis

as cells detach from the substrate and round up (Cramer and

Mitchison, 1997; Harris, 1973); a process that is important for

spindle assembly, positioning, and chromosome capture (Car-

reno et al., 2008; Kunda and Baum, 2009; Kunda et al., 2008).

At mitotic exit, cells then elongate and divide in two, before re-

spreading to take up their resting interphase shape once more.

Mitotic rounding requires the loss of substrate adhesion (Dao

et al., 2009), together with changes in surface volume ratio and

osmotic pressure (Stewart et al., 2011). In addition, the actin

cytoskeleton is completely remodeled to generate a rigid and

rounded actomyosin cortex (Kunda et al., 2008). Although

several actin regulators, including ERM proteins (Carreno et al.,
Develop
2008; Kunda et al., 2008), myosin II (Maddox and Burridge,

2003), Cofilin, and WDR1 (Fujibuchi et al., 2005), are known to

play roles in this process, it is not known how changes in actin

organization are coupled to mitotic entry and progression.

Entry into mitosis in mammalian cells is controlled by activa-

tion of the mitotic Cdk1/CyclinB complex, through a tightly regu-

lated process that involves multiple feedback loops (Lindqvist

et al., 2009). Once active, Cdk1/CyclinB phosphorylates a large

number of targets, triggering many of the early events of mitosis

including centrosome separation, chromosome condensation,

and nuclear envelope breakdown (Gavet and Pines, 2010b).

Although some of the key substrates mediating the effects of

Cdk1/CyclinB activity on chromatin, the nuclear lamina, and

the mitotic spindle have been identified (Blangy et al., 1995; Ki-

mura et al., 1998; Peter et al., 1990), it is not known if changes

in Cdk1/CyclinB activity also function to directly alter actin fila-

ment organization and dynamics.

Here, we identify a known Cdk1 substrate (Hara et al., 2006;

Niiya et al., 2006), Ect2, as a regulator of mitotic rounding. Ect2

is a RhoGEF that was previously shown to be essential for

cytokinesis (Tatsumoto et al., 1999), where it activates RhoA to

regulate assembly of the actomyosin contractile ring (Chalama-

lasetty et al., 2006; Nishimura and Yonemura, 2006; Yüce et al.,

2005). We show that Ect2 also activates RhoA and its down-

stream effectors, Rho kinase (ROK), and myosin II, at the onset

of mitosis to induce the actomyosin remodeling that drives

both mitotic rounding and cortical stiffening. This early function

of Ect2 is dependent on its export from the nucleus in prophase,

but does not require RacGAP1 (also known as MgcRacGAP) or

microtubules, which have been shown to drive the relocalization

of Ect2 to the cell equator prior to cytokinesis (Burkard et al.,

2009; Petronczki et al., 2007; Somers and Saint, 2003; Wolfe

et al., 2009; Yüce et al., 2005). These data show that, through

regulated changes in its localization, Ect2 is able to reshape

the mitotic cell to drive rounding upon entry into mitosis and

cleavage furrow formation at mitotic exit.

RESULTS

Rounding Is Initiated at the Start of Mitosis
To better understand the coupling between cell shape changes

and mitotic progression, we began by determining the timing

of mitotic rounding relative to the other events of mitotic entry.

HeLa cells expressing Histone H2B-mRFP and tubulin-GFP
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Figure 1. Ect2 Alters the Dynamics of

Mitotic Cell Rounding

(A and B) Time-lapse phase contrast images of

HeLa cells rounding up before mitosis with cell

length (Feret’s diameter) indicated by red line

showing cells treated with (A) control siRNA and

(B) Ect2 siRNA. Images taken every 2 min. Scale

bar, 20 mm.

(C) Mean length of 22 cells during progression

through mitosis, aligned so that time point

0 represents nuclear envelope breakdown (NEB).

Error bars denote SD. Colored vertical lines show

mean timing of mitotic events with shaded areas

showing SD. Mitotic events were visualized using

the expression of histone H2B-mRFP (for chro-

matin condensation and anaphase) and tubulin-

GFP (centrosome separation and microtubule

nucleation at spindle). NEB was recorded as the

time point at which free tubulin-GFP dimers are

able to enter the nucleus.

(D) Comparison of rounding in cells treated with

control siRNA (n = 20 cells) and Ect2 siRNA (n =

23). Error bars denote SD.

(E) Box plot showing time taken to round up at

mitosis for control siRNA (n=31) compared to three

nonoverlapping siRNAs targeting Ect2 (n = 27, 33,

and 25) in control HeLa cells, and in HeLa cells

expressingmouse Ect2-GFP at endogenous levels

(n = 28 cells in each condition). Central line shows

median, boxes are quartiles and whiskers show

complete range. Cells were imaged 24 hr post-

RNAi andonly the first division after RNAi treatment

was analyzed. The percentage of cells that then go

on to fail cytokinesis in each condition is indicated.

(F) Western blot showing knockdown of human

Ect2 but not mouse Ect2-GFP (upper band) by

three siRNAs targeting Ect2.

See also Figure S1.
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(Steigemann et al., 2009) were imaged every 2 min as they pro-

gressed through the cell cycle. Cell length (Feret’s diameter) was

measured (Figure 1A) and used to compare the timing of mitotic

rounding with that of centrosome separation, chromosome

condensation, nuclear envelope breakdown, and spindle

assembly (Figure 1C). Mitotic rounding lasted 13.6 ± 1.8 min,

during which time mean HeLa cell length (Picone et al., 2010)

was reduced from 53 ± 3 mm to 23.5 ± 1.3 mm. Rounding began

in early prophase, before centrosome separation and visible

chromatin condensation, around 6 min before nuclear envelope

breakdown (Figure 1C). This makes rounding one of the earliest

events in mitosis, concordant with the rise in Cdk1 activity during

prophase as measured using a FRET probe (Gavet and Pines,

2010b). Since Cdk1/CyclinB is thought to directly control many

events of prophase (Gavet and Pines, 2010a), this suggested

the possibility that Cdk1/Cyclin B also instigates mitotic round-

ing. Indeed, Cdk1/Cyclin B has been shown to be sufficient to

induce rounding upon injection into interphase cells (Lamb

et al., 1990). Thus, in our search for upstream regulators of cell

rounding, we focused our attention on established Cdk1

substrates.

Ect2 Controls the Dynamics of Mitotic Rounding
To identify regulators of mitotic rounding, we carried out an RNAi

screen. We used siRNA to silence 60 key actin regulators. Since
372 Developmental Cell 23, 371–383, August 14, 2012 ª2012 Elsevie
we aimed to identify genes that couple mitotic progression to

changes in cell shape, this set specifically included siRNAs tar-

geting actin regulators previously identified as mitotic kinase

substrates in systematic large-scale screens (Beausoleil et al.,

2006; Blethrow et al., 2008; Dephoure et al., 2008; Ji et al.,

2002). Two days after siRNA treatment, HeLa cells were fixed,

stained, and analyzed to identify gene-specific siRNAs that

induced reproducible changes in mitotic cell shape and actin

organization (for details of screen methodology and list of genes

screened, see Supplemental Experimental Procedures and

Table S1 available online). This identified a number of siRNAs

that affected mitotic cell shape. Unsurprisingly in light of

previous work (Fujibuchi et al., 2005), this included two inhibitors

of actin filament formation, WDR1 and actin capping protein

(Table S1). More significantly for our purposes, the screen also

identified a single well-established Cdk1 substrate, Ect2.

To confirm a role for Ect2 inmitotic roundingwe turned to time-

lapse microscopy. Ect2 loss of function has previously been

shown cause cytokinesis failure, leading to the formation of

binucleate cells (Tatsumoto et al., 1999). Our analysis therefore

focused on the first cell division after Ect2 knockdown (around

24 hr after RNAi treatment) to avoid delays in rounding caused

by cells being large and multinucleate. This analysis revealed

that Ect2 depleted cells initiate rounding on schedule relative

to nuclear envelope breakdown, but round more slowly (mean
r Inc.
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rounding time of 31.1 ± 4.3 min, Figures 1B and 1D). The vast

majority then went on to fail cytokinesis (Figure 1E). Both pheno-

types were replicated using three different nonoverlapping

siRNAs (Figure 1E) and the knockdown at 24 hr was verified in

each case by western blotting (Figure 1F). Furthermore, as a

definitive proof that the phenotype reflects depletion of Ect2

itself, we rescued the RNAi phenotype in HeLa cells using the

constitutive expression of mouse Ect2-GFP (Hutchins et al.,

2010), which lacks the siRNA binding sequence (Figures 1E

and 1F). Finally, this function for Ect2 is not confined to HeLa

cells, as a similar phenotypewas observed following Ect2 knock-

down in RPE1 cells, a diploid nontransformed human cell line, as

well as inDrosophilaS2R+ cells depleted of the fly Ect2 homolog,

pebble (Prokopenko et al., 1999) (Figure S1). These data lead us

to conclude that Ect2 plays a conserved role in mitotic rounding.

Ect2 Is Required for Assembly of a Stiff Cortical Actin
Cytoskeleton at Mitosis
Since the actin cytoskeleton controls mitotic cell shape (Kunda

and Baum, 2009), we used confocal time-lapse microscopy to

determine whether this role for Ect2 in rounding reflects a role

in mitotic actin remodeling. In control cells expressing LifeAct-

GFP (Riedl et al., 2008), actin filaments were found to redistribute

to form a visible cortex underlying the plasmamembrane as cells

rounded and increased in height upon entry into mitosis (Fig-

ure 2A; Movie S1). This cortical recruitment was clearly per-

turbed in both live (Figure 2B; Movie S1) and fixed metaphase

Ect2 RNAi cells (Figures 2E and 2F). First actin filaments ap-

peared profoundly disorganized in Ect2 RNAi cells (Figure 2E).

In addition, Ect2 RNAi cells were considerably flatter than meta-

phase control cells (Figures 2C and 2D).

This role for Ect2 in mitotic actin cortex assembly would be

expected to lead to corresponding changes in mitotic cell

mechanics (Kunda et al., 2008). To test whether or not this is

the case, we used an ‘‘optical stretcher’’ to measure the rigidity

of control and Ect2 RNAi cells in mitosis. This phototonic tool

consists of two counter-propagating laser beams that are used

to trap and exert a stretching force on suspended cells passing

through a central microfluidic chamber (Figure 2G) (Guck et al.,

2001). The deformation induced by the two beams can then be

used to determine a cell’s compliance, an inverse measure of

its stiffness. Using this system, we first established that, as

previously reported (Kunda et al., 2008), mitotic cells are less

compliant than interphase cells and that this depends on an

intact actin cytoskeleton (Figure S2). Strikingly, however, mitotic

Ect2 RNAi cells were significantly more compliant than control

cells in mitosis (Figure 2H). Taken together, these data show

that Ect2 is essential for the assembly of the normal, rigid, acto-

myosin-based mitotic cortex.

It has previously been shown that a rigid and rounded actin

cortex is essential for spindle assembly in Drosophila cells (Car-

reno et al., 2008; Kunda et al., 2008). In addition, myosin II has

been shown to play an important role in centrosome separation

(Rosenblatt et al., 2004). Therefore Ect2 depleted HeLa cells

might be expected to exhibit spindle defects. We found that

while Ect2 RNAi cells were ultimately able to build a bipolar

spindle, cells suffered delays in centrosome separation and

spindle assembly (Figure S2) similar to those previously

observed when myosin activity is compromised (Rosenblatt
Develop
et al., 2004). In addition, Ect2 RNAi cells exhibited defects in

the alignment of chromosomes at the metaphase plate and in

their segregation at anaphase, where we frequently observed

lagging chromosomes (Figure S2). Furthermore, when we used

RNAi mediated depletion of Mad2 to compromise the spindle

checkpoint and to accelerate mitotic progression (Jones et al.,

2004), the majority of Ect2 depleted cells exhibited catastrophic

defects in chromosome segregation (Figure S2), while few

defects were seen in Mad2 RNAi control cells. Thus, the Ect2

dependent changes in mitotic actin cytoskeletal organization

and cell shape are required to support the timely assembly of

a functional bipolar spindle.

Ect2 Acts Upstream of RhoA and Myosin II to Drive
Mitotic Rounding
Ect2 is essential for cytokinesis. It is recruited to the spindle

midzone at anaphase through a physical interaction with

a component of the centralspindlin complex, RacGAP1 (Somers

and Saint, 2003; Yüce et al., 2005), where it induces the local

activation of RhoA and actomyosin ring formation (Tatsumoto

et al., 1999; Kamijo et al., 2006; Nishimura and Yonemura,

2006). We used small molecule inhibitors and siRNAs to deter-

mine which, if any, of these factors function together with

Ect2 in mitotic rounding (Figure 3A). Neither treatment with an

siRNA against RacGAP1 nor the removal of microtubules with

nocodozole affected the rate of rounding. This was the case

even though RacGAP1 silencing resulted in a highly penetrant

failure in cytokinesis. In contrast, and as expected based on

previous work, the inhibition of downstream targets of Ect2,

Rho (Maddox and Burridge, 2003), ROK (Meyer et al., 2011),

and myosin II (Cramer and Mitchison, 1997) led to a profound

delay in mitotic rounding, similar to that seen following Ect2

RNAi (Figure 3B).

To test whether Ect2 is directly responsible for RhoA activa-

tion before the onset of anaphase, a RhoA FRET probe was

used (Pertz et al., 2006). While RhoA activity was seen at the

cortex of control cells in prometaphase (Figure 3C) as previ-

ously described (Mali et al., 2010; Yoshizaki et al., 2003),

Ect2 silencing resulted in a marked reduction in cortical RhoA

activity (Figures 3D and 3E). Since RhoA activates ROK to alter

myosin II activity, in part through the phosphorylation of myosin

light chain (Amano et al., 1996), we then used an antibody

raised against p-myosin II to determine whether Ect2 also influ-

ences myosin II activation at the onset of mitosis. In interphase

cells, p-myosin II was visible in stress fibers, which were lost

along with focal adhesions in early prophase in control and

Ect2 RNAi cells (Figure S3). At the same time, p-myosin II

was seen accumulating at the retracting margins of control

cells as they rounded up (Figure 3F), but was largely absent

from Ect2 RNAi cells (Figures 3G and 3H). By contrast, when

we examined ERM protein activation using the same approach

(Kunda et al., 2008), we observed no differences in ERM phos-

phorylation between control and Ect2 RNAi cells (Figure S3).

Taken together, these data reveal that Ect2 is required at the

early stages of mitosis to activate RhoA and Myosin II to drive

the actomyosin contraction required for cell rounding. Signifi-

cantly, however, the upstream regulators of Ect2 activity are

distinct from those that are required for contractile ring forma-

tion at mitotic exit.
mental Cell 23, 371–383, August 14, 2012 ª2012 Elsevier Inc. 373
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Figure 2. Ect2 Is Required for the Organization of a Rigid, Cortical Actin Cytoskeleton in Mitosis

(A and B) Time-lapse confocal images of HeLa cells entering mitosis labeled with LifeAct-GFP and histone H2B-mRFP treated with control siRNA (A) and

Ect2 siRNA (B). Time is in minutes. Three different z planes, 4 mm apart are shown. See also Movie S1.

(C) XZ projections of metaphase cells labeled with LifeAct-GFP and histone H2B-mRFP. Confocal Z sections were taken every 200 nm through living

cells covering the full height of the cell.

(D) Graph showing the mean height of cells in interphase and metaphase treated with control siRNA or Ect2 siRNA (n = 10–15 cells per condition). Error bars

show SD.

(E) Confocal micrographs of fixed metaphase HeLa cells stained to show the actin cytoskeleton in control siRNA and Ect2 siRNA cells. Actin is labeled with

phalloidin-TRITC in red, tubulin in green and 40,6-diamidino-2-phenylindole (DAPI) in blue, scale bars 10 mm.

(F) Quantification of the ratio of cortical/cytoplasmic actin in control and Ect2 RNAi cells in interphase and mitosis. Mean signal intensity in a 33 3 pixel box was

measured in the actin channel at two locations: 0.5 mm from the cell edge (cortex) and 5 mm from the cell edge (cytoplasm). Four sites per cell were measured and

the graph shows the mean values for 15 cells per condition with error bars denoting SD.

(G) Diagram of the optical stretcher set-up used to measure cell compliance.

(H) Graph showing mean compliance J(t) (see Experimental Procedures for detail) over time as cells are subjected to optical stretching for 4 s comparing control

siRNA cells in interphase (n = 60 cells) and mitosis (n = 63) and Ect2 siRNA mitotic cells (n = 45). Error bars denote SEM.

See also Figure S2.
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Ect2 Is Phosphorylated throughout Mitosis
How is Ect2 able to control distinct processes at different times

in mitosis? Ect2 has previously been shown to be phosphory-

lated at multiple sites during mitosis, including at several Cdk1

target sites (Hara et al., 2006; Niiya et al., 2006; Su et al., 2011;
374 Developmental Cell 23, 371–383, August 14, 2012 ª2012 Elsevie
Yüce et al., 2005). This phosphorylation is required for its GEF

activity (Tatsumoto et al., 1999), and has been proposed to

regulate changes in Ect2 activity. This led us to examine the

phosphorylation status of Ect2 duringmitotic progression. Phos-

phorylated mitotic Ect2 migrates on a gel as a high molecular
r Inc.
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Figure 3. Ect2 Controls Mitotic Rounding via RhoA, Rho Kinase, and Myosin II

(A) Box plot comparing rounding times of control cells (n = 22 cells) compared to cells treated with 100 ng/ml nocodozole (Nz) to depolymerize microtubules

(n = 16), RacGAP1 siRNA (n = 20), 2 mg/ml C3 transferase to inhibit Rho (n = 22), 50 mMROK inhibitor Y-27632 (n = 18) and 50 mM blebbistatin to inhibit myosin II

(n = 25). Central line shows median, boxes are quartiles, and whiskers show complete range.

(B) Graph showing the cell length through time for conditions in Figure 3A. Error bars denote SD.

(C and D) Pseudo-colored FRET ratio images showing RhoA activity in cells arrested in prometaphase by treatment with 5 mM STLC, comparing a control siRNA

cell (C) to an Ect2 siRNA treated cell (D).

(E) Graph showing mean total RhoA FRET efficiency in control siRNA cells (n = 20) and Ect2 siRNA (n = 16) cells. FRET efficiency was calculated using acceptor

photo-bleaching (see Experimental Procedures). Error bars denote SD.

(F and G) Representative confocal images of control (F) and Ect2 siRNA (G) prometaphase cells during mitotic rounding stained for phospho-myosin light chain.

Insets show tubulin staining and DNA (DAPI stain, blue).

(H) Quantification of the Ect2 siRNA p-myosin II phenotype. The ratio of cortical/cytoplasmic phospho-myosin was calculated bymeasuring mean signal intensity

in a 33 3 pixel box at four locations at the cortex of the cell, and four locations 5 mm into the cytoplasm. The graph shows themean values for 11 cells per condition

with error bars denoting SD. Scale bars, 5 mm.

See also Figure S3.
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weight band (Tatsumoto et al., 1999) that is rapidly abolished

following the inhibition of Cdk1 activity by Roscovitine treatment

(Figure 4A). Using this gel mobility shift assay, we analyzed the

extent of Ect2 phosphorylation in a synchronized population of

cells following their release from a double thymidine block (Fig-

ure 4B). Phosphorylated Ect2 first appeared as synchronized
Develop
cells entered mitosis 11 hr after block release, consistent with

this form of the protein having an active role in mitotic rounding.

Importantly, Ect2 then remained phosphorylated until 14 hr post-

release, by which time the majority of cells had exited mitosis

(Figure 4C). A similar time course was observed following release

from a metaphase block imposed using nocodozole followed by
mental Cell 23, 371–383, August 14, 2012 ª2012 Elsevier Inc. 375
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Mitosis

(A) Gel showing the band shift of Ect2 atmitosis comparing

unsynchronized cells (first lane) to cells synchronized at

prometaphase by an 18 hr treatment with 5 mM S-trityl-L-

cysteine (STLC, second lane). This shift is abolished by

addition of 50 mM Roscovitine for 2 hr (third lane), which

also reverses cell rounding.

(B) Band shift of Ect2 protein over a time course from 9 to

15 hr after release from double thymidine block. Image

shown is representative of all experiments (n = 3).

(C) Quantification of the gel in (B), showing the percentage

of Ect2 protein that is phosphorylated and the percentage

of cells in mitosis at each time point. The fraction of phos-

phorylated Ect2 was calculated by normalizing to back-

groundand thendividing thebandvolume for thephospho-

species by the total Ect2 band volume.Mitotic stageswere

determined by visual inspection of the spindle and DNA

following fixation and immunostaining with tubulin and

DAPI of a sample of cells at each time point (n = 79–221

cells for each time point) ‘‘% cells in mitosis’’ includes cells

in prophase, prometaphase, and metaphase.

(D) Phospho-band shift of Ect2 in a synchronized pop-

ulation of cells as they exit mitosis after release from

a metaphase arrest. This experiment was repeated twice

and the image is representative of both experiments.

(E) Quantification of the gel in D, showing the percentage

of Ect2 phosphorylated protein compared to the

percentage of cells in mitosis (prophase, prometaphase,

and metaphase) and at anaphase/cytokinesis.
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MG132 (Figures 4D and 4E). Again, the phospho-shifted form of

Ect2 visible in metaphase remained until almost all cells had

completed anaphase (Figure 4E). These data show that Ect2

remains phosphorylated throughout mitosis.

Ect2 Leaves the Nucleus in Early Mitosis
To understand how Ect2 might drive distinct changes in cell

shape at the onset and exit of mitosis, we looked at its subcel-

lular distribution during mitotic progression. In fixed cells stained

with an Ect2 antibody, endogenous Ect2 was found to localize to

the interphase nucleus and nucleolus (Figure 5A). At the onset of

mitosis, Ect2 was then localized in the cytoplasm prior to nuclear

envelope breakdown, where it remained until it was recruited to

the spindle midzone at mitotic exit. We confirmed that this
376 Developmental Cell 23, 371–383, August 14, 2012 ª2012 Elsevier Inc.
dynamic pattern of immunostainingwas specific

using Ect2 RNAi cells (Figure S4). Moreover, this

localization was recapitulated using live imag-

ing of a HeLa cell line constitutively expressing

a BAC-containing mouse Ect2-GFP (Hutchins

et al., 2010) (Figures 5B and 5C; Movie S2) and

transfected with tubulin-RFP (Kobayashi and

Murayama, 2009) as a marker of rounding (Fig-

ure 5B), nuclear envelope breakdown (visualized

by the exclusion of tubulin from the nucleus;

Figure 5C), and spindle morphogenesis. Ect2

could be seen accumulating in the cytoplasm

in early prophase, �6 min before nuclear enve-

lope breakdown and coincident with the onset

of mitotic rounding (Figure 5D). In addition, we

confirmed that the change in Ect2 localization
at prophase was accompanied by the nuclear import of Cyclin

B1, which has previously been shown to correlate with an

increase in Cdk1 activity (Gavet and Pines, 2010a) and followed

shortly after mitotic kinase substrate phosphorylation in the

nucleus, which was detected using a phospho-Ser/Thr-Pro anti-

body (Figure S4). Ect2 contains two Cdk1 consensus sequences

in the vicinity of its nuclear localization sequence (NLS). To test

whether Cdk1 might act through these sites to regulate Ect2

localization, we generated a phospho-mimetic construct (Ect2-

T342D-S366D). This localized to the interphase nucleus (Fig-

ure S4), suggesting that phosphorylation at these sites may not

be sufficient to induce Ect2 nuclear export. However, this does

not rule out the possibility that Cdk1 phosphorylation at other

sites could control nuclear release.
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Figure 5. Ect2 Is Exported from the Nucleus in Early Mitosis

(A) Confocal micrograph showing Ect2 localization at each stage of mitosis in fixed cells stained with an antibody against Ect2 (upper panel) and tubulin and DAPI

to show mitotic stage (lower panel). Scale bar applies to all images, 10 mm.

(B and C) Time-lapse confocal images of a HeLa cell entering mitosis expressing mouse Ect2-GFP (upper panels) and tubulin-RFP (lower panels). Mouse Ect2 is

constitutively expressed in a BAC under its endogenous promotor (Hutchins et al., 2010). Two different z planes are shown: the bottom of the cell to show the full

extent of the cytoplasm (B), and 8 mm higher (C) at the level of the nucleus. Time is indicated in minutes, with time point 0 being the frame of nuclear envelope

breakdown as judged by when tubulin dimers first enter the nucleus. Note increase in Ect2 levels in the cytoplasm before nuclear envelope breakdown in

frames �1 and �2. Scale bars, 10 mm.

(D) Quantification of time-lapse images in (B) and (C). Six cells were analyzed and measurements aligned, so that time point 0 represents the frame of nuclear

envelopebreakdown.Mean signal intensitywasmeasured for Ect2 (red line) and tubulin (blue line) in a 63 6pixel box in the nucleus and cytoplasmand the nuclear/

cytoplasmic ratiowas plotted. The black line showsmean cell length to give an indication of the onset ofmitotic rounding. Error bars denote SD.See alsoMovie S2.

See also Figure S4.
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Mislocalization of Ect2 to the Cytoplasm Is Sufficient to
Drive Premature Rounding
Since the recruitment of Ect2 to the spindle midzone triggers

actomyosin-dependent furrow formation (Chalamalasetty et al.,

2006; Nishimura and Yonemura, 2006; Yüce et al., 2005), we

postulated that its relocation from the nucleus to the cytoplasm
Develop
in prophase could be a key factor in driving mitotic rounding. We

utilized several human Ect2 constructs to test this idea (Fig-

ure 6A). Mammalian Ect2 protein consists of an N-terminal

BRCT repeat domain, which is the site of RacGAP1 binding,

a regulatory S domain that harbors NLS sites, and a C-terminal

catalytic GEF domain (Miki et al., 1993; Saito et al., 2004; Saito
mental Cell 23, 371–383, August 14, 2012 ª2012 Elsevier Inc. 377
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Figure 6. Cytoplasmic Ect2 Is Sufficient to

Induce Cell Rounding

(A) Three different Ect2 constructs were overex-

pressed in HeLa cells: Ect2-FL-GFP, Ect2-C-GFP,

and Ect2-dNLS-GFP.

(B) Representative confocal micrographs of cells

transfected with Ect2-FL, Ect2-C and Ect2-dNLS

showing the actin cytoskeleton stained with

phalloidin-TRITC (top panel) and Ect2 construct

localization (bottom panel). Note the rounded cell

morphology in Ect2-C and Ect2-dNLS cells.

(C) Quantification of the percentage of interphase

cells displaying the rounded phenotype (n = 80–

149 cells).

(D and E) Representative confocal micrographs

of cells in prophase showing an a nontransfected

cell (D) and a cell transfected with Ect2-dNLS (E).

The actin cytoskeleton was visualized by phalloi-

din staining and an anti-GFP antibody was used

to indicate transfected cells. Inset shows the cell

nucleus, stained with DAPI, to identify mitotic

stage. Note rounded cell morphology in E.

(F) Phase contrast images of a nontransfected (NT)

cell and a cell expressing Ect2-dNLS-GFP at low

levels rounding up in early mitosis. Transfected

cells are indicated by GFP fluorescence in final

panel. See also Movie S3.

(G) Box plot comparing the mitotic rounding time

of nontransfected cells (n = 21 cells) with those

transfected with Ect2-dNLS-GFP (n = 23). To

ensure rounding is mitotic rather than apoptotic,

only cells that later proceeded to cytokinesis were

analyzed. For Ect2-dNLS cells, only cells ex-

pressing low levels of the construct that were not

already rounded in interphase were analyzed. For

box plot, central line shows median, boxes are

quartiles, and whiskers show range. For Ect2

dNLS, the median and lower quartile are the same

value. Scale bars, 20 mm.

See also Figure S5.
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et al., 2003; Yüce et al., 2005). We confirmed first that when

overexpressed, full length human Ect2 (Ect2-FL, (Niiya et al.,

2006) is confined to the nucleus and does not affect cell

morphology (Figure 6B). By contrast, a truncated form of Ect2

(Ect2-C, (Su et al., 2011), which contains the C-terminal catalytic

domain but lacks regulatory regions and can act as a constitu-

tively active form (Saito et al., 2004), is localized to the cytoplasm

and is able to induce profound changes in interphase cell shape

(Figure 6B). Approximately 50% of interphase cells expressing

Ect2-C adopt a small, rounded morphology (Figures 6B and

6C; Figure S5). In this they resemble cells in mitosis, with the

notable exception that they retain stress fibers, which are nor-

mally disassembled in prophase. Thus, the mislocalization of

a constitutively active form of Ect2 is sufficient to induce ectopic

rounding. As seen for mitotic cells, the interphase rounding

induced by ectopic Ect2 is dependent on the activity of ROK

and myosin II since it could be reversed by the addition of small

molecular inhibitors Y-27632 or blebbistatin (Figure S5).

To test the role of nuclear export in the regulation of Ect2-

dependent mitotic rounding, we introduced point mutations
378 Developmental Cell 23, 371–383, August 14, 2012 ª2012 Elsevie
in its two NLS sites (Ect2 dNLS), which have been shown to

prevent Ect2 nuclear import (Saito et al., 2004). Like Ect2-C,

Ect2-dNLS was found to localize to the cytoplasm and to induce

ectopic interphase rounding (Figures 6B and 6C). This demon-

strates that simply mutating five residues in the NLS sequences

is sufficient to induce gross changes in cell morphology. To test

whether the timing of Ect2 export from the nucleus contributes

to mitotic rounding we then arrested cells expressing low levels

of Ect2-dNLS in G2 using the specific Cdk1 inhibitor, RO-3306

(Vassilev et al., 2006) for 14 hr. The inhibitor was washed out

to enable cells to synchronously progress into mitosis in the

presence or absence of Ect2-dNLS (Figures 6D and 6E). As ex-

pected, the presence of low levels of cytoplasmic Ect2-dNLS,

just below the threshold required to cause interphase rounding,

had a significant effect on the kinetics of rounding. Ect2-dNLS

expressing cells already appeared quite spherical in prophase

(Figure 6E) and underwent accelerated rounding upon entry

into mitosis (Figure 6F and 6G; Movie S3). Thus, the appearance

of cytoplasmic Ect2 is rate-limiting for mitotic rounding. Finally,

we confirmed that both rounding and cytokinesis require the
r Inc.
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Figure 7. AModel for Ect2 Function through

Mitosis

(A–D) Dynamic changes in Ect2 localiza-

tion (shown in blue) control actin remodeling

throughout mitosis. (A) Ect2 leaves the nucleus in

early prophase. (B) Active Ect2 in the cytoplasm is

able to activate RhoA and drive mitotic rounding.

(C) Ect2 activation of RhoA results in the formation

of a rigid actomyosin cortex that assists meta-

phase spindle assembly (D). At anaphase, Ect2 is

relocalized to the central spindle and removed

from the poles, resulting in the redistribution of

active RhoA and therefore the contractile acto-

myosin machinery to drive furrowing in the center

of the cell.

(E) Export of active, phosphorylated Ect2 into the

cytoplasm at mitotic onset stimulates a decrease

in cell length. At anaphase, Ect2 remains active

but its location is modulated by binding to

RacGAP1 at the spindle midzone, resulting in

elongation of the cell, furrowing, and cytokinesis.
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GEF activity of Ect2, since a full-length Ect2 construct containing

a V566 > D mutation that has shown to be essential for GEF

activity (van Impel et al., 2009) was unable to rescue either

the failures in rounding or cytokinesis induced by Ect2 siRNA

(Figure S5). These data suggest that Ect2 is active throughout

mitosis, and that shifts in its localization regulate distinct

changes in actomyosin organization and cell shape. These begin

with the exit of Ect2 from the nucleus in early prophase, which

functions as a key trigger for actomyosin remodeling as cells

round up as they enter mitosis.

DISCUSSION

In this study we identify Ect2 as a critical link between the cell

cycle machinery, which triggers numerous events that accom-

pany mitotic entry, and the actin-dependent shape changes

that occur in early mitosis. We show that Ect2 is able to induce

changes to both cell shape and cortical mechanics in early

mitosis through the activation of RhoA and remodeling of the

actomyosin cytoskeleton. The timing of mitotic rounding is

crucially dependent on the export of Ect2 from the nucleus in

prophase, because cells lacking Ect2 fail to undergo timely

mitotic rounding, whereas the mislocalization of Ect2 to the

cytoplasm is sufficient, at low levels, to increase the speed of

mitotic rounding and, at high levels, to induce ectopic mitotic-

like rounding in interphase cells.

Together these data allow us to propose a model in which

regulated changes in the localization of Ect2 drive stage-specific

changes in mitotic cell shape (Figure 7). In prophase, Ect2 is

exported from the nucleus and phosphorylated by Cdk1, which

allow it to activate RhoA in the cytoplasm to induce the acto-

myosin reorganization and cell shape changes required for

timely bipolar spindle assembly. It is likely that the resulting

mechanically rigid metaphase cortex also plays an important

role in buffering the spindle from the potentially disruptive influ-

ence of external mechanical forces (Kunda and Baum, 2009).

At mitotic exit, it has been shown that Ect2 is recruited to the

spindle midzone as the result of its binding to a core component

of the centralspindlin complex, RacGAP1 (Burkard et al., 2009;
Develop
Petronczki et al., 2007; Wolfe et al., 2009). There it repositions

RhoA activity to control the formation of a circumferential

actomyosin band across the center of the anaphase spindle

(Chalamalasetty et al., 2006; Nishimura and Yonemura, 2006;

Somers and Saint, 2003; Yüce et al., 2005), ensuring the precise

segregation of contents between the two daughter cells. Thus,

by driving stage-specific changes in the local activation of

RhoA and the contractile actomyosin machinery, Ect2 is able

to remodel mitotic cell shape; driving rounding in early mitosis

and cleavage furrow formation at anaphase. Later, Ect2 is

released from the spindle midzone soon after the onset of cyto-

kinesis, leaving RacGAP1 free to catalyze mid-body maturation

and abscission (Simon et al., 2008). The bulk of the protein is

then degraded by the APC (Liot et al., 2011), while the remainder

is reimported into the newly formed nuclei, to restore interphase

cell shape. In this way, Ect2 resembles other mitotic proteins

that display distinct roles at different times in mitosis, dependent

on stage-specific changes in their localization e.g., Plk1 is known

to associate with centrosomes at prophase, kinetochores at

metaphase and the midzone at anaphase, enabling it to func-

tion in centrosome separation, microtubule attachment and

cytokinesis respectively (Petronczki et al., 2008).

Ect2 has been shown to be phosphorylated on multiple sites

by Cdk1 (Hara et al., 2006; Niiya et al., 2006; Su et al., 2011;

Yüce et al., 2005). It is likely that this phosphorylation is required

for its function in mitotic rounding, since Ect2 actively remodels

the mitotic cortex in early mitosis under conditions of high Cdk1

activity. Previously, one Ect2 Cdk1-dependent phosphorylation

site, T342, was shown to inhibit RacGAP1 binding and become

dephosphorylated in anaphase (Yüce et al., 2005), leading to

the speculation that Cdk1 phosphorylation could inhibit Ect2,

functionally coupling the initiation of contractile ring formation

to mitotic exit. Our data, however, argue that this is unlikely to

be the sole mechanism by which Ect2 is regulated, since we

see little change in the global Ect2 phosphorylation level at

anaphase and it remains in a hyper-phosphorylated state

through until the end of cytokinesis (Figure 4). In line with this,

Ect2 phosphorylation has been shown to relieve an auto-inhibi-

tory interaction between the C- and N-terminal domains of the
mental Cell 23, 371–383, August 14, 2012 ª2012 Elsevier Inc. 379
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protein (Hara et al., 2006; Kim et al., 2005) and to be essential for

its GEF activity (Tatsumoto et al., 1999). These data suggest that

Cdk1 phosphorylation contributes to the activation of Ect2 at

anaphase. A recent study identified a role for the C terminus of

Ect2 in its recruitment to the membrane at anaphase (Su et al.,

2011). This membrane localization was shown to be essential

for cytokinesis. Interestingly it was also suggested that this

change in localization at anaphasemay be triggered by a change

in CDK-mediated phosphorylation at T815. It is clear from our

analysis, however, that Ect2 is able to activate RhoA at the

membrane in metaphase despite its having a largely diffuse

cytoplasmic localization. Thus, the dephosphorylation of Ect2

at this site at anaphase likely induces a change in the rates at

which Ect2 shuttles between the membrane and cytoplasm,

and may function to limit the range of Ect20s action to allow for

polar relaxation (Sedzinski et al., 2011).

If Cdk1-mediated phosphorylation of Ect2 plays a role in the

regulation of its activity at both metaphase and anaphase, an

important unsolved question is how bulk Ect2 phosphorylation

persists following the inactivation of Cdk1/CyclinB at mitotic

exit. This may be the result of Plk1-dependent phosphorylation

of Ect2 at the midzone (Niiya et al., 2006) or the result of

the dynamic regulation of Ect2 dephosphorylation by mitotic

phosphatases (Barr et al., 2011; Bouchoux and Uhlmann,

2011). In addition, there may be subtle changes in the set of

Ect2 phosphorylation sites that accompany mitotic progression

which change the relative potency of Ect2 and/or its specificity

to tune its RhoGEF activity to the generation of a rounded

cortex during mitotic entry or an actomyosin ring at mitotic

exit (Su et al., 2011; Yüce et al., 2005). A comprehensive

dissection of the function and dynamics of Ect2 phosphoryla-

tion through mitosis however is likely to remain a challenge

for some time as it is hampered by the sheer number of sites

revealed in both biochemical studies (Hara et al., 2006; Niiya

et al., 2006; Yüce et al., 2005) and large-scale screens for

mitotic phosphorylation (Beausoleil et al., 2006; Dephoure

et al., 2008).

Although Ect2 provides a critical link between mitotic entry

and cell rounding, it is clear that other factors are important in

the control of mitotic cell shape. These include the loss of

substrate adhesion, which is dependent on Rap1 inhibition

(Dao et al., 2009) together with changes in osmotic pressure

(Stewart et al., 2011). This may explain why Ect2-depleted cells,

although suffering from profound defects in actin organization,

eventually assume a roughly rounded morphology (Figure 1).

Indeed, we observed no defects in the timing of focal adhesion

disassembly in Ect2 RNAi cells (Figure S3), suggesting that

loss of adhesion may allow cells to decrease in length despite

defects in actin organization and myosin contractibility. It is

therefore likely that Cdk1/CyclinB and other mitotic kinases

directly regulate focal adhesion removal and changes to ion

channels in parallel, independently of Ect2, to ensure their coor-

dination. Nevertheless, the involvement of Ect2 in sequential

events during mitosis suggests that it is a central organizer of

the cortex through mitotic progression. Significant changes to

the actomyosin cytoskeleton occur at rounding when actin fila-

ments are rearranged to form a stiff cortical shell (Kunda et al.,

2008) and then at cytokinesis when the symmetry is broken by

furrowing and polar relaxation (Eggert et al., 2006). Since our
380 Developmental Cell 23, 371–383, August 14, 2012 ª2012 Elsevie
data suggest that both processes are controlled by the same

molecular ‘‘toolbox,’’ downstream of Ect2 and RhoA, one might

speculate that they are mechanistically coupled. Thus, the

repositioning of Ect2 at anaphase, may serve to loosen the rigid

actomyosin cortex at the cell poles, coupling cleavage furrow

formation to polar relaxation. In fact, this was long the favored

model for cytokinesis, in which polar relaxation was through to

precede and to drive furrow formation (Roberts, 1961).

There are several similar parallels in evolution where actin

remodeling events required for cytokinesis are initiated before

cell division. In the early Caenorhabditis elegans embryo,

cortical actomyosin flows determine cell polarity before divi-

sion, in a process that is dependent on Ect2 and RhoA (Motegi

and Sugimoto, 2006; Schonegg and Hyman, 2006). Likewise in

fission yeast, preparation for cytokinesis begins before

anaphase with the formation of actin-nucleating nodes at the

onset of mitosis, which later condense to form the contractile

ring (Goyal et al., 2011; Pollard and Wu, 2010). Our data

suggest that a similar mechanism could operate in mammalian

cells, with the events that remodel the actin cortex in prepara-

tion for cell division being initiated by Cdk1-dependent Ect2

activity at the onset of mitosis, rather than by Cdk1 inhibition

at anaphase.

EXPERIMENTAL PROCEDURES

Time-Lapse Microscopy

For live imaging, HeLa stable cell lines expressing LifeAct-GFP/histone2B-

mRFP, histone2B-mRFP/tubulin-GFP (Steigemann et al., 2009), Ect2-GFP

(hela Kyoto -mEct2-GFP-FLAP (Poser et al., 2008; Hutchins et al., 2010), and

a tetracycline-inducible line expressing Cyclin-B1-Venus (Di Fiore and Pines,

2010) were plated on glass-bottomed dishes (MatTek) coated with 10 mg/ml

fibronectin (Sigma). For cell length measurements, cells were imaged every

2min using a Zeiss Axiovert 200Mmicroscope with a 203 objective (numerical

aperture, NA 0.4), and images acquired using a Hamamatsu Orca AG

camera and Volocity software (Perkin Elmer). Cell length was defined as the

furthest distance between two points on the cell perimeter (Feret’s Diameter)

and measured using Fiji. For filming inhibitor treated cells, inhibitors were

dissolved in DMEM + 10% FBS and added one hour prior to commencing

filming, except for C3 transferase, which was added 6 hr before filming began.

Inhibitors were used at the following concentrations: 100 ng/ml nocodozole

(Sigma), 2 mg/ml C3 transferase (Cytoskeleton), 50 mM Y-27632 (Calbiochem),

and 50 mM blebbistatin (Sigma). For time-lapse confocal imaging, an UltraView

Vox (Perkin Elmer) spinning disc system was used with 603 oil immersion

objective (NA 1.4). Images were acquired every 30 s with z slices every 4 mm

covering the height of the cell. Single z plane images are shown.

Immunofluorescence

For immunostaining, cells were plated on fibronectin-coated glass coverslips

and fixed with 4% formaldehyde for 20min, permeablized with 0.2% triton-X in

PBS for 5 min, blocked with 5% bovine serum albumin in PBS for 30 min and

treated with primary and secondary antibodies for 1 hr at room temperature.

Primary antibodies were used at the following dilutions: tubulin 1:400

(DM1A, Sigma-Aldrich), Ect2 1:200 (sc-1005 Santa Cruz), anti-GFP 1:200

(a11122 Molecular Probes), anti-myc 1:500 (9E10 Santa Cruz), phospho-

Myosin Light Chain (T18/S19) 1:100 (Cell Signaling Technology 3674),

phospho-Ezrin (T567)/ Radixin (T564)/ Moesin (T558) 1:200 (Cell Signaling

Technology 3141), phospho-paxillin 1:200 (BD Bioscience 610051), and phos-

pho-Ser/Thr-Pro 1:500 (MPM2, Millipore). Secondary anti-rabbit IgG and

anti-mouse IgG antibodies (Molecular Probes) tagged with alexa-fluor 488,

546 or 647 were used at 1:500. TRITC-conjugated phalloidin (Sigma) was

used at 0.1 mg/ml and DAPI (Invitrogen) at 1:1000. Immuno-stained cells

were mounted with FluorSave (Calbiochem) and imaged on a Leica SPE

confocal microscope with a 633 lens (NA 1.3).
r Inc.
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Gel Mobility Shift Assay and Western Blotting

Ect2 bandshift experiments were carried out as previously described (Niiya

et al., 2006; Tatsumoto et al., 1999). Unsynchronized cells or cells arrested

in mitosis by 5 mM STLC (Sigma) treatment for 18 hr were harvested in

Laemmli Buffer (Sigma). Roscovitine (Calbiochem) was used at a concentra-

tion of 50 mM for 2 hr. For block and release experiments, cells were

synchronized by treatment with 2 mM thymidine (Sigma) for 14 hr, released

into fresh medium for 8 hr, followed by a second 14 hr 2 mM thymidine treat-

ment, and then released for 10 hr before harvesting every hour. For mitotic

exit, synchronization cells were synchronized at metaphase using the

following protocol: 24 hr treatment with 2 mM thymidine, followed by 6 hr

release, 4 hr in 100ng/ml nocodozole, and finally 2 hr in 10 mM Mg132. Cells

were then released into fresh media and lysed at 20 min intervals. Samples

were loaded onto an 8% SDS-PAGE gel before transfer onto an Immobilon-P

(Millipore) membrane by western blotting. Membranes were blocked in 5%

BSA in TBST for 1 hr, incubated overnight at 4�C with primary antibodies,

and for several hours at room temperature with secondary antibodies. Anti-

bodies were used at the following dilutions: Ect2 1:500 (sc-1005 Santa Cruz),

Cyclin B1 1:500 (sc-595 Santa Cruz), adaptin g 1:2000 (BD Biosciences

610386), phospho-histone H3 (S10) 1:4000(Cell Signaling Technology

9706), and tubulin 1:2000 (DM1A, Sigma) and HRP-conjugated secondary

antibodies 1:1000 (DAKO). Results were visualized using an ImageQuant

LAS4000 system and blots quantified using ImageQuant TL software (GE

Healthcare).

Optical Stretching

Cells were plated at 90%confluency in 25 cm2 flasks for RNAi treatment. Three

hours after RNAi treatment, cells were arrested in G2 by addition of 9 mM

RO-3306 (Enzo Life Science) for 18 hr, before release from the drug for

90 min and harvest by mitotic shake-off. Interphase cells and multinucleate

Ect2 RNAi cells that had already failed cell division were excluded from the

analysis by visual inspection of DNA and measurement of cell diameter inside

the optical stretcher. The microfluidic optical stretcher (OS) has previously

been described in detail (Lincoln et al., 2007). Two counter-propagating

near-infrared laser beams (g = 1064 nm), emerging from single-mode optical

fibers, are combined in a microfluidic channel to trap (low power p = 0.1 W/

fiber) and deform (p = 1.0 W/fiber) single suspended cell by optically induced

surface stresses. Cells were introduced into the OS at a concentration of

50 3 104 cells/ml and experiments were done at room temperature (22�C).
The mechanical properties of cells were measured by a creep compliance

experiment. This test enables a direct comparison between the mechanical

properties of cells (Lautenschläger et al., 2009; Wottawah et al., 2005). A cell

is first held at low power in the optical trap and then a constant stress is

applied to the cell for 4 s (p = 1W). The relative cell deformation, or strain

D(t) = Dr(t)/ro (during and after application of the stress) is recorded with phase

contrast videomicroscopy. The compliance of the cell, representing a true

material property, is defined as J(t) = D(t)/(so FG), which is the strain D(t)

normalized by the peak stress applied, so, and a geometrical factor FG (Anan-

thakrishnan et al., 2006; Guck et al., 2001), which accounts for different

cell sizes or different refractive indices. The refractive indices of cells were

determined by immersion refractometry using BSA solutions as described

previously (Guck et al., 2005): nmitotis = 1.3510 ± 0.0096 and ninterphase =

1.3563 ± 0.0041.

FRET Analysis

HeLa cells were transfected with a RhoA YFP-CFP FRET biosensor (Pertz

et al., 2006) and 32 hr after transfection 5 mM STLC was added for 15 hr to

synchronize cell in mitosis. Cells were then fixed with 4% formaldehyde and

imaged using a Leica SP5 scanning confocal system with a 63x oil objective

(NA 1.4). FRET efficiency was calculated using acceptor photobleaching as

described (Matthews et al., 2008). Briefly, CFP and YFP channels were excited

using the 458 nm and 514 nm lasers respectively. Cells were imaged pre-

bleach, then a region consisting of half the cell was bleached for 2 min using

the 514 nm laser at maximum power. Postbleach images were then acquired

for each channel and the total FRET efficiency ratio for the bleached half of

the cell was calculated as (CFPpostbleach � CFPprebleach)/CFPpostbleach. An effi-

ciency ratio was also calculated for an equal-seized nonbleached region and

subtracted from the bleached region to give the final ratio.
Develop
Statistical Analysis

Graphs were produced and statistical analysis carried out in Microsoft Excel.

Bar charts show mean values with error bars representing standard deviation.

Box plots showmedian as line, upper and lower quartiles as box, and range as

whiskers. The p values were calculated using the student’s t test (two sample

equal variance, two-tailed), *p < 0.01, **p < 0.001.
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