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Introduction

Industry guidance indicates that a choice of interfering com-
pounds should be made based on: “.  .  .knowledge of the 
chemistry, the measurement procedure, and its intended 
use.”1 Beyond a limited list of potential interferences defined 
by regulatory authorities such as the FDA2 and international 
standards,3 manufacturers of glucose monitoring devices are 
themselves responsible for the identification of potential 

interferents. Inputs such as internal complaints, monitoring 
processes and periodic literature reviews may detect new 
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Abstract
Background Regulations and industry guidance relating to testing for interference in blood glucose monitoring (BGM) 
systems continue to focus on in vitro laboratory bench tests. Post-market surveillance (PMS) in a clinical setting allows for 
BGM accuracy assessments to evaluate the impact of real-world exposure to polypharmacy in people with diabetes. This 
study evaluated the OneTouch Select Plus® BGM test-strip accuracy with respect to polypharmacy using a clinical registry 
dataset.

Methods Medication profiles were analysed for 1023 subjects (425 with type 1 (T1D) and 598 with type 2 diabetes (T2D)) 
attending 3 UK hospitals. Blood samples were analysed to determine clinical accuracy of the BGM test-strip against a 
laboratory comparator.

Results 538 different medications (48 diabetes and 490 non-diabetes) were recorded across the 1023 subjects. Patients 
took on average 6.9 (n = 1-36) individual medications and 4.1 (n = 1-13) unique medication classes. Clinical accuracy to EN 
ISO 15197:2015 criteria were met irrespective of increasing average number of individual medications, categorized from 1-3, 
4-6, 7-9, 10-12 and >12 taken per subject (97.7%, 97.7%, 97.8%, 97.8%, and 98.4%, respectively). Clinical accuracy criteria 
were met across 15 classes of medication using the combined dataset (97.9%; 29784/30433). Surveillance Error Grid (SEG) 
analysis showed 98.7% (29959/30368) of readings presented no clinical risk. No individual class or combination of medication 
classes impacted clinical accuracy of the BGM test-strip.

Conclusions Clinical performance for the test strip under assessment demonstrated no evidence of interference from over 
500 prescription medications, with clinical accuracy maintained across a range of polypharmacy conditions in people with 
diabetes.
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sources of interference, but the challenge for device manu-
facturers is to balance a need to evaluate true novel risks with 
a speculative approach of testing compounds that have no 
proposed mechanism or history of interference with estab-
lished chemistries.

The assessment of interfering effects in the clinical setting is 
not mandated for blood glucose or continuous glucose moni-
toring (BGM or CGM) systems by regulators, and indeed this 
could prove logistically challenging to organize. However, this 
does not remove the responsibility for manufacturers to use the 
tools at their disposal to evaluate interference sensitivity in 
samples from the intended patient population. A practical solu-
tion to this problem may be to use ongoing clinical post market 
surveillance (PMS) activities to establish the real-world impact 
of new or existing medications on all glucose monitoring prod-
ucts. These surveillance activities are capable of mimicking the 
full range of medications taken by people with diabetes 
(PWDs). Evaluations of this type complement established lab-
oratory interference tests that provide detailed assessments of a 
single substance at pathologic concentrations but offer limited 
insight about the impact of concomitant medications on the 
BGM or CGM device. The Clinical and Laboratory Standards 
Institute (CLSI)1 guided single-substance laboratory approach 
(valuable and well-defined though it is) is still the only method 
advocated within recently finalized FDA industry guidance.2

Where multiple subjects are using the same prescribed 
medication (in a retrospective surveillance initiative with 
many patients) an opportunity exists to evaluate the impact 
of a specific medication upon the patient population. This 
relies upon an assumption that the range of other medications 
taken concomitantly would not all interact substantially with 
the specific compound of interest. The challenge with poly-
pharmacy interaction with glucose measurement is well 
illustrated by the summing of measurement errors as 
described by Erbach et al,4 where the influence on an assay 
from numerous interfering compounds may prove either 
directionally synergistic or antagonistic, such that small 
interfering effects are either exacerbated or concealed. 
Previously published data5 has demonstrated that a BGM 
system may be evaluated against such cumulative effects by 
using clinical data to increase confidence in performance in 
the presence of a wide array of medications. The current 
study describes a robust surveillance evaluation of a different 
strip technology: the OneTouch Select Plus® strip platform 
utilizing the enzyme glucose oxidase. The accuracy of this 
strip platform in the presence of potential interference was 
evaluated over a four-year surveillance period, as part of a 
PMS program using a hospital-based registry.

Methods

Patient registry

The patient registry (initiated by Lifescan) started collecting 
in-clinic data for the specified test strip platform from May 

2016. All patients attend one of the manufacturer’s 3 UK 
NHS (National Health Service) clinics: The Highland 
Diabetes Institute, Inverness; The Royal Infirmary of 
Edinburgh; Birmingham Heartlands Hospital. Patients must 
first enrol in the registry, with any subsequent testing per-
formed under UK Scotland Research Ethics Committee 
approval (10/S1103/2). The registry collects anonymized 
demographic, medical history and study participation data 
within the Medidata RAVE electronic data capture system 
(Medidata Solutions, NY). At first visit, self-reported details 
on medications taken by each patient are provided to trained 
facilitators and verified against the subject’s NHS electronic 
medical records before being recorded within the registry. 
This data can therefore be cross-referenced and correlated 
with in-clinic patient test-strip performance data to evaluate 
any impact of medications on strip performance. If a patient 
makes a repeat visit to the clinic, they are then asked to con-
firm their current medications status and the patient registry 
is updated accordingly.

Clinic Blood Glucose Test-Strip Method

Routine performance monitoring of test-strips, manufactured 
by LifeScan Europe GmbH (Zug, Switzerland), is conducted 
through clinical accuracy assessment of representative pro-
duction batches. Only clinical data specific to the test strip 
platform under evaluation was included in this assessment. 
Inclusion criteria required participants to have completed 
informed consent and have a diagnosis of diabetes. Although 
the product hematocrit claim is 30%-55%, all patient data 
were included, irrespective of hematocrit. During clinical 
assessment, the participant’s finger is lanced (finger-stick) 
by the site staff and a drop of blood applied to up to 18 blood 
glucose test-strips. Hematocrit levels are recorded as the per-
centage volume of red blood cells (RBCs) as a proportion of 
the total sample volume. Reference glucose values were 
determined from the centrifuged plasma fraction of a 300 µl 
capillary blood sample collected by Microvette and ana-
lyzed, within 30 mins., on 2 separate YSI STAT PLUS™ 
blood glucose analyzers (Yellow Springs Instrument Co. 
Inc., OH). This reference analyser uses the same enzyme 
(glucose oxidase) as the system under test but includes a 
cellulose-acetate membrane that reduces the sensitivity of 
the analyser to many potential sources of interference.6 
However, some glucose analogues and small molecules may 
have been capable of interfering with both the test-strip and 
reference analyser using the same mechanism. If meeting 
acceptance criteria, the mean of the duplicate comparator 
values was used. Participants may have visited a clinic site 
on multiple occasions and been tested with more than 1 strip 
lot per visit, thus the clinical dataset is not entirely composed 
of unique subjects. Each strip lot was assessed on a minimum 
of 100 unique subjects with all tests performed by trained 
staff. The clinical accuracy of each BGM value within the 
patient registry dataset was evaluated against the EN ISO 
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15197:2015 definition of accuracy (A minimum of 95% of 
BGM values to be within ±15 mg/dL (<100 mg/dL) or 
±15% (≥100 mg/dL) of comparator. Data were also evalu-
ated by surveillance error grid (SEG).

Medication Status & Test-Strip Performance

Over the assessment period (Jan 2017 to Jan 2020) the data-
set included 1023 evaluable patients. Some individual 
patients may have visited a clinic more than once during this 
period, and on each occasion may have provided a blood 
sample for accuracy evaluation of more than one production 
batch, hence the number of medications and associated blood 
glucose reading combinations is 30,433. The maximum 
number of medications assigned to a patient was considered 
as visit-specific within this assessment (if the subject took at 
least one medication from a class, they were assessed against 
that class). This allowed for a single patient to appear in dif-
ferent medication classifications depending on their medica-
tion status at the time of each visit. Clinic testing was 
scheduled during standard daily operating hours, and it 
would reasonably be expected that dosages of medications 
were as per prescribed therapeutic levels. However, factors 
such as time of administration, dosage, pharmacokinetic 
properties and other patient-specific factors were not con-
trolled, with patients routinely recruited directly from the 
diabetes clinic waiting areas. All medications reported by the 
patient were first classified as either a diabetes medication or 
non-diabetes medication, with non-diabetes further refined 
into 15 medication classes according to their intended physi-
ologic or therapeutic action. Medications were then either 

individually assessed with respect to test-strip performance 
or assessed with respect to cohorts of patients taking certain 
medication classes (eg, anti-hypertensive, lipid lowering or 
anti-depressants).

Analysis

Each test-strip batch was assessed against the EN ISO 
19157:2015 definition of clinical accuracy. Analyses were 
performed using SPSS Statistics v21 software (IBM Corp. 
Armonk, US) with independent statistician verification.

Results

Subject Demographics

Of the 1023 patients, a greater proportion were male (53.1%), 
with wide variation in age range (14-88 years) and an overall 
mean age of 56 years (Table 1). A high proportion of the T2D 
patients in our cohort (388/598; 64.9%) reported using insulin 
compared to international survey and registry values,7 which 
reflects the fact that hospital-based clinics often have more dif-
ficult to manage or complex patients referred to them from 
primary care. Non-insulin-users accounted for 215/1023 
(21.0%) of the cohort. Patients had significant durations of 
diabetes averaging 19 years with a range of <1-64 years.

Medication Classifications

A total of 538 unique medications were recorded across 
all 1023 patients. This included 48 individual diabetes 

Table 1.  Subject Demographics of Patients Tested Using OneTouch Select Plus® Strips.

All N = 1023 T2D N = 598 T1D N = 425

Sex, n (%)
  Male 543 (53.1%) 333 (55.7%) 210 (49.4%)
  Female 480 (46.9%) 265 (44.3% 215 (50.6%)
Age in years, mean (range) 56 (14-88) 63 (17-88) 45 (14-85)
Diabetes type, n (%) 1023 (100%) 598 (58.5%) 425 (41.5%)
Mean diabetes duration, years 19 17 22
Duration range, years <1 to 64 (N = 975) <1 to 56 (N = 561) <1 to 64 (N = 414)
A1c mean, % (mmol/mol) 8.5% (69) 8.3% (67) 8.7% (72)
A1c range, % (mmol/mol) 5.1-15.9% (32-150) 5.1-14.8% (32-138) 5.3-15.9% (34-150)
BGM frequency, n
  Mean (tests per day) 3.0 1.9 4.4
  BGM range (tests per day) 0 to 15 0 to 15 0 to 15
Therapy, n (%)
  Insulin pump and insulin injections 457 (44.7%) 92 (15.4%) 365 (85.9%)
  Oral meds + insulin 351 (34.3%) 296 (49.5%) 55 (12.9%)
  Oral meds only 173 (16.9%) 173 (28.9%) -
  Oral meds + other injectables 13 (1.3%) 10 (1.7%) 3 (0.7%)
  Diet and exercise 26 (2.5%) 25 (4.2%) 1 (0.2%)a

  Other 3 (0.3%) 2 (0.3) 1 (0.2%)

aT1D subject attended clinic whilst in hospital after transplant surgery.
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medications and 490 non-diabetes medications. Diabetes 
medications with an overall population prevalence of 
≥0.5% (29 of 48) are presented in Table 2. Non-diabetes 
medications with an overall population prevalence of 
≥2.5% (41 of 490) are shown in Table 3. All 538 medica-
tions were then classified according to intended physio-
logic or therapeutic action into 15 medication classes. The 
numbers of patients taking at least one medication from 
each of the 15 classes are shown in Table 4. The highest 
percentage of patients took diabetes medications (96.9%), 
anti-hypertensive (53.5%), lipid lowering (53.2%) or anti-
depressants (32.8%). The average number of medication 
classes taken by all, T1D and T2D patients were 4.1, 3.3 
and 4.6 respectively. Nearly a quarter of patients (23.3%) 
used one class of medication whereas 30.1% used 6 or 
more medication classes (Table 5). The mean number of 
individual medications taken by all, T1D and T2D patients 
were 6.9, 5.5 and 7.9 (medians of 6, 4, and 7) respectively 
with a range of 1 to 36 across all subjects (Figure 1).

Clinical accuracy of OneTouch Select Plus® Test-
Strip With Respect to Medications

Clinical accuracy was assessed for all medications within 
each medication class (Table 6). Each accuracy subset (eg, 
19,317 readings for anti-hypertensives) represents strip 
accuracy data from subjects who confirmed they were tak-
ing anti-hypertensives although subjects may also have 
been taking other medications. Therefore, each subset is 
defined by the fact that all subjects in that subset are tak-
ing at least that specific medication, as a minimum. For all 
combinations of individual medication-reference paired 
readings, at least 97% of glucose values were within 
±15 mg/dL (<100 mg/dL) or ±15% of comparator 
(≥100 mg/dL). Table 7 lists clinical accuracy categorized 
by the number of medication classes taken by patients. No 
systematic effect on clinical accuracy was evident with 
increasing number of medication classes. Furthermore, 
there was no impact on clinical accuracy based upon 

Table 2.  Summary of Diabetes Medications with an Overall Population Prevalence of ≥0.5% for All 1023 Subjects.

All patients N = 1023 T2D N = 598 T1D N = 425

  n (%)

Metformin 499 (48.8) 441 (73.7) 58 (13.6)
Novorapid 329 (32.2) 87 (14.5) 242 (56.9)
Lantus 314 (30.7) 118 (19.7) 196 (46.1)
Humalog 225 (22.0) 105 (17.6) 120 (28.2)
Levemir 145 (14.2) 40 (6.7) 105 (24.7)
Gliclazide 143 (14.0) 140 (23.4) 3 (0.7)
Novomix 102 (10.0) 81 (13.5) 21 (4.9)
Sitagliptin 74 (7.2) 73 (12.2) 1 (0.2)
Humulin 71 (6.9) 49 (8.2) 22 (5.2)
Dapagliflozin 62 (6.1) 59 (9.9) 3 (0.7)
Trajenta 48 (4.7) 47 (7.9) 1 (0.2)
Liraglutide 38 (3.7) 36 (6.0) 2 (0.5)
Degludec 28 (2.7) 2 (0.3) 26 (6.1)
Empagliflozin 27 (2.6) 26 (4.3) 1 (0.2)
Tresiba 26 (2.5) — 26 (6.1)
Trulicity 20 (2.0) 20 (3.3) —
Fiasp 19 (1.9) 1 (0.2) 18 (4.2)
Glargine 17 (1.7) 8 (1.3) 9 (2.1)
Pioglitazone 17 (1.7) 16 (2.7) 1 (0.2)
Apidra 15 (1.5) 3 (0.5) 12 (2.8)
Bydureon 14 (1.4) 13 (2.2) 1 (0.2)
Glipizide 9 (0.9) 9 (1.5) —
Glimepiride 8 (0.8) 8 (1.3) —
Hypurin neutral 8 (0.8) — 8 (1.9)
Xultophy 8 (0.8) 8 (1.3) —
Glucagen 6 (0.6) 1 (0.2) 5 (1.2)
Canagliflozin 5 (0.5) 5 (0.8) —
Insulatard 5 (0.5) 3 (0.5) 2 (0.5)
Saxagliptin 5 (0.5) 5 (0.8) —
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increasing average number of individual medications 
taken per subject, categorized from 1-3, 4-6, 7-9, 10-12, 
and >12 (97.7%, 97.7%, 97.8%, 97.8%, and 98.4% 
respectively).

Whilst the accuracy pooled by medication class indicated 
robust performance, certain medications may present a 
greater risk to BG measurement inaccuracy. The test-strip 
design under investigation is based on electrochemical trans-
duction, thus potentially may be influenced by the presence 

of electroactive medications that may be directly electro-
chemically oxidized at the test-strip working electrode. 
Acetaminophen (paracetamol), a common electroactive 
medication, was recorded as being taken by 86 subjects 
(3186 glucose readings) but was not associated with any sys-
tematic effect on the accuracy of the test-strips. A similar 
outcome was recorded for salicylic acid (as a metabolite of 
aspirin). Both acetaminophen and salicylic acid are presented 
alongside the other 18 most frequently encountered 

Table 3.  Summary of Non-Diabetes Medications with an Overall Population Prevalence of ≥2.5% for All 1023 Subjects.

All patients N = 1023 T2D N = 598 T1D N = 425

  n (%)

Simvastatin 246 (24.0) 177 (29.6) 69 (16.2)
Atorvastatin 245 (23.9) 188 (31.4) 57 (13.4)
Aspirin 206 (20.1) 153 (25.6) 53 (12.5)
Omeprazole 169 (16.5) 114 (19.1) 55 (12.9)
Lisinopril 162 (15.8) 113 (19.9) 49 (11.5)
Alodapine 133 (13.0) 106 (17.7) 27 (6.4)
Ramipril 115 (11.2) 89 (14.9) 26 (6.1)
Co-codamol 95 (9.3) 66 (11.0) 29 (6.8)
Lansoprazole 88 (8.6) 68 (11.4) 20 (4.7)
Paracetamol 86 (8.4) 65 (10.9) 21 (4.9)
Bendroflumethiazide 84 (8.2) 71 (11.9) 13 (3.1)
Salbutamol 80 (7.8) 44 (7.4) 36 (8.5)
Amitriptyline 79 (7.7) 48 (8.0) 31 (7.3)
Bisoprolol fumerate 78 (7.6) 58 (9.7) 20 (4.7)
Levothyroxin 76 (7.4) 35 (5.9) 41 (9.6)
Furosemide 73 (7.1) 58 (9.7) 15 (3.5)
Doxazosin 72 (7.0) 56 (9.4) 16 (3.8)
Tramadol 61 (6.0) 38 (6.4) 23 (5.4)
Losartan 59 (5.8) 45 (7.5) 14 (3.3)
Gabapentin 58 (5.7) 37 (6.2) 21 (4.9)
Clopidogrel 56 (5.5) 45 (7.5) 11 (2.6)
Ferrous fumarate 51 (5.0) 36 (6.0) 15 (3.5)
Thyroxine 45 (4.4) 16 (2.7) 29 (6.8)
Atenolol 44 (4.3) 37 (6.2) 7 (1.6)
Pregabalin 44 (4.3) 32 (5.4) 12 (2.8)
Rosuvastatin 43 (4.2) 30 (5.0) 13 (3.1)
Cetirizine 41 (4.0) 24 (4.0) 17 (4.0)
Folic acid 39 (3.8) 24 (4.0) 15 (3.5)
Perindopril 37 (3.6) 31 (5.2) 6 (1.4)
Ranitidine 36 (3.5) 27 (4.5) 9 (2.1)
Duloxetine 35 (3.4) 23 (3.8) 12 (2.8)
Candesartan 34 (3.3) 27 (4.5) 7 (1.6)
Adcal 33 (3.2) 24 (4.0) 9 (2.1)
Dihydrocodeine 32 (3.1) 23 (3.8) 9 (2.1)
Fluoxetine 31 (3.0) 18 (3.0) 13 (3.1)
Setraline 30 (2.9) 14 (2.3) 16 (3.8)
Fenofibrate 28 (2.7) 24 (4.0) 4 (0.9)
Ibuprofen 28 (2.7) 18 (3.0) 10 (2.4)
Naproxen 27 (2.6) 14 (2.3) 13 (3.1)
Quinine sulphate 27 (2.6) 20 (3.3) 7 (1.6)
Indapamide 26 (2.5) 20 (3.3) 6 (1.4)
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non-diabetes medications from this study in Table 8. Table 9 
presents accuracy data for the 20 most frequently encoun-
tered diabetes medications.

Evaluation of Clinical Accuracy by Surveillance 
Error Grid (SEG)

The SEG classifies data into 15 zones according to an 
assigned level of risk.8 The SEG plot for all individual med-
ication-reference paired readings is shown (x and y axes 
being limited to 0-600 mg/dL (33.3 mmol/L) glucose). A total 
of 29959/30368 readings (98.7%) were classified as present-
ing no clinical risk, whilst 404/30368 of readings (1.3%) 
were classified as slight, lower risk and 5/30368 as slight, 
higher risk. No values were recorded in any other risk zones 
in Figure 2. Additional SEG data, classified across all 15 
medication classes are shown in Table 10.

Table 4.  Summary of Individual Medication Classes Used by All 1023 Subjects.

Medication classification

All patients N = 1023 T2D N = 598 T1D N = 425

n (%)

Diabetes medications 991 (96.9) 571 (95.5) 420 (98.8)
Anti-hypertensive 547 (53.5) 406 (67.9) 141 (33.2)
Lipid lowering 544 (53.2) 403 (67.4) 141 (33.2)
Anti-depressant, psychotic or spasmolytic 336 (32.8) 211 (35.3) 125 (29.4)
Gastrointestinal 324 (31.7) 222 (37.1) 102 (24.0)
Anti-inflammatory 293 (28.6) 210 (35.1) 83 (19.5)
Analgesic or sedative 263 (25.7) 174 (29.1) 89 (20.9)
Anti-infective or microbial 198 (19.4) 122 (20.4) 76 (17.9)
Nutritionals, minerals or supplements 183 (17.9) 116 (19.4) 67 (15.8)
Cardioprotective or anti-thrombotic 139 (13.6) 110 (18.4) 29 (6.8)
Hormonal 132 (12.9) 58 (9.7) 74 (17.4)
Asthma, COPD or allergy 119 (11.6) 68 (11.4) 51 (12.0)
Urological 76 (7.4) 61 (10.2) 15 (3.5)
Cancer or neoplastic 19 (1.9) 14 (2.3) 5 (1.2)
Ophthalmological 17 (1.7) 13 (2.2) 4 (0.9)

Table 5.  Percentage of 1023 Subjects Using One or More Medication Classes.

Number of medication classes

All patients N = 1023 T2D N = 598 T1D N = 425

n (%) 

1 238 (23.3) 93 (15.6) 145 (34.1)
2 117 (11.4) 51 (8.5) 66 (15.5)
3 117 (11.4) 72 (12.0) 45 (10.6)
4 134 (13.1) 91 (15.2) 43 (10.1)
5 108 (10.6) 75 (12.5) 33 (7.8)
6 123 (12.0) 82 (13.7) 41 (9.6)
7 69 (6.7) 44 (7.4) 25 (5.9)
8 44 (4.3) 34 (5.7) 10 (2.4)
>8 73 (7.1) 56 (9.4) 17 (4.0)

Figure 1.  Number of medications prescribed to all (n = 1023), 
T1D (425), and T2D (598) subjects.
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Discussion

In a continuing surveillance initiative comprising 30,433 
blood samples gathered within a clinical setting on the test 
strip platform under evaluation, accuracy consistently met 
the criteria defined in EN ISO 15197:2015. Further sub-anal-
ysis of 15 medication classes and sub-analysis based on the 
number of medications taken by individual patients demon-
strated that accuracy levels remained consistent with the pri-
mary dataset—at no point falling below 97% against the EN 
ISO 15197:2015 criteria. Splitting the dataset to separately 
evaluate diabetes and non-diabetes medications, or by diabe-
tes type produced values ≥97% in all cases. SEG analysis 
supported these findings, with 98.7% of results assigned as 
‘no clinical risk’, a pattern that was again sustained across all 
15 medication classes.

When considering individual medications, the top 20 
most prevalent in the diabetes and non-diabetes categories 
were assessed, and all met EN ISO 15197:2015 accuracy 
criteria. Although most of these compounds had no known 
mechanism of interference with the system under test, the 
list did include the common analgesics acetaminophen and 
salicylic acid that are mandated for assessment using labo-
ratory methods by both regulators and international stan-
dards.2,3 Acetaminophen has been specifically identified as 
a risk compound for some earlier CGM devices9,10 and 
remains a risk when present in excessive levels or with 
repeated dosing on at least one current generation CGM 
device.11,12

The system under evaluation has been demonstrated to be 
insensitive to a panel of recommended compounds at non-
pathologic physiological or therapeutic concentrations, 
including acetaminophen, ascorbic acid and salicylic acid1,3 
as part of laboratory testing for regulatory clearances.

The value of laboratory evaluations is their ability to eval-
uate potential interfering compounds when tested in isola-
tion, but the limitations of testing single interferents are 
highlighted by the degree of polypharmacy encountered in 
this dataset. Bauer and Nauck13 provide a comprehensive 
assessment of polypharmacy using a dataset of over 300 peo-
ple with diabetes. Some salient observations were that both 
type 1 diabetes (T1D) and type 2 diabetes (T2D) groups were 
prescribed multiple medications, with T2Ds and older 
patients of both types prescribed more medications. Our data 
confirms such observations, particularly the clinically sig-
nificant differences in medication exposure between people 
with T1D and T2D. However, there may be a confounding 
effect of age and diabetes type (mean age of T1D of 44.6 years 
compared to T2D of 63.4 years), given that polypharmacy 
has also been found to increase with age independently of 
diabetes as a disease condition.14 This may also contribute to 
the differences in number of classes of medications pre-
scribed (mean classes T1D = 3.3, T2D = 4.6), and is consis-
tent with the lower (1-3 individual medications) group being 
younger for both T1D and T2D populations.

Diabetes as a condition is generally associated with 
comorbidities. Research has indicated that multimorbidity 
affecting T1D patients is common, including disorders such 

Table 6.  EN ISO 15197:2015 Clinical Accuracy for All 15 Medication Classes.

Class Medication class

Total number 
of medication/

reference 
combinations

Number of individual 
medication/reference 

combinations within ±15 mg/
dL or ±15% of comparatora

Percent of individual 
medication-reference 

combinations within ±15 mg/
dL or ±15% of comparatorb

All classes 30433 29784 97.9
1 Diabetes medications 29693 29064 97.9
2 Anti-hypertensives 19317 18914 97.9
3 Lipid lowering 19103 18693 97.9
4 Anti-depressants 11938 11723 98.2
5 Gastrointestinal 11212 10998 98.1
6 Anti-inflammatory 10725 10521 98.1
7 Analgesic or Sedative 9454 9309 98.5
9 Anti-infective 8547 8379 98.0
8 Nutritional Supplements 6849 6719 98.1
10 Cardioprotective 5364 5266 98.2
12 Asthma, COPD or allergy 4815 4716 97.9
11 Hormonal 4404 4317 98.0
13 Urological 2476 2425 97.9
14 Cancer 733 719 98.1
15 Ophthalmological 845 824 97.5

Data includes all data pairs, including those over 600 mg/dl (the upper claimed glucose limit of this BGM system).
aNumber of capillary blood glucose readings within ±15 mg/dL (<100 mg/dL) or ±15% of comparator (≥100 mg/dL).
bPercent of capillary blood glucose readings within ±15 mg/dL (<100 mg/dL) or ±15% of comparator (≥100 mg/dL).
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as hypertension, dyslipidemia and depression.15 If it is 
assumed that each of these conditions is treated alongside 
diabetes, this may consequently add a further 3 medication 
classes, even before considering other common prescribed 
drug classes such as anti-inflammatories, analgesics and gas-
trointestinal medications. Our dataset does indicate that the 
anti-hypertensive, lipid-lowering and anti-depressant classes 
are respectively second, third, and fourth most prescribed 
(after diabetes medications). A similar picture emerges for 
T2D patients, with a rapid increase in prescribed medications 
for comorbidities after diagnosis of diabetes.16

One of the principal expectations of a patient using a glu-
cose monitoring system (BGM or CGM) should be that it is 

robust in the context of these real-world conditions and that 
manufacturers are actively collecting and analysing long 
term data to elaborate on any potential impact of new medi-
cations on product performance in this challenging heterog-
enous environment. Common comorbidities of diabetes 
require specific medications, and these may either interfere 
directly with a glucose monitoring system or interact with 
one another to produce unanticipated increases in interfer-
ence effects due to drug interactions that may not have been 
evaluated in the mandatory laboratory testing. It should 
therefore be incumbent on manufacturers to provide their 
patients with assurances that products are effective outside of 
a controlled in vitro laboratory environment, using blood 

Table 7.  EN ISO 15197:2015 Clinical Accuracy Per Number of Medication Classes Taken.

Number of 
medication 
classes

Total number of 
medication/reference 

combinations

Number of individual medication-
reference combinations within 

±15 mg/dL or 15% of comparator

Percent of individual medication-
reference combinations within 

±15 mg/dL or 15% of comparator

1 4530 4420 97.6
2 2395 2343 97.8
3 3499 3405 97.3
4 4404 4298 97.6
5 3891 3821 98.2
6 4416 4322 97.9
7 2334 2291 98.2
8 1605 1585 98.8
>8 3359 3299 98.2

Table 8.  EN ISO 15197:2015 Clinical Accuracy for 20 Most Frequently Encountered Non-Diabetes Medications.

Total number of 
medication/reference 

combinations

Number of individual medication-
reference combinations within 

15 mg/dL or 15% of comparator

Percent of individual medication-
reference combinations within 

15 mg/dL or 15% of comparator

Simvastatin 9431 9204 97.6
Atorvastatin 8028 7865 98.0
Aspirin 7227 7094 98.2
Omeprazole 6224 6113 98.2
Lisinopril 6106 6005 98.3
Alodapine 5594 5478 97.9
Ramipril 3621 3544 97.9
Co codamol 3663 3598 98.2
Lansoprazole 2967 2910 98.1
Paracetamol 3186 3130 98.2
Bendroflumethiazide 3111 3053 98.1
Salbutamol 2990 2932 98.1
Amitriptyline 3265 3197 97.9
Bisoprolol fumerate 2907 2821 97.0
Levothyroxin 2637 2589 98.2
Furosemide 2343 2293 97.9
Doxazosin 2790 2750 98.6
Tramadol 2624 2591 98.7
Losartan 2535 2476 97.7
Gabapentin 1959 1932 98.6
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samples from volunteers without diabetes, spiked with solu-
tions of a small number of common medications. Increasing 
advocacy for the collection and use of real-world data (RWD) 
and real-world evidence (RWE) is clear in publications from 
both regulatory17 and academic sources.18 This is also in 
agreement with increasing legislative control to incorporate 
observations made during post-market surveillance (PMS) 

activities into a feedback system for product improvement 
and safety reporting as part of updates made to the Medical 
Devices Regulation (MDR) and In Vitro Medical Device 
Regulation (IVDR) in Europe.19 Such an approach is sup-
ported by independent commentary on the necessity for PMS 
for BGM devices.20

A systematic, longitudinal PMS program based on ran-
domly selected batches and representing the full variation of 
both production processes and manufacturing materials has 
previously been demonstrated to be an effective means to 
assess product performance.21 When a glucose monitoring 
system PMS program engages with healthcare providers 
(such as the NHS in the UK), additional patient prescription 
data should be available to assess performance against new 
criteria, such as polypharmacy burden. There is reason to be 
optimistic that improved data collection infrastructure will 
allow better synchronization with patient health records and 
thus create more widely adopted and transparent BGM and 
CGM surveillance activities, with consistently robust assess-
ments of the impact of polypharmacy.

There are limitations to this type of study. Subjects in our 
hospital setting could perhaps be on more medications than 
the primary care recruited population of people with diabe-
tes. There may be potential gaps or errors within the NHS 
records used, despite these being the patients’ primary 
healthcare records, and in addition, to verify data against 
NHS records the medications themselves must be prescribed, 
which results in a limited ability to assess other supplements 
such as ascorbic acid (vitamin C) which may not be routinely 

Table 9.  EN ISO 15197:2015 Clinical Accuracy for 20 Most Frequently Encountered Diabetes Medications.

Total number of 
medication/reference 

combinations

Number of individual medication-
reference combinations within 

15 mg/dL or 15% of comparator

Percent of individual medication-
reference combinations within 

15 mg/dL or 15% of comparator

Metformin 16868 16513 97.9
Novorapid 9397 9183 97.7
Lantus 8820 8614 97.7
Humalog 6881 6738 97.9
Levemir 5384 5269 97.9
Gliclazide 6054 5935 98.0
Novomix 3154 3085 97.8
Sitagliptin 2321 2289 98.6
Humulin 2368 2324 98.1
Dapagliflozin 2634 2579 97.9
Trajenta 1507 1475 97.9
Liraglutide 1379 1362 98.8
Degludec 612 590 96.4
Empagliflozin 1245 1227 98.6
Tresiba 537 524 97.6
Trulicity 796 777 97.6
Fiasp insulin 467 446 95.5
Glargine 416 412 99.0
Pioglitazone 752 742 98.7
Apidra 525 514 97.9

Figure 2.  Surveillance error grid plot of all individual paired 
medication-reference readings.
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recorded by the health care team. It is also not possible, in the 
real world, to assume compliance to medication regimens, 
with the possible outcome that therapeutic concentrations 
were not present in all blood samples collected. In addition, 
pharmaceuticals may vary in their rates of prevalence across 
different territories worldwide, and a PMS program may 
only represent national conditions in that healthcare system. 
These compromises are a natural consequence of a real-
world study, and we accept that their presence generates a 
level of uncertainty, despite our best efforts to maintain clini-
cal integrity of the analysis by virtue of leveraging a substan-
tial clinical dataset. A final limitation is that the findings of 
this study should not be interpreted as exhaustive—medica-
tions not encountered within the study may still be a source 
of interfering effects.

Conclusion

Clinical performance for the test strip platform under assess-
ment demonstrated no evidence of interference from over 
500 prescription medications, with clinical accuracy main-
tained across a broad range of polypharmacy conditions in 
people with diabetes.
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