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The ability to make accurate social inferences makes humans able to navigate and act

in their social environment effortlessly. Converging evidence shows that motion is one

of the most informative cues in shaping the perception of social interactions. However,

the scarcity of parameterized generative models for the generation of highly-controlled

stimuli has slowed down both the identification of the most critical motion features and

the understanding of the computational mechanisms underlying their extraction and

processing from rich visual inputs. In this work, we introduce a novel generative model

for the automatic generation of an arbitrarily large number of videos of socially interacting

agents for comprehensive studies of social perception. The proposed framework,

validated with three psychophysical experiments, allows generating as many as 15

distinct interaction classes. The model builds on classical dynamical system models

of biological navigation and is able to generate visual stimuli that are parametrically

controlled and representative of a heterogeneous set of social interaction classes. The

proposed method represents thus an important tool for experiments aimed at unveiling

the computational mechanismsmediating the perception of social interactions. The ability

to generate highly-controlled stimuli makes the model valuable not only to conduct

behavioral and neuroimaging studies, but also to develop and validate neural models

of social inference, and machine vision systems for the automatic recognition of social

interactions. In fact, contrasting human and model responses to a heterogeneous set of

highly-controlled stimuli can help to identify critical computational steps in the processing

of social interaction stimuli.

Keywords: social interactions, generative model, motion cues, social perception, social inference

1. INTRODUCTION

Human and non-human primates are able to recognize the social interactions taking place in
their environment quickly and effortlessly: with a few glances out of the window, we can easily
understand whether two people are following each other, avoiding each other, fighting, or are
engaging in some other form of social behavior. Notably, such interactive behaviors can be
recognized even when the available visual information is poor: for example, when the scene we
are watching is unfolding behind the leaves of a tree, at a considerable distance from us, or in a low-
resolution video. In some of these situations, critical visual cues such as facial expressions might be
completely occluded, yet our ability to make social inference is largely unaffected. Such perceptual
ability is instrumental in allowing us to move in our social environment and flexibly interact with it,
while abiding by the social norms (Troje et al., 2013). Therefore, it constitutes an important social
skill that is worth characterizing and modeling also for the development of social robots.
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Understanding the neural mechanisms underlying the
inference of animacy and social interactions from visual inputs
is a long-standing research challenge (Heider and Simmel, 1944;
Michotte, 1946; Scholl and Tremoulet, 2000; Troje et al., 2013).
Recent work has started identifying some of the responsible
neural circuits (Castelli et al., 2000; Isik et al., 2017; Sliwa and
Freiwald, 2017; Walbrin et al., 2018; Freiwald, 2020). Even
though the detailed computational mechanisms mediating
the formation of social percepts from visual inputs remain
largely unknown, converging evidence has shown that the
observation of biological motion alone is enough for humans
to make accurate social inferences (e.g., Heider and Simmel,
1944; Tremoulet and Feldman, 2000; McAleer and Pollick,
2008; Roether et al., 2009). For example, Heider and Simmel
(1944) demonstrated that humans can reliably decode animacy
and social interactions from strongly impoverished stimuli
consisting of simple geometrical figures moving around in the
two-dimensional plane. Remarkably, despite their highly abstract
nature, the visual stimuli used in this study were perceived as
alive and sometimes even anthropomorphic: the agents were
often considered as endowed with intentions, emotions, and
even personality traits.

Several subsequent studies (e.g., Oatley and Yuill, 1985; Rimé
et al., 1985; Springer et al., 1996; Castelli et al., 2000, 2002)
replicated these findings using similar stimuli and showed that
the inference of social interactions from impoverished stimuli is
a cross-cultural phenomenon (Rimé et al., 1985) that is present
even in 5-year-old preschoolers (Springer et al., 1996). Taken
together, these findings support the view that the perception
of animacy and social interactions might rely on some innate
and automatic processing of low-level kinematic features present
in the visual inputs, rather than on higher-level cognitive
processing (Scholl and Gao, 2013).

The identification of the most critical visual features that
shape these social percepts has also received great attention
(Tremoulet and Feldman, 2000, 2006). For example, influential
work suggested that these percepts are mediated by the detection
of apparent violations of the principle of conservation of energy
(Dittrich and Lea, 1994; Gelman et al., 1995; Csibra, 2008;
Kaduk et al., 2013). Later research proved that also agent’s
orientation, velocity, and acceleration play a major role (Szego
and Rutherford, 2008; Träuble et al., 2014). At the same
time, neuroimaging work has shed light on some of the brain
regions mediating these phenomena: the right posterior superior
temporal sulcus (pSTS—Isik et al., 2017;Walbrin et al., 2018), the
medial prefrontal cortex (mPFC—Castelli et al., 2000; Sliwa and
Freiwald, 2017), and the right temporoparietal junction (TPJ—
Castelli et al., 2000; Saxe and Kanwisher, 2003) are among the
brain regions most frequently reported as being involved in
the perception of social interaction. Interestingly, Schultz and
Bülthoff (2019), recently identified another region—the right
intraparietal sulcus (IPS)—that seems to be exclusively engaged
during the perception of animacy.

Clearly, the success of both behavioral and neuroimaging
social perception studies is tightly linked to the ability to finely
control the visual stimuli that participants are exposed to.
Specifically, such stimuli should ideally be generated through

a process that allows complete parametric control, the creation
of a high number of replicates with sufficient variety, and the
gradual reduction of complexity. Parametric control (e.g., over
agents’ speed) facilitates the identification of brain regions and
individual neurons whose activation covaries with the kinematic
features of agents’ behavior.Variety in classes of social interaction
allows the characterization of the class-specific and general
response properties of such brain regions. Numerosity allows
averaging out response properties that are independent of social
interaction processing. Finally, the ability to control stimulus
complexity allows the generation of impoverished stimuli that
are fundamental to minimize the impact of confounding factors,
inevitably present, for example, in real videos. Similarly, such
properties are also desirable when designing and validating
neural and mechanistic models of human social perceptions:
contrasting human and model responses to a variety of
highly controlled stimuli can help discriminate between the
computational mechanisms that the models capture well from
those that need further refinement. This is especially critical
for state-of-the-art deep learning models (e.g., Yamins et al.,
2014), which can easily have millions of parameters and be prone
to over-fitting.

Currently, no well-established method can generate visual
stimuli for the analysis of social perception that satisfy all of the
above conditions. Because of this, researchers often have to resort
to time-consuming and class-specific, heuristic procedures. A
creative approach to this problem has been the one adopted
by Gordon and Roemmele (2014), where the task of generating
videos was assigned to a set of participants—who were asked to
create their own videos of socially interacting geometrical shapes,
and to label them accordingly. However, typically, researches use
visual stimuli where agents’ trajectories are hand-crafted or hard-
coded (e.g., Heider and Simmel, 1944; Oatley and Yuill, 1985;
Rimé et al., 1985; Springer et al., 1996; Castelli et al., 2000, 2002;
Baker et al., 2009; Gao et al., 2009, 2010; Kaduk et al., 2013;
Träuble et al., 2014; Isik et al., 2017; van Buren et al., 2017;
Walbrin et al., 2018), based on rules (e.g., Kerr and Cohen, 2010;
Pantelis et al., 2014), or derived from real videos (e.g., McAleer
and Pollick, 2008; McAleer et al., 2011; Thurman and Lu, 2014;
Sliwa and Freiwald, 2017; Shu et al., 2018). All of these approaches
suffer from significant limitations. Hand-crafted trajectories need
to be generated de novo for each experimental condition and
are not easily amenable to parametric control. Likewise, the
extraction of trajectories from real videos also comes with its
burdens: real videos need to be recorded, labeled, and heavily
processed to remove unwanted background information. Rule-
based approaches offer an interesting alternative. However, it is
generally difficult to define natural classes of social interactions
using rules akin to those used in Kerr and Cohen (2010) and
Pantelis et al. (2014). Recent work (Schultz and Bülthoff, 2019;
Shu et al., 2019, 2020) has generated visual stimuli using model-
based methods; however, these models can only generate limited
and generic classes of social interaction (namely, cooperative
and obstructive behaviors). Finally, specialized literature on the
collective behavior of humans and animals has produced a wealth
of influential models (Blackwell, 1997; Paris et al., 2007; Luo
et al., 2008; Russell et al., 2017); however, such models can
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also typically account only for simple behaviors (e.g., feeding,
resting, and traveling) and for basic interactions (e.g., avoidance
and following).

To overcome the limitations of the above methods, in this
work, we introduce a dynamical generative model of social
interactions. In stark contrast to previous work, our model is able
to automatically generate an arbitrary number of parameterized
motion trajectories to animate virtual agents with 15 distinct
interactive motion styles; the modeled trajectories include
the six fundamental interaction categories frequently used in
psychophysical experiments (i.e., Chasing, Fighting, Flirting,
Following, Guarding, and Playing—Blythe et al. 1999; Barrett
et al. 2005; McAleer and Pollick 2008) and nine relevant others.
The model controls speed, and motion direction, arguably the
two most critical determinants of social interaction perception
(Tremoulet and Feldman, 2000; Szego and Rutherford, 2008;
Träuble et al., 2014). Finally, we validated the model with
three psychophysical experiments, which demonstrate that
participants are able to consistently attribute the intended
interaction classes to the animations generated with our model.

The rest of the paper is organized as follows. In section
2, we describe the generative model and the experiments we
conducted to validate it. Next, in section 3, we summarize the
experimental results. Finally, in section 4, we (1) explain how our
results validate the developed model, (2) explain how the model
compares to related work, and (3) discuss the main limitations of
our model and future directions.

2. METHODS

2.1. Related Modeling Work
The generative model we introduce in this work builds on
classical models of biological and robotic navigation. In the
classical work by Reichardt and Poggio (1976), the authors
proposed a dynamical model to describe the navigation behavior
of flies intent on chasing moving targets as part of their
mating behavior. The core idea was to consider the moving
targets as attractors of the dynamical system describing the
flies’ trajectories. Subsequently, Schöner and Dose (1992) and
Schöner et al. (1995) used a similar approach to develop a
biomimetic control system for the navigation of autonomous
robots. Critically, such a system was also able to deal with the
presence of obstacles in the environment, which were modeled as
repellors. Extending this system, Fajen and Warren (2003) built
a model of human navigation that was able to closely capture
the trajectories described by their participants as they walked
naturally toward targets while avoiding obstacles on their way.
Specifically, this model was able to describe the dynamics of the
participants’ average heading direction very accurately; however,
their speed was roughly approximated as constant.

Alternative approaches can characterize richer navigation
behaviors by jointly modeling both heading direction and speed
dynamics. This idea was successfully used to control the motion
of both autonomous vehicles (Bicho and Schöner, 1997; Bicho
et al., 2000) and robotic arms (Reimann et al., 2011). Similar
approaches have also been used in computer graphics to model
the navigation of articulated agents (Mukovskiy et al., 2013).

2.2. The Generative Model
Tomodel the interactive behavior of two virtual agents, we define,
for each agent i, a dynamical system of two nonlinear differential
equations. Specifically, the equations describe the dynamics of
the agent’s heading direction φi(t) and instantaneous propagation
speed si(t).

The heading direction dynamics, derived from Fajen and
Warren (2003), are defined by:

φ̈i(t) = −bφ̇i(t)+ A(φi(t),ψ
g
i (t))+ R(φi(t),ψ

o
i (t)) (1)

In this equation, A(φi(t),ψ
g
i (t)) defines the attraction of agent

i to the goal g located along the direction ψ
g
i (t), at a distance

d
g
i (t) from it. Similarly, R(φi(t),ψ

o

i (t)) defines the repulsion of
agent i for the obstacles o = [o1, o2, ..., oNobst

]T located along the
directions ψo

i (t), at a distance d
o

i (t) from it. These two functions
are given by:

A(φi(t),ψ
g
i (t)) = −kg(φi(t)− ψ

g
i (t))(e

−c1d
g
i (t) + c2)

R(φi(t),ψ
o
i (t)) = ko

Nobst∑

n=1

ron (φi(t))
(2)

The contributions of the individual obstacles to the repulsion
function are given by:

ron (φi(t)) = (φi(t)− ψ
on
i (t))(e−c3|φi(t)−ψ

on
i (t)|)(e−c4d

on
i (t)) (3)

In these equations, kj and cj are constants; on indicates the nth
obstacle. Note that, in general, ψon

i (t), which is the direction of
the nth obstacle of the ith agent is time-dependent; for example,
depending on the specific social interaction class it might be a
function of the instantaneous heading direction of other agents.

The propagation speed dynamics are specified by the
following stochastic differential equation:

τ ṡi(t) = −si(t)+ Fi(d
g
i (t))+ kǫi ǫi(t) (4)

where ǫi(t) is Gaussian white noise. The nonlinear function Fi
specifies how the agent’s speed changes as a function of the
distance from its goal:

Fi(d) =
c5

1+ e−ci6(d−ci7)
− ci8e

−kid + ci9 (5)

Critically, we choose this specific functional form because
it provides us with enough flexibility to reproduce several
relevant interaction classes, including the six fundamental
interaction categories traditionally studied in psychophysical
experiments (Blythe et al., 1999; Barrett et al., 2005; McAleer and
Pollick, 2008): Chasing, Fighting, Flirting, Following, Guarding,
and Playing.

To generate the trajectories, we first randomly sample a
series of goal points for the first agent from a two-dimensional
uniform distribution over the 2D plane of action. Such goal
points are commonly referred to as via points. We then use the
instantaneous position of the first agent as goal position for the

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2021 | Volume 15 | Article 648527

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Salatiello et al. Generative Model of Social Interactions

FIGURE 1 | Trajectories of six example social interactions. Color indicates agent identity: agent 1 is represented in blue; agent 2 is represented in red. Color saturation

indicates time: darker colors indicate recent time samples.

Algorithm 1: Pseudocode for trajectory generation

Input: Class-specific parameters θc
Output: Agents’ direction8 and speed S
for each timestep t do

for each agent i do
compute goal direction ψ

g
i (t)

compute distance from goal d
g
i (t)

for each obstacle on do
compute obstacle direction ψon

i (t)
compute distance from obstacle doni (t)

end

compute φi(t) integrating Equation (1)
compute si(t) integrating Equation (4)

end

end

/*Note: ψ
g
i (t) and ψ

on
i (t) are either specified a priori or

computed dynamically depending on the agent and social
interaction class. For example, for simple behaviors (e.g.,
chasing) ψ

g
1 (t) and ψ

on
1 (t) are specified a priori, while

ψ
g
2 (t) = φ1(t)*/

second agent. Samples that are too close to the current agent’s
position are rejected. Further details about the implementation
of the generative model are provided in the Algorithm 1 box.
Representative trajectories of six example social interactions are
illustrated in Figure 1. Note that the speed control dynamics are
not influenced by the presence of obstacles, since their effect was
not needed to realistically capture the social interactive behaviors
we chose to model.

2.3. Model Validation
To assess whether our model is able to generate perceptually valid
socially interactive behaviors, we carried out three behavioral
experiments. In these experiments, we asked participants to
categorize videos of interacting agents generated with our
model in a free-choice task (Experiment 1), and in a forced-
choice task (Experiment 2). Finally, we analyzed the semantic
similarities between the labels chosen by the participants
(Experiment 3).

2.3.1. Dataset Generation

To validate our approach, we chose to model the six fundamental
interaction classes (i.e., Chasing, Fighting, Flirting, Following,
Guarding, and Playing; Blythe et al. 1999; Barrett et al. 2005;
McAleer and Pollick 2008), and nine other relevant ones
(i.e., Avoiding, Bumping, Dodging, Frightening, Meeting, Pulling
Pushing, Tug of War, and Walking) resulting in a total of 15
interaction classes. To generate the trajectories corresponding to
these classes, we simulated the model with 15 distinct parameter
sets, which we identified through a simulation-based heuristic
procedure. A list of the most critical parameters is presented in
Table 1. The complete dataset we generated for our experiments
included five random realizations of each interaction class, for a
total of 75 videos. Each random realization is defined by different
via points and noise realizations.

2.3.2. Participants

A total of 39 participants with normal or corrected vision took
part in the experiments: 13 in Experiment 1 (9 females, 4 males),
ten in Experiment 2 (5 females, 5 males), and 16 in Experiment
3 (9 females, 7 males). All participants were college students
attending the University of Tübingen and provided written
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TABLE 1 | Main model parameters.

Interaction class
Agent 1 Agent 2

k kǫ c5 c6 c7 c8 c9 k kǫ c5 c6 c7 c8 c9

Avoiding 0 0 1 1 5 3 0 0 0 0.4 1 0 2.7 0

Bumping 0 0.9 1 0.8 0 0 0 0 1 0.8 10 0 1 0

Chasing 0 0 1 10 7 0 0 0 0 1 1 7 0 0

Dodging 0 0 1 0.5 7 5 0 0 0 3 1 0 0 0

Fighting 0.1 0 1 1 3 1 0 0.1 1 1 1 3 1 0

Flirting 0 0 1 1 5 0 0 0.5 1 0.6 1 2 1 0

Following 0 0 1 10 7 0 0 0 0 1 4 4 0 0

Frightening 0 0 1 1 5 0 0 0 0 1 1 5 0 0.5

Guarding 0 0 1 1 5 0 0 0 0 1 1 3 0 0.5

Meeting 0 0.2 1 2 0 6 0 0.5 1 0.22 3 0 6 0

Playing 0 0 1 1 5 0 0 0 1 1 1 10 0 0.5

Pulling 0 0 1 10 0 2.6 0 0 0 0.9 5 0 2.6 0

Pushing 0 0 1 10 0 2.5 0 0 0 0.1 1 0 0 2.5

Tug of War 0 0.2 1 10 0 6 0 0 0.5 0.9 5 0 0 0.5

Walking 0 0.2 1 10 0 1 0 0 0 0.22 10 0 0 0

informed consent before the experiments. All experiments were
in full compliance with the Declaration of Helsinki. Participants
were naïve to the purpose of the study and were financially
compensated for their participation.

2.3.3. Experiment Setup

In Experiment 1 and Experiment 2, participants sat in a dimly
lit room in front of an LCD monitor (resolution: 1,920 × 1,080,
refresh rate: 60Hz), at a distance of 60cm from it. To ensure that
all participants would observe the stimuli with the same view
parameters and the same distance from the screen, they were
asked to place their heads in a chin-and-forehead rest during
the experimental sessions. The experiments started with a short
familiarization session during which the participants learned to
use the computer interface. Subsequently, the participants were
shown the videos generated with our model. Their task was to
describe the videos by using their own words (Experiment 1) or
by selecting labels among those provided to them (Experiment
2), and to provide animacy ratings through a standard 0–10
Likert scale. To increase the confidence in their answers, we gave
participants the opportunity to re-watch each video up to three
times. The videos were presented in pseudo-randomized order
over five blocks. Five-minute rest breaks were given after each
block. The animated videos always showed two agents moving
in a 2D plane following speed and direction dynamics generated
offline with ourmodel. Critically, unlike in previous work (Blythe
et al., 1999; Barrett et al., 2005), our agents were very simple
geometrical shapes, namely a blue circle and a red rectangle
(as in Tremoulet and Feldman, 2000); this choice ensured
that participants’ perception would not be biased by additional
visual cues beyond the agents’ motion and relative positions. In
Experiment 3, subjects were asked to fill out a questionnaire to
rate the semantic similarity between social interaction classes
(0–10 Likert scale).

2.3.4. Experiment 1

The first experiment was aimed at assessing whether subjects
would perceive the motion of virtual agents generated with
our model as a social interaction. The second goal of this
experiment was the identification of unequivocal labels for the
interaction classes generated with our model. To this end, we
asked participants to watch all the videos in our stimulus set
(section 2.3.1). After watching the videos, subjects were asked
to provide their own interpretations by summarizing what they
had perceived with a few sentences or keywords. Importantly, in
this experiment, to make sure we would not bias the participants’
perceptions, we did not provide them with any labels or other
cues: they had to come up with their own words. In addition,
subjects were asked to provide an animacy rating for each agent.
The most commonly reported keywords were used as ground-
truth interaction labels for the remaining experiments.

To test whether participants assigned different animacy
ratings depending on agent identity and social interaction class,
we fitted a linear mixed-effect model to the animacy ratings,
with Agent and Social Interaction as fixed effects, and Subject as
random effect:

Animacysl = α0 +

Na∑

i=1

βi · Agent(i, l)

+

Nc∑

i=1

γi · SocialInteraction(i, l)+ b0s + ǫsl (6)

In this model, Animacysl is the lth animacy rating reported by
subject s, with s = 1, 2, ...,Ns and l = 1, 2, ...,NaNc; Na, Nc,
and Ns are the number of agents, social interaction classes, and
subjects, respectively. Moreover, Agent(i, l) is a dummy variable
that is equal to 1 when the rating l is for agent i, and 0 otherwise.
Similarly, SocialInteraction(i, l) is a dummy variable that is equal
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to 1 when the rating l is for social interaction i, and 0 otherwise.
Finally, b0s is the subject-specific random effect [b0s ∼ N(0, σ 2

b
)]

and ǫsl are the residual error terms [ǫsl ∼ N(0, σ 2)]. Notably, the

model was fitted with a sum-to-zero constrain, that is
∑Na

i=1 βi =

0 and
∑Nc

i=1 γi = 0; therefore, in this model, α0 represents the
overall average animacy rating. All the analyses described in this
and in the next sections were performed in MATLAB R2020a
(The MathWorks, Natick, MA).

2.3.5. Experiment 2

The second experiment was aimed at further studying the social
interaction classes perceived by the participants while watching
our animated videos. To this end, new subjects were exposed to
a subset of the videos in our original dataset. Specifically, for
this experiment we excluded the videos corresponding to the
classes Following, Guarding, and Playing, as these tended either
to be often confused with other classes, or to be labeled with a
broad variety of related terms. Critically, unlike in Experiment
1, after watching the videos, participants were asked to describe
the videos by choosing up to three labels, among those selected
in Experiment 1.

To assess the classification performance, we computed the
confusion matrix M. In this matrix, each element mi,j is the
number of times participants assigned the class j to a video from
class i. Starting fromM, we computed, for each social interaction
class, Recall, Precision, and F1 score. Recall measures the fraction
of videos of class i that are correctly classified, and is defined as

Recalli = mi=j/
∑Nc

j=1mi,j. Precision measures the fraction of

times participants correctly assigned the class j to a video, and

is defined as Precisionj = mi=j/
∑Nc

i=1mi,j. Finally, the F1 score
is the harmonic mean of Precision and Recall; it measures the
overall classification accuracy and is defined as F1 = 2 ·Precision ·
Recall/(Precision+ Recall).

To evaluate whether some classes were more likely to be
confused with each other, we computed, for each pair of classes
(i, j), with i 6= j, the empirical pairwise mislabeling probability,

defined as PMS(i, j) = (mi,j +mj,i)/(
∑Nc

k=1

∑
l 6=k mk,l).

To assess whether participants improved their classification
performance during the experiment, we computed the average
Precision, Recall, and F1 score across social interaction class, as
a function of experimental block; we then fitted linear models to
test whether experimental block explained a significant fraction
of variation in the performance measures defined above.

2.3.6. Experiment 3

The third and last experiment was aimed at assessing whether
there are interpretable semantic similarities among the labels
provided in Experiment 2. Some interaction classes were
misclassified by the participants in Experiment 2. This suggests
that either the generated animated videos are not distinctive
enough or that the classes semantically overlap with each other.
To disambiguate between the two options, we ran a semantic
survey test with a new set of participants. Participants in this
experiment did not watch any video. After providing them with
precise definitions for each social interaction class, we asked them
to indicate the level of semantic similarity for each pair of classes,

by providing rates ranging from 0 to 10. Specifically, using this
scoring system, participants were asked to assign 0 to pairs of
classes perceived as not sharing any semantic similarity, and 10
to those perceived as equivalent classes.

To assess the geometry of the semantic similarity space, we
first transformed all the similarity ratings s into distance ratings
d by computing their complement (i.e., d = 10 − s), and
then rescaled them between 0 and 1. All the resulting semantic
distances collected from participant iwere then stored in amatrix
Di. In this matrix, Di

j,k = 0 if the classes j and k were considered

as semantically equivalent by subject i; Di
j,k = 1 if the classes j

and k were considered as semantically unrelated. We then used
non-metric multidimensional scaling (MDS; Shepard, 1962a,b)
to visualize in a 2D space the underlying relational structure
contained in the distance matrix.

To determine whether some groups of classes were
consistently considered as semantically similar, we performed
agglomerative hierarchical clustering on the distance matrix D
using theWard’s linkage method (Ward, 1963), which minimizes
the within-cluster variance. Clusters were then identified using
a simple cut-off method, using as a threshold τ = 0.7 · MWD,
whereMWD is the maximum observed Ward’s distance.

Finally, to estimate whether the semantic similarity between
pairs of classes explained the mislabelings observed in
Experiment 2, we computed the Pearson’s correlation coefficient
(ρ) between the empirical mislabeling probability PMS(j, k)
measured in Experiment 2 and the semantic distance D(j, k).

3. RESULTS

3.1. Experiment 1
As mentioned above, participants in this experiment were
completely free to provide interpretations about the videos
through either labels or short sentences. For each video class, we
pooled together all the definitions and labels, and we considered
the most used term as the ground-truth class label. Figure 2
summarizes the reported labels for six example social interaction
classes. The pie charts show that some classes such as Avoiding
and Fighting tended to be consistently described with very few
labels (i.e., 2 − 3). Other classes such as Dodging were instead
described with more labels (i.e., 6). Regardless of the number
of labels used to describe a social interaction class, these were
generally semantically similar. For example, some classes were
named interchangeably depending on the perspective fromwhich
subjects reported their interpretation about the videos. A typical
example of this issue is the ambiguity between the classes Pulling
and Pushing. On the other hand, some other classes (for instance
Bumping and Pushing) were sometimes misclassified regardless
of the perspective from which subjects might have observed
the videos.

Average animacy ratings are reported in Figure 3A, with
classes sorted in ascending order of average across-agent
animacy. Agents, were consistently perceived as animate [α0 =

53.27%, t(299) = 11.72, p = 2.3·10−26]. This is consistent with the
fact that self-propulsion (Csibra, 2008), goal directedness (van
Buren et al., 2016), being reactive to social contingencies (Dittrich
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FIGURE 2 | Distribution of reported keywords for six example social interactions. Pie charts’ titles indicate the true classes. Individual slices are assigned to all the

keywords reported in Experiment 1 occurring with a frequency >5%. Keywords reported with a frequency <5% are pooled together in the slice Other (in gray). Offset

slices (in green) represent the most frequently reported keywords.

FIGURE 3 | Reported agent animacy. (A) Mean animacy ratings obtained in Experiment 1; error bars represent standard errors; results are rescaled between 0 and

100. Classes are sorted in ascending order by average across-agent animacy rating. The asterisk denotes a significant effect (p < 0.05) of Agent on Animacy

[F(1,299) = 99.98, p = 1.74 · 10−20]. (B) F-statistics of post-hoc tests to assess the difference in animacy ratings between social interaction classes [i.e., F(1,299)]. (C)

Bonferroni adjusted p-values corresponding to the F-statistics reported in (B); black dots represent significant pairwise differences.
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FIGURE 4 | Average classification performance. This figure shows the confusion matrix of the classification experiment (Experiment 2). Rows represent the true

interaction class; columns the interaction class reported by the participants in Experiment 2. Matrix entries mi,j report the number of times participants assigned the

class j to a video from class i. Rows and columns are sorted by decreasing Recall. AV, avoiding; BU, bumping; CH, chasing; DO, dodging; FI, fighting; FL, flirting; FR,

frightening; ME, meeting; PL, pulling; PS, pushing; TG, tug of war; WA, walking.

and Lea, 1994), acceleration (Tremoulet and Feldman, 2000), and
speed (Szego and Rutherford, 2008) are the most prominent cues
for perceived animacy in psychophysical experiments. Moreover,
the blue circle was consistently rated as less animate than the red
rectangle [β1 = −β2 = −8.37%, t(299) = −10, p = 1.74 · 10−20],
consistently with the finding that geometrical figures with a body
axis are perceived as more animate than those without one, such
as circles (Tremoulet and Feldman, 2000).

We further found a significant effect of social interaction on
animacy [F(11,299) = 18.3, p = 8.29 · 10−28]; this suggests
that certain classes of social interactions tended to elicit stronger
animacy percepts than others. To assess which specific pairs
of classes were assigned significantly different animacy rating,
we performed post-hoc F-tests. This analysis revealed that some
classes consistently received higher average animacy ratings: for
example, Fighting received higher animacy ratings than all other
classes [F(1,299) ≥ 24.04, padj ≤ 1.03 · 10−4], with the exception
of Chasing, which was rated similarly [F(1,299) = 5.25, padj = 1].
Analogously, Bumping tended to receive lower animacy ratings
than all other classes [F(1,299) ≥ 12.44, padj ≤ 0.03], with the
exception of Pushing, Frightening, and Flirting, which were rated
similarly [F(1,299) = 8.42, padj ≥ 0.26].We report in Figure 3B all
the post-hoc F-statistics, and in Figure 3C all the corresponding
Bonferroni adjusted p-values.

3.2. Experiment 2
Figure 4 shows the total confusion matrixM of the classification
task. Rows and columns are sorted by decreasing Recall. Avoiding
was the most accurately classified class by our participants
(Recall = 75.4%). However, even the hardest class was
classified with largely above-chance accuracy (Walking: Recall =

53.4%; chance level: 8.3%). Nonetheless, there are obviously
somemisclassifications, especially between Bumping and Pushing
(mBU,PS = 19, mPS,BU = 11), and between Fighting and Chasing
(mFI,CH = 17,mCH,FI = 2). These two kinds of mislabeling alone
accounted for a large fraction of the total number of mislabelings
[PMS(BU, PS) = 9.8%, PMS(FI,CH) = 6.2%].

One possible reason for this misclassification could be the
fact that these labels are semantically intrinsically similar and
even real videos of these types of social interactions could be
mislabeled. This line of reasoning is supported by the fact that
in Experiment 1, Pushing was the second preferred keyword used
to label videos of class Bumping (see Figure 2). Interestingly,
both Precision and Recall (and thus F1 score) significantly
improved across experimental blocks [Precision: t(3) = 19.5,
p = 2.93 · 10−4; Recall: t(3) = 10.8, p = 1.68 · 10−3; see
Figure 5]. This indicates a latent learning of the categorization
of the classes, which is remarkable since no external feedback
about the correctness of the class assignments was provided
during the experiment. Such a learning was particularly evident
for the following often-confused pairs: Tug of War vs. Pulling,
Frightening vs. Avoiding, and Fighting vs. Pushing (not shown).

3.3. Experiment 3
The pairwise semantic distance matrix D is plotted in Figure 6A:
light shades of green indicate semantically close social interaction
classes, while darker shades indicate semantically distant
classes. The two pairs associated with the highest mislabeling
probability in Experiment 2, Bumping-Pushing, and Fighting-
Chasing [PMS(BU, PS) = 9.8%, PMS(FI,CH) = 6.2%] were
generally considered as semantically similar [d(BU, PU) = 0.49,
d(FI,CH) = 0.65]; however, they were not the most similar
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FIGURE 5 | Classification performance across experimental blocks. (A) Average block-wise recall. Results are averaged across subjects and social interactions; error

bars represent standard errors. Insets show the slope of the estimated linear model, the corresponding t-statistic and p-value. (B) Average block-wise precision. (C)

Average block-wise F1 score.

FIGURE 6 | Cluster analysis results. (A) Average semantic distances obtained in Experiment 3. (B) Dendrogram of hierachical clustering; the horizontal line represents

the cut-off threshold used to identify the clusters (i.e., 0.7 ∗MWD, where MWD is the maximum Ward distance). (C) Clusters of social interactions plotted in low

dimensional distance-preserving 2D space identified with Multidimensional Scaling (MDS). (D) Average mislabeling probability (Experiment 2) as a function of semantic

distance (Experiment 3); inset reports the Pearson’s correlation coefficient, the corresponding t-statistic and p-value. AV, avoiding; BU, bumping; CH, chasing; DO,

dodging; FI, fighting; FL, flirting; FR, frightening; ME, meeting; PL, pulling; PS, pushing; TG, tug of war; WA, walking.

pairs. Rather, the three most semantically similar pairs were
Pulling-Tug of War, Avoiding-Dodging, and Bumping-Fighting
[d(PU,TG) = 0.23, d(AV ,DO) = 0.27, d(BU, FI) = 0.32].

Nevertheless, regardless of this apparent discrepancy for these
few extreme examples, mislabeling probability PMS(i, j) and
semantic distance d(i, j) were significantly anti-correlated [ρ =
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−0.58, t(64) = −5.7, p = 3.24 · 10−7; Figure 6D]; this suggests
that the more semantically similar two social interaction classes
are, the more likely they are of being confused in a video
labeling task.

Multidimensional scaling (MDS) provides a compact 2D
visualization of the semantic similarity space (Figure 6C). Since
MDS is inherently spatial, items that were rated as being highly
similar are spatially close to each other in the final map. The
map effectively shows which classes of social interactions are
semantically similar and which are not. For example, let us
consider the hypothetical groups G1 ={Tug of War, Pulling} and
G2 ={Frightening, Avoiding, Dodging}. Participants recognized
that Tug of War and Pulling involve similar interactions between
the agents, and that these interactions are different from those
occurring in the classes Frightening, Avoiding, and Dodging. For
this reason, participants tended to assign high pairwise similarity
scores to intra-group pairs, and low to inter-group pairs. This
pattern of scoring is captured by MDS and evident in the
resulting map (Figure 6C).

The agglomerative hierarchical cluster analysis on the distance
matrix D (Figure 6B) confirms this intuition and identifies four
distinct semantic clusters; such clusters are visualized in the
MDS map with four different symbols (Figure 6C). This analysis
supports the conclusion that misclassified labels tend to belong
to the same semantic cluster. While not all misclassifications can
be explained by semantic similarity, many confusions can be
accounted for by this factor. For example, Pushing vs. Bumping,
Walking vs.Meeting, Avoiding vs. Dodging.

To summarize, our analysis of semantic similarity shows that
many of the labeling confusions observed in Experiment 2 can be
explained by the semantic similarity of the class labels.

4. DISCUSSION

In this work, we introduced a novel framework for the
automatic generation of videos of socially interacting virtual
agents. The underlying model is a nonlinear dynamical system
that specifies heading direction and forward speed of the
agents. Our model is able to generate as many as 15 different
interaction classes, defined by different parameter sets. We
validated our model with three different behavioral experiments,
in which participants were able to consistently identify the
intended interaction classes. Our model is thus suitable for
the automatic generation of animations of socially interacting
agents. Furthermore, the generation process is also amenable
to full parametric control. This feature allows the creation
of highly-controlled and arbitrarily-large datasets for in-depth
psychophysical and electrophysiological characterization of the
perception of social interactions. The model thus overcomes
the major limitations that come with hand-crafted, hard-coded,
rule-based, and real-video-based approaches (1) to visual stimuli
generation. Importantly, the generative nature of the model,
makes it a valuable tool also for the development of mechanistic
and neural decodermodels of social perception: model responses
to the heterogeneous set of highly-controlled social stimuli here

introduced can be rigorously tested for the development of more
accurate and brain-like decoder models that replicate human
behavioral and neural responses. Recent work (Shu et al., 2018,
2019, 2020), aimed at building a mechanistic model of social
inference, used a similar approach.

Shu et al. (2019, 2020) also proposed generative models of
social interactions. Unlike the ones proposed in these studies,
the generative model introduced in this work does not directly
lend itself to the study of the interactions between intuitive
physics and social inferences (Battaglia et al., 2013). However,
substantial evidence suggests that physical and social judgments
aremediated by different brain regions (Isik et al., 2017; Sliwa and
Freiwald, 2017). More importantly, our model is not limited to
describing cooperative and obstructive behaviors and thus seems
better suited to study more general social interaction classes.

The identification of suitable parameters for the classes
modeled in this work was not automatic: it was conducted
using a simulation-based heuristic procedure. This is an obvious
limitation of our work. Nevertheless, once the parameters are
available, they can be used to automatically generate arbitrary
numbers of coupled trajectories for each interaction class (by
randomly sampling initial conditions, via-points, and noise).
With this procedure, we were able to find suitable parameters
for only 15 specific interaction classes. However, to the best
of our knowledge, no other method is able to automatically
generate more than a handful of individual or socially-interactive
behaviors (Blackwell, 1997; Paris et al., 2007; Luo et al., 2008;
Russell et al., 2017; Shu et al., 2019, 2020). Future work will extend
the range of modeled classes by using system identification
methods (e.g., Schön et al., 2011; Gao et al., 2018; Gonçalves et al.,
2020) to automatically extractmodel parameters from preexisting
trajectories—extracted, for example, from real videos.

Another possible limitation of our work is that all our
participants were recruited from a German university; while
this might, in theory, represent a biased sample, previous
studies (Rimé et al., 1985) suggest that the perception of
social interactions from impoverished stimuli is a phenomenon
that is highly stable across cultures. Specifically, these authors
showed that African, European, and Northern American
participants provided similar interpretations to animated videos
of geometrical shapes. This suggests that our findings would
not have significantly changed if we had recruited a more
heterogeneous sample.

In this work, we used the trajectories generated by our
model to animate simple geometrical figures. The resulting
abstract visual stimuli can be directly applied to characterize
the kinematic features underlying the inference of social
interactions. However, the trajectories can also be used as
a basis for richer visual stimuli. For example, in ongoing
work, we have been developing methods to link the speed and
direction dynamics generated by the model to articulating
movements of three-dimensional animal models. This
approach allows the generation of highly controlled and
realistic videos of interacting animals, which can be used
to study social interaction perception in the corresponding
animal models with ecologically valid stimuli. Furthermore,
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contrasting the neural responses to impoverished and
realistic visual stimuli can help identify the brain regions
and neural computations mediating the extraction of the
relevant kinematic features and the subsequent construction of
social percepts.

Finally, even though the proposed model is mainly aimed to
provide a tool to facilitate the design of in-depth psychophysical
and electrophysiological studies of social interaction perception,
we speculate that it can also be helpful in the development
of machine vision systems for the automatic detection of
social interactions. Specifically, the development of effective
modern machine vision systems tends to be heavily dependent
on the availability of large numbers of appropriately-labeled
videos of social interactions (Rodríguez-Moreno et al., 2019;
Stergiou and Poppe, 2019). A popular approach to this
problem is to use clips extracted from already existing
(YouTube) videos and movies. However, one of the reasons
why feature-based (e.g. Kumar and John, 2016; Sehgal, 2018)
and especially deep-neural-network-based (e.g., Karpathy et al.,
2014; Carreira and Zisserman, 2017; Gupta et al., 2018) vision
systems require big data is that they need to learn to ignore
irrelevant information that is inevitably present in real videos.
Therefore, we hypothesize that pre-training such systems with
stylized videos of socially interacting agents—such as the
very same generated by our model or appropriate avatar-
based extensions—might greatly reduce their training time
and possibly improve their performance. Future work will test
this hypothesis.

To sum up, this work introduced a novel generative
model of social interactions. The results of our psychophysical
experiments suggest that the model is suitable for the automatic
generation of arbitrarily-numerous and highly-controlled videos
of socially interacting agents for comprehensive studies of
animacy and social interaction perception. Our model can also
be potentially used to create large, noise-free, and annotated
datasets that can facilitate the development of mechanistic
and neural models of social perception, as well as the design
of machine vision systems for the automatic recognition of
human interactions.
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