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Abstract

How does the central nervous system (CNS) control our bodies, including hundreds of

degrees of freedom (DoFs)? A hypothesis to reduce the number of DoFs posits that the

CNS controls groups of joints or muscles (i.e., modules) rather than each joint or muscle

independently. Another hypothesis posits that the CNS primarily controls motion compo-

nents relevant to task achievements (i.e., task-relevant components). Although the two

hypotheses are examined intensively, the relationship between the two concepts remains

unknown, e.g., unimportant modules may possess task-relevant information. Here, we pro-

pose a framework of task-relevant modules, i.e., modules relevant to task achievements,

while combining the two concepts mentioned above in a data-driven manner. To examine

the possible role of the task-relevant modules, we examined the modulation of the task-rele-

vant modules in a motor adaptation paradigm in which trial-to-trial modifications of motor

output are observable. The task-relevant modules, rather than conventional modules,

showed adaptation-dependent modulations, indicating the relevance of task-relevant mod-

ules to trial-to-trial updates of motor output. Our method provides insight into motor control

and adaptation via an integrated framework of modules and task-relevant components.

Introduction

How our body is controlled is a fundamental question in motor neuroscience, biomechanics,

and related areas. One difficulty in solving this question is the significant number of degrees of

freedom (DoFs) inherent in our body, such as the large number of muscles and joints. The

number of DoFs is more than necessary to achieve planned movements in large cases, causing

a redundancy problem [1]. The redundancy problem refers to the fact that a large number of

combinations of muscle activities and joint angles result in a unique movement pattern. Solv-

ing the redundancy problem in any way is indispensable for achieving planned movements.

A possible solution to the redundancy problem is to control groups of joints and muscles

rather than an individual joint or muscle [1]. Such grouping entails a decrease in the number

of DoFs. After the reduction in DoFs while grouping joints or muscles, time-varying motor
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commands are appropriately determined in each group. This framework is supported in

diverse motor repertoires [2–7]. In locomotion, three joint angles were decomposed into two

groups [5]. In walking, five groups of muscles were enough to reconstruct the muscle activities

of 12–16 muscles [3]. In this framework, motion is assumed to be determined by the following

two steps: 1) groups of muscles or joints are determined, and 2) the time-varying motor com-

mand is sent to the groups, resulting in the determination of muscle activities or joint angles.

Due to this hierarchical structure of spatial features (i.e., step 1 mentioned above) and tempo-

ral features (i.e., step 2 mentioned above), the groups of muscles and joints are referred to as

spatial modules [2–4]. Similarly, the time-varying motor commands sent to the spatial mod-

ules are referred to as temporal modules. In switching from walking to running, the peak tim-

ings of the temporal modules show modulations [6, 7] in addition to the modulation of the

spatial modules [7]. In summary, constructing spatial and temporal modules and modulating

the modules are possible candidate methods to overcome the redundancy problem and achieve

planned movements.

Another possible solution to the redundancy problem is to decompose time-varying and

multidimensional motion elements into task-relevant and task-irrelevant components [1].

Task-relevant components must be lower-dimensional compared to the original motion

dimension, resulting in a reduction in the number of DoFs. Thus, it is possible to overcome

the redundancy problem by primarily controlling task-relevant components. Notably, to

define task-relevant and task-irrelevant components, how motion is relevant to task achieve-

ments should be clarified (e.g., in throwing a ball, the position and squared velocity of the ball

at the release timing determine its maximum height, and in arm-reaching movements, the dis-

tance between the hand position and targeted position determines task achievement). After

finding the relationship, it is possible to decompose time-varying and multidimensional

motion elements into task-relevant components with low dimensions and task-irrelevant com-

ponents with high dimensions. As evidence of this concept, the variability in the task-relevant

dimension is lower than that in task-irrelevant dimensions [8–10], which is referred to as the

minimum intervention principle [11]. The minimum intervention principle is closely related

to the concept of optimal feedback control [11], which can explain larger movement variability

in task-irrelevant dimensions (e.g., mid-flight in goal-directed arm-reaching movements) and

smaller movement variability in task-relevant dimensions (e.g., movement initiation and ter-

mination in goal-directed arm-reaching movements). The minimum intervention principle

works efficiently to achieve planned movements while minimizing motor cost (e.g., metabolic

cost or amplitude of motor commands) and solving the redundancy problem.

Overall, there are feasible solutions to redundancy problems. A solution is to construct spa-

tial and temporal modules. Another solution is to decompose time-varying and multidimen-

sional motions into task-relevant and task-irrelevant components after finding the

relationships between motion and task achievements. Evidence from several studies supports

these possibilities.

However, the relationships among the spatial module, temporal module, and task-relevant

component remain unclear as discussed in a previous study [12]. A common method used to

extract spatial and temporal modules is matrix decomposition. Previously, researchers have

utilized methods of matrix decomposition, such as principal component analysis (PCA) to

analyze joint angle data [5] or nonnegative matrix decomposition (NNMF) [13] to analyze

muscle activity data [3, 4, 6]. Because singular value decomposition (SVD) is theoretically the

same framework as PCA, SVD can be useful in analyzing joint angle data. Matrix decomposi-

tion (e.g., PCA, SVD, or NNMF) allows us to analyze prominent spatial and temporal informa-

tion (i.e., spatial and temporal modules) to reconstruct original motion data with low-

dimensional components; nevertheless, these methods do not consider task-relevant
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components. A common method used to extract task-relevant components is the uncontrolled

manifold (UCM) [8]. For example, UCM enables us to decompose motion data into relevant

and irrelevant components of the motion of the center of the body mass in sit-to-stand motion

[8]. The decomposition procedure consists of forward kinematics to model the region of inter-

est (ROI), calculation of the averaged joint angles across trials in each time frame, linearizing

the forward kinematics around the averages, and calculation of relevant and irrelevant direc-

tions to the ROI. There is limited information regarding the spatial and temporal modules in

the framework of UCM.

The relationship between spatial modules and task-relevant components has been dis-

cussed. We can evaluate the rank of each spatial and temporal module based on the contribu-

tion to the reconstruction of the original data. In extreme cases, only higher-rank spatial

modules are considered important, and lower-rank modules are neglected. Nevertheless, in

reproducing grasping and using various familiar tools by the right hand, both higher-rank and

lower-rank modules possess task-related information [14]. In grasping, using tools, and speak-

ing American sign language, both higher-rank and lower-rank modules retain information to

separate words [15]. Our earlier study also demonstrated the embedding of task-relevant infor-

mation in spatial and temporal modules independent of the rank of the modules [10]. Based

on these results, we can assume that task-relevant information is embedded into spatial and

temporal modules regardless of their ranks; thus, the relationship between the modules and

task-relevant components is still unclear.

The relationship among spatial modules, temporal modules, and their task relevance has

also been discussed. To confirm whether spatial and temporal modules are commonly utilized

in different tasks, it is possible to compare spatial and temporal modules between two or more

tasks [16]. A previous study measured all muscles relevant to force-production tasks and dis-

cussed the relevance of the modules to task performance [17]. Interestingly, a recent study

revealed that extracted spatial and temporal modules are related to not only motor execution

but also perceptual inference [18]. From a control-theoretical viewpoint, a framework of hier-

archical optimal feedback control provides a hint regarding how spatial modules are related to

task achievements [19]. From the perspectives of data-driven methods, tensor decomposition

or its variants are effective methods used to explore the relationship among spatial modules,

temporal modules, and their task relevance [7, 20, 21]. While analyzing tensor data, including

spatial, temporal, and task information, these methods enable us to extract spatial modules

and temporal modules and determine how the modules are recruited in each task condition.

For example, [7], some spatial and temporal modules were highly recruited as the locomotion

speed increased independent of either walking or running. Some spatial and temporal modules

were recruited only while walking or running. Although these methods are effective in deter-

mining the relationships among spatial modules, temporal modules, and their task relevance,

they do not extract task-relevant components. Therefore, tensor decomposition and its vari-

ants focus on the reconstruction of original motion data rather than the extraction of task-rele-

vant components while modeling the relationship between motion and performance (e.g.,

forward kinematics in considering the center of mass in locomotion). Thus, the relationships

among spatial modules, temporal modules, and task-relevant components remain unclear.

Here, we propose a framework to extract task-relevant spatial and temporal modules (see

Fig 1 for a summary of our proposal and analyses). In contrast to conventional modules esti-

mated based on the reconstruction power of the original data, our framework enables us to

extract modules relevant to task achievements. Hereafter, the current study refers to conven-

tional modules as motion-relevant modules. Similarly, we refer to the modules relevant to task

achievements as task-relevant modules. A comparison of motion-relevant and task-relevant

modules provides insight into the relationship between motion-relevant modules and task-
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relevant components. First, our framework is based on ridge regression [22] to predict task

performance based on time-varying multidimensional motion data [10, 23, 24]. A ridge regres-

sion allows us to quantify how motion data in each time frame in each body part are relevant

to predicting task performance. Thus, a ridge regression provides the task relevance of each

motion data point while mixing spatial and temporal aspects rather than separating spatial

from temporal aspects. Because motion-relevant modules possess spatial and temporal infor-

mation independently, it is difficult to compare task-relevant components to motion-relevant

modules via a ridge regression alone. Thus, the current study extracted task-relevant spatial

and temporal modules by utilizing SVD, which permits us to dissociate spatial information

from temporal information. We rely on SVD for the following reasons. First, we focus on

joint-angle data, including both positive and negative values after standardization. Second,

SVD enables us to extract the same spatial and temporal modules as PCA, a major method

used to extract motion-relevant modules from joint angle data [5]. Third, SVD enables us to

extend theoretical analyses while simultaneously focusing on both spatial and temporal

aspects. Therefore, NNMF is not effective in our case because NNMF is a sophisticated tool

used to analyze data that include nonnegative values (e.g., muscle-activity or neural-activity

data). Thus, by utilizing SVD, the current study analytically evaluates the relationship between

task-relevant and motion-relevant modules.

The current study also examines the function of task-relevant modules while focusing on

motor adaptation [26–32], where motion is modified in a trial-to-trial manner under the existence

of motor error between targeted and actual motor outcomes. In the paradigm of motor adapta-

tion, the relationship between motion and the task outcome changes by perturbation, such as

unpredictable force applied to some body parts [25, 26] or unpredictable changes in visual infor-

mation reflecting the motion outcome [27–29]. The features of motor adaptation are frequently

examined in arm-reaching movements while focusing on the hand position or force generated by

the hand [25–29]. Although several features of motor adaptation have revealed arm-reaching

movements, how to modify motor outcomes in whole-body movements with hundreds of DoFs

is unclear. Several studies have reported adaptation-dependent modulations of motion-relevant

temporal modules [30–32]. Nevertheless, the task relevance of motion-relevant modules is

unclear. We speculate that a function of task-relevant modules is to modify motor outputs while

reducing the number of DoFs, i.e., we speculate that task-relevant modules may show adaptation-

dependent modulations. To validate this prediction, the current study examines motion-relevant

modules in a motor adaptation paradigm of whole-body movements [10].

Fig 1. Diagram of our proposal. In conventional studies, motion data were decomposed into motion-relevant

spatiotemporal modules (the upper part). In our study, we calculated relevant modules to predict the task outcome (the

lower part). We assume that a linear relationship exists between motion and performance (the lower-left part), which

has been validated in previous studies [10, 23, 24]. The bracket in the lower-left part indicates the inner product of the

matrices W and X:,:,k.

https://doi.org/10.1371/journal.pone.0275820.g001
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Results

Detection of task-relevant spatial and temporal modules

The current study proposes a method to extract task-relevant spatiotemporal modules via a

ridge regression and singular value decomposition (SVD). All detailed calculations are pro-

vided in the Methods section. Additionally, Fig 1 shows the purpose and summary of the fol-

lowing calculations.

First, we clarified a conventional method to extract motion-relevant modules from motion

data X:,:,k2R[I,J] at the kth trial, where I and J indicate the number of joints and time frames to

be considered. Throughout our study, all motion and performance data were standardized

such that the mean and standard deviation were 0 and 1, respectively. In the motion data, the

standardization procedure was applied to each joint angle across all time frames and trials.

The motion data are decomposed as follows:

X:;:;k ¼
XRm

r¼1

arbrc
T
r;k; ð1Þ

where Rm is the number of modules, ar�0 is the relevance of the rth motion-relevant modules

to reconstruct X:,:,k (a1 � a2 � � � � � aRm
� 0), br2R[I,1] is the rth motion-relevant spatial

module (bT
i bj ¼ 0 [i6¼j] and bT

i bi ¼ 1), cr,k2R[J,1] is the rth motion-relevant temporal coeffi-

cients (cTi;kcj;k ¼ 0 [i6¼j] and cTi;kci;k ¼ 1), and cTr;k is the transpose of cr,k. Because cr,k depends on

the trial, we refer to cr,k as temporal coefficients rather than temporal modules. In these calcu-

lations, the motion-relevant spatial and temporal components are assumed to be invariant and

variant across trials, respectively (see the Methods section for the opposite case).

Second, we propose a method to extract task-relevant modules. In preparation, we clarified a

method to estimate the relevance of motion to task performance. By using multiple joints and

time-varying motion data, we estimated the relevance of the motion data X:,:,k to performance

data dk2R at the kth trial (k = 1,. . .,K). To estimate the relevance, our earlier studies demonstrated

the effectiveness of a ridge regression rather than some nonlinear regression techniques [10, 23,

24]. A ridge regression allows us to estimate the relevance of motion to performance data W2R[I,

J] while minimizing prediction error in the presence of observation noise (see Methods for details).

Through a ridge regression, the relevance of motion to performance is written as follows:

yk ¼ hW;X:;:;ki þ const: ¼
XI

i¼1

XJ

j¼1

Xi;j;kWi;j þ const:; ð2Þ

where yk indicates the predicted performance, hW, X:,:,ki indicates the inner product of W and X:,:,

k, and const. denotes a byproduct constant value independent of X and W in the standardization

processes. Notably, the relevance of motion to performance, W, enables us to calculate the task-

relevant and task-irrelevant motion components in a data-driven manner [10]. Thus, we can con-

sider the relevance of motion to performance W to include equivalent information to task-rele-

vant and task-irrelevant motion components. The predicted performance is determined to

minimize the prediction error between the actual and predicted performance. Wi,j indicates how

the ith joint angle at the jth time frame is relevant to performance.

After evaluating the relevance of motion to performance W, we extracted task-relevant

modules. SVD enabled us to obtain the modules by decomposing W as follows:

W ¼
XRp

r¼1

lrsrt
T
r ; ð3Þ
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where Rp is the number of modules, λr�0 is the relevance of the rth task-relevant spatiotempo-

ral module to reconstruct W (l1 � l2 � � � � � lRp � 0), sr2R[I,1] is the rth task-relevant spatial

module (sTi sj ¼ 0 [i6¼j] and sTi si ¼ 1), and tr2R[J,1] is the rth task-relevant temporal module

(tTi tj ¼ 0 [i6¼j] and tTi ti ¼ 1). Because W is equivalent to task-relevant and task-irrelevant com-

ponents, as mentioned above, the task-relevant spatial and temporal modules include spatial

and temporal information embedded in task-relevant and task-irrelevant components.

While utilizing task-relevant modules, the relevance of motion to performance can be writ-

ten as follows:

yk ¼ hW;X:;:;ki þ const: ¼
XRp

r¼1

lrsrX:;:;kt
T
r þ const: ¼

XRp

r¼1

ŷ^k;r þ const:: ð4Þ

If X:,:,k possesses similarities to sr in spatial aspects and tr in temporal aspects, the bilinear

calculation in Eq 4, srX:;:;ktTr yields a large absolute value of performance. If X:,:,k does not pos-

sess similarities to sr in spatial aspects and tr in temporal aspects, the bilinear calculation yields

a small absolute value of performance. Both the rth task-relevant spatial and temporal modules

yield a fragment of predicted performance ŷ^k;r. The magnitude of ŷ^k;r reflects the contribution

of the rth task-relevant spatiotemporal module to the reconstruction of the original predicted

performance.

Although it was possible to find the similarity of equation forms between Eqs 1 and 3, the

purposes of the calculations were different. The motion-relevant modules were determined

based on the explanatory power of the original motion data X [3–7] (Eq 1). In contrast, the

task-relevant modules were determined based on the explanatory power of the relevance of

motion to performance W (Eq 3) rather than the original motion data X. Despite the difference

in their purposes, the similarity of equation forms between Eqs 1 and 3 enable us to directly

compare the motion-relevant modules and task-relevant modules.

Finally, we analytically considered the relationship between the task-relevant and motion-

relevant modules. The vectorized relevance of motion to performance vec(W)2R[1,IJ] can be

written as follows (see the Methods section for details):

vecðWÞ ¼
XRst

r¼1

f ðorÞgvrðCorðx; dÞÞvr; ð5Þ

where Cor(x, d) denotes the correlation coefficient between motion data x = (x1, x2, . . ., xK)

(xk = vec(X:,:,k)) and performance data d = (d1, d2, . . ., dK), gvrðCorðx; dÞÞ indicates a linear

function of Cor(x, d) whose coefficients depend on motion-relevant spatiotemporal module

vr, ωr�0 indicates how vr contributes to reconstructing the original motion data, and f(ωr)

indicates a monotonically decreasing function of ωr. The motion-relevant spatiotemporal

module vr can be calculated by applying SVD to the vectorized motion dataset as follows:

xk ¼
XRst

r¼1

oruk;rvr, where Rst is the number of modules, ωr�0 is the relevance of the rth module

used to reconstruct xk, uk,r denotes how vr is related to the kth trial, and vr is the rth motion-

relevant spatiotemporal module. Notably, vr includes both spatial and temporal information in

a mixed manner in contrast to an independent manner such as the motion-relevant (Eq 1) and

task-relevant modules (Eq 3).

Through Eq 5, the relevance of motion to performance was determined based on the

motion-relevant spatiotemporal modules v1; � � � ; vRst ) while weighting each module using Cor

(x, d). Cor(x, d) indicates the correlation between motion and performance, which allows us to
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interpret vec(W) as the relevance of motion to performance. After the rearrangement of vec

(W) as matrix W, SVD provided the task-relevant spatial and temporal modules (Eq 3). Thus,

the task-relevant modules consist of the motion-relevant modules weighted by the correlation

between each module and performance, gr(Cor(x, d)), and the relevance of each module to

reconstructing the original motion data, f(ωr). Additionally, Eq 5 indicates a nonlinear rela-

tionship between the task-relevant modules W and motion-relevant modules v because the

multiplication of gvrðCorðx; dÞÞ by vr has squared forms of vr. Although the motion-relevant

modules were extracted while focusing only on the reconstruction of the original motion data,

the task-relevant modules were determined while considering how motion is related to task

performance.

After revealing the relationship between the motion- and task-relevant modules via Eq 5,

we examined the function of the task-relevant modules. A perspective regarding Eq 4 was that

the task-relevant modules determine the predicted outcomes (i.e., yk) based on planned

motion (i.e., X:,:,k). This function likely enables us to plan appropriate motion to achieve the

targeted motion. To validate this speculation, we examined how motor adaptation affected the

task-relevant modules. In the paradigm of motor adaptation, we apply unpredictable perturba-

tion to motor output and cause error between the targeted and actual movements [25–32]. To

overcome the error, the motor output should be modulated appropriately. If task-relevant

modules are related to planning motion to achieve the targeted motion, the modules should

show adaptation-dependent modulations.

To explore adaptation-dependent modulations of task-relevant modules, the current study

applied our framework to motor adaptation with multiple joints and time-varying motion.

Specifically, we examined the motor adaptation of jump motion [10]. Notably, our framework

can be applied to a variety of situations, such as throwing a ball or dart to estimate the endpoint

[23, 24], jumping to estimate the jumping height or length [10], locomotion to estimate the

speed and mode (e.g., [7]), or arm-reaching movements to estimate the generated force at the

hand (e.g., [25, 26]).

Experimental data

The subjects performed goal-directed vertical jumps while crossing their arms in front of their

trunks (N = 13, Fig 2A). Before the main experiments, the subjects executed a vertical jump

with maximum effort while being allowed to use arm swings (Fig 2C). The target height

throughout the main experiments was based on the maximum height of each subject, i.e., 40%

max, 45% max, 50% max, 55% max, or 60% max. At the beginning of each trial, the subjects

were instructed to stand while crossing their arms in front of their trunks, and the target height

was displayed (Fig 2B). One second after the target display, three beeps sounded with a one-

second interval. The subjects were instructed to jump at the timing of the third beep to control

the jumping height to match the target height. The jumping height was measured based on a

motion capture marker attached to the back. Subtracting the height at the standing position

from the maximum jumping height allowed us to determine the jumping height in each trial.

After one vertical jump, the subjects were visually informed of their jumping height, which

informed them whether they performed the jumping motion well.

In the learning trials (Fig 2C), we changed the visual feedback of the jumping height to

induce motor adaptation. In one day, the changes in visual feedback were inserted once in five

trials to confirm the influence of visual feedback on the jumping height (Experiment 1 in Fig

2C). On another day, the informed jumping height was gradually set to be higher than the

actual jumping height, which induced motor adaptation to perform a small jump (Experiment

2 in Fig 2C). On another day, the informed jumping height was gradually set to be smaller

PLOS ONE Task-relevant modules and their relation to motor adaptation

PLOS ONE | https://doi.org/10.1371/journal.pone.0275820 October 7, 2022 7 / 22

https://doi.org/10.1371/journal.pone.0275820


than the actual jumping height, which induced motor adaptation to perform a large jump

(Experiment 3 in Fig 2C). The same subjects participated in the three experiments but not on

consecutive days. The order of Experiments 2 and 3 was counterbalanced across the subjects.

As a result of Experiment 1, we confirmed motor adaptation via falsified visual feedback [10].

Fig 3 summarizes the jumping height under falsified visual feedback, confirming that motor

adaptation occurred in our experiments. All experimental settings and some data were

reported in our previous study [10].

The current study focused on the relationship between the jumping height and temporal

variations in four joint angles, namely, toe, ankle, knee, and hip angles (Fig 2A), for 500 msec

before release (i.e., 60 time frames with a 120-Hz measurement). Hereafter, we refer to jump-

ing height as performance. A ridge regression allows us to estimate the relationship between

the motion data and performance with prediction error 0.196±0.0168 (mean ± standard error

of mean [s.e.m.] across all subjects and experiments) (Eq 2). If there was no relationship

between the motion data and performance, the prediction error would be 1. If there was a per-

fectly clear relationship between the motion data and performance, the prediction error would

be 0. In our setting, a ridge regression allows us to predict performance with an accuracy of

approximately 80% based on data of 60 time frames and four joint angles.

Task-relevant and motion-relevant modules in motor adaptation

experiments

Based on time-varying and multiple-joints motion data, we compared task-relevant modules

to motion-relevant modules. Although motion-relevant modules prioritize the reconstruction

of original motion data, task-relevant modules prioritize the reconstruction of the relevance of

Fig 2. Experimental setting (revised from [10]). (A): One sec after the target height was determined, three beeps were presented. The subjects performed a

vertical jump at the timing of the third beep. The interbeep interval was 1 sec. We measured four joint angles, toe (q1), ankle (q2), knee (q3), and hip (q4). The

jumping height was determined based on the position of a marker attached to the back. (B): Instruction and visual feedback on the monitor. The blue cursor

indicates the back position. At the beginning of each trial, the blue cursor was displayed on the horizontal solid black line in a lower part of the monitor.

Simultaneously, the horizontal solid black line was visible to indicate the target height in an upper part of the monitor. The position of the target line changed

depending on the target height (panel B provides examples of when the target height was 40% [the horizontal dotted black line was located lower than the 50%

target line] and 60% [the horizontal dotted black line was located higher than the 50% target line]). One sec after the initial presentation, the blue cursor

disappeared until the subjects completed the vertical jump. After each vertical jump, the blue cursor was visualized at the jump height without false visual

feedback. With false visual feedback, the cursor position was displayed higher or lower than the jumping height depending on the types of false visual feedback.

(C): Settings of the target height and false visual feedback. We analyzed both baseline and learning trials.

https://doi.org/10.1371/journal.pone.0275820.g002
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motion to performance W, including equivalent information to task-relevant and task-irrele-

vant motion components. In the framework of motion-relevant modules (Eq 1), the 1st pair of

modules explains a larger portion of variance in the original motion data (solid and dotted

black lines in Fig 4A). The 2nd-, 3rd- and lower-order modules explain a smaller portion of

the variance than the 1st module. In contrast, even the 1st task-relevant module explained few

portions of the variance in the original motion data (red solid line in Fig 4A). Combining the

1st to 4th modules still explained minimal variance. In contrast, the 1st task-relevant spatio-

temporal module explained a larger portion of the predictive power to predict performance

from time-varying motion data (Fig 4B). The other lower-order modules played roles in add-

ing predictive power to the 1st module. Because the task-relevant modules were determined by

a nonlinear function of motion-relevant modules (Eq 5), there were large gaps between the

two types of modules.

Then, we investigated the predicted performance values given by each task-relevant spatio-

temporal module, ŷ^k;r, in Eq 4 (Fig 5). The black color in the bar graphs and solid line plots

Fig 3. Learning curves in Experiments 1, 2, and 3. Solid black, red, and green lines indicate the mean actual jumping

height (%Max) across the subjects in Experiments 1, 2, and 3, respectively. The dotted black, red, and green lines

denote the mean desired jumping height across the subjects while considering the target height and false visual

feedback (%Max). The black, red, and green shaded areas demonstrate the standard error of the mean of the actual

jumping height.

https://doi.org/10.1371/journal.pone.0275820.g003
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denotes the values in Experiment 1 with no consistent motor adaptation (Fig 5A and 5D). The

red and green colors in the bar graphs and solid line plots indicate the values in Experiments 2

and 3 with consistent modulations of the jumping height through environmental changes (Fig

5B, 5C, 5E, and 5F). In Experiment 2, denoted by the red color (Fig 5B and 5E), the subjects

performed vertical jumps with a lower jumping height than the target height due to motor

adaptation (Fig 3). In Experiment 3, denoted by the green color (Fig 5C and 5F), the subjects

performed vertical jumps with a higher jumping height than the target height (Fig 3). The

solid and dotted lines in Fig 5A–5C indicate the predicted performance based on the 1st and

2nd task-relevant spatiotemporal modules, respectively. In the black solid and dotted lines or

in Experiment 1 (Fig 5A), there was no tendency in the predicted performance because the

applied environmental changes or perturbations did not have any tendency. We also examined

the correlation between the applied perturbation and the predicted performance by each task-

relevant module ŷ^k;r. In motor adaptation, the subjects needed to compensate for the perturba-

tion. When the applied perturbation was negative (i.e., informed that the jumping height was

smaller than the actual jumping height), the subjects should jump higher than at baseline (i.e.,

predicted performance should be positive in Fig 5A–5C). Thus, the correlation between the

applied perturbation and ŷ^k;r should be negative if ŷ^k;r represents performance modulated by

motor adaptation. We examined whether the correlation was significant based on a t test of

the correlation value in all subjects. If there was a consistent correlation across the subjects, the

p value in the t test should be smaller than some criteria (e.g., p< 0.05 or 0.01). Along with

these findings, there was no significant correlation between the applied perturbation sequence

and predicted performance via the modules in Experiment 1 (p> 0.5018 [uncorrected],

Fig 5D).

In the red solid and dotted lines or in Experiment 2 (Fig 5B), there were tendencies in both

the 1st and 2nd task-relevant spatiotemporal modules, i.e., the predicted values were larger in

the former and smaller in the latter trials. There were also significant correlations between the

Fig 4. Relevance of task- and motion-relevant modules to motion data and performance. (A): The proportion of

variance in the original motion data explained by motion-relevant spatial modules (solid black line), motion-relevant

temporal modules (dotted black line), and task-relevant spatiotemporal modules (solid red line). Detailed explanations

of the proportion of variance in the original motion data explained by these modules are provided in the Methods

section. The horizontal axis denotes the number of modules used to reconstruct the motion data. Each dot indicates

the explained variance of each subject. (B): The proportion of variance in the predicted performance explained by task-

relevant spatiotemporal modules. We did not consider motion-relevant modules in this panel because the relevance of

these modules to performance was unclear.

https://doi.org/10.1371/journal.pone.0275820.g004
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predicted values and perturbation in the 1st and 2nd task-relevant modules (p = 0.0025 [cor-

rected] in the 1st module and p = 0.0215 [corrected] in the 2nd module, Fig 5E). In contrast,

in the green solid and dotted lines or in Experiment 3 (Fig 5C), there were tendencies only in

the 1st task-relevant spatiotemporal module, i.e., the predicted values were smaller in the for-

mer and larger in the latter trials. There was also a significant correlation between the pre-

dicted values and perturbation in the 1st task-relevant module (p = 0.0010 [corrected], Fig 5F).

The 1st task-relevant module reflected motor adaptation in Experiments 2 and 3. In contrast,

the relevance of the 2nd task-relevant module depended on the task settings.

Finally, we investigated adaptation-dependent modulations of motion-relevant and task-

relevant modules. In the paradigm of motor adaptation, we changed the relationship between

the actual and informed jumping height while adding perturbation to the feedback informa-

tion (see Methods for details). In this setup, the subjects need to change how they predict

motion outcomes compared to the situations without any perturbation. If task-relevant mod-

ules play a role in predicting motion outcomes, they should show more significant adaptation-

dependent modulations than motion-relevant modules. Fig 6 demonstrates the 1st and 2nd

task-relevant and motion-relevant spatial and temporal modules and their adaptation-depen-

dent modulations that were examined via a comparison of Experiments 2 and 3. Among the

features demonstrated in Fig 6, there was one significant main group effect (i.e., the modula-

tion depending on either Experiment 1, 2, or 3) in the 3rd component of the 1st task-relevant

spatial module (i.e., knee joint angle, Fig 6A, F = 3.6642, p = 0.0409). There was no main group

effect in the other features (p> 0.273 in the other features in the task-relevant spatiotemporal

Fig 5. The relevance of each task-relevant module to performance prediction. (A-C): Predicted performance by the

1st and 2nd task-relevant spatiotemporal modules in Experiment 1 (panel A), Experiment 2 (panel B), and Experiment

3 (panel C). All performance values were centralized by subtracting C in Eq 4. Solid and dotted lines denote the

predicted performance by the 1st and 2nd modules, respectively. (D-E): The correlation coefficients between the

applied perturbation and predicted performance by each task-relevant module. Because the subjects needed to

compensate for the perturbation to move the cursor position onto the target line, the correlation was negative if the

predicted value behaved as if it compensated for the perturbation. Double and single asterisk(s) indicate p< 0.01 and

p< 0.05, respectively, according to a t test regarding whether the calculated correlation in all subjects was consistently

and significantly different from 0.

https://doi.org/10.1371/journal.pone.0275820.g005
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modules and p> 0.0917 in the motion-relevant spatiotemporal modules). Based on a multiple

comparison with Tukey’s comparison test, there was a significant difference between Experi-

ments 2 and 3 in the 3rd component of the 1st task-relevant spatial module (p = 0.0113).

Regarding the other features, there was no difference in the results of Tukey’s comparison test

(p> 0.240 in the other features in the task-relevant spatiotemporal modules and p> 0.0953 in

the motion-relevant spatiotemporal modules). These results indicate that adaptation-depen-

dent modulations were observable in the 1st task-relevant spatial module rather than the task-

relevant temporal modules and the motion-relevant spatiotemporal modules.

Discussion

The current study proposed a framework with which to extract task-relevant modules via a

ridge regression and SVD (Eqs 2–4). The task-relevant modules originated from a nonlinear

function of motion-relevant spatiotemporal modules based on their relevance to task perfor-

mance (Eq 5). Due to the nonlinear relationship between the motion-relevant and task-rele-

vant modules, there were few similarities (Figs 4 and 6). The motion-relevant modules are

prioritized to explain the original motion data (Eq 1, solid and dotted black lines in Fig 4A). In

contrast, the task-relevant spatial and temporal modules had limited explanatory power for the

original motion data (solid red line in Fig 4A), but these modules explained the relevance of

motion to performance (solid red line in Fig 4B). The differences were also evident in the com-

ponents of each module (Fig 6). In our concept, the task-relevant modules determined the

Fig 6. Task- and motion-relevant modules in Experiments 1, 2, and 3. All modules were normalized such that each

norm equaled 1. (A): The 1st task-relevant spatial module. Joint numbers 1, 2, 3, and 4 indicate the toe, ankle, knee,

and hip angles, respectively. Black, red, and green colors indicate the modules in Experiments 1, 2, and 3, respectively.

Each bar graph refers to the module of each subject. For example, the left-most black bar in joint number 1 indicates

the recruitment of the toe angle in the 1st task-relevant spatial module. The left-most black bar in joint number 1 is

associated with the black left-most bar in joint numbers 2, 3, and 4 to construct the 1st task-relevant spatial module in

subject #1. Each cross demonstrates the average across subjects. The asterisk indicates a significant difference

(p = 0.0113) based on Tukey’s comparison test. (B): The 1st task-relevant temporal module. Black, red, and green solid

lines indicate the modules in Experiments 1, 2, and 3 averaged across the subjects, respectively. Each shaded area

denotes the standard error of the mean. To perform the one-way ANOVA and Tukey’s comparison test, we divided

the temporal module into three phases denoted by the vertical dotted black lines. After the division, the value in the

module was averaged within each phase and subject, and statistical tests were performed. (C, D): The 1st motion-

relevant spatial and temporal module. (E, F): The 2nd task-relevant spatial and temporal module. (G, H): The 2nd

motion-relevant spatial and temporal module.

https://doi.org/10.1371/journal.pone.0275820.g006
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relationship between planned motion and the predicted outcome. Thus, the task-relevant

modules were expected to be related to planning appropriate motions to achieve targeted

motions with large numbers of DoFs. Under the existence of error between targeted and actual

motion, task-relevant modules are modulated to plan motions to achieve targeted motions.

Along this concept, there were significant adaptation-dependent modulations in the task-rele-

vant spatial modules rather than the motion-relevant spatiotemporal modules. Summarizing

these results, although the task-relevant and motion-relevant spatiotemporal modules are

related to each other (Eq 5), they have different features related to motion, predicted perfor-

mance, and motor adaptation (Figs 4 and 6).

Although some studies have identified possible differences between task-relevant dimen-

sions and motion-relevant spatiotemporal modules [30–32], the relationship between the two

concepts remains unclear. In particular, why low-rank motion-relevant modules (that barely

reconstruct the original motion data) are relevant to task performance is unclear. The current

study proposed a possible answer based on Eq 5, which indicates the relationship between the

relevance of motion to performance, W, and motion-relevant spatiotemporal modules, v. If

the rank of each motion-relevant module was the only factor determining its relevance to task

performance, the contribution of each module to reconstructing the original motion data, ωr,

would solely determine the relevance of motion-relevant modules to task performance. How-

ever, Eq 5 indicates that the contribution of each module to task performance can be deter-

mined by not only the contribution to reconstructing the original data, ωr but also the

weighted sum of the correlation between motion-relevant modules and performance,

gvrðCorðx; dÞÞ (the details of gvrðCorðx; dÞÞ are provided in the Methods section). Thus, the

rank of each motion-relevant module in reconstructing the original motion data does not

reflect how each motion-relevant module contributes to task performance; there were large

gaps between the motion-relevant and task-relevant modules (Figs 4 and 6). In total, motion-

relevant modules are closed concepts within reconstructing the original data that possess fea-

tures inherent in the human body, such as range of motion in joint angles.

In contrast, task-relevant dimensions somewhat consider the innate features of the human

body but primarily focus on the relevance of motion to performance W, which enables us to cal-

culate task-relevant and task-irrelevant motion components [10]. When focusing on the rele-

vance of motion to performance, we should focus on task-relevant dimensions or task-relevant

modules rather than motion-relevant modules. Thus, we should use appropriate concepts, e.g.,

either motion-relevant or task-relevant modules, along with the research purpose.

Consistent with this scenario, our results provide a feasible way to plan appropriate motions

with large numbers of DoFs as follows: 1) the CNS extracts motion-relevant spatiotemporal

modules [i.e., vr in Eq 5 rather than br and cr in Eq 1], 2) the CNS determines the correlation

between each motion-relevant spatiotemporal module and task outcomes (i.e., these manipu-

lations enable the CNS to estimate the relevance of motion to performance, W, via Eq 5, 3)

The CNS extracts task-relevant modules to reduce the numbers of DoFs [Eq 3], 4) the CNS

predicts task outcomes based on planned motion and task-relevant modules [Eq 4], and 5) the

CNS determines appropriate motor patterns by imaging various motor repertoires. In this

schema, the modulations of task-relevant modules can be related to changes in the correlation

between motion-relevant modules and task outcomes in procedure 2. Although the motion-

relevant modules differed from the task-relevant modules (Fig 6), this schema reconciles both

types of modules and provides a possible implementation for the planning of the appropriate

motion in goal-directed situations.

Our adaptation paradigm utilized gain adaptation [27] to induce changes in the motor

magnitude or jumping height. In our vertical jump experiments (Fig 2), the task constraint is
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to perform a vertical jump to match the target height. In the one-dimensional task, gain adap-

tation could be the only applicable adaptation type. Other types of adaptation include visuo-

motor rotation [27–29, 33, 34], adaptation in movement direction, force field adaptation [25,

26], or adaptation in the external force. In particular, there are several differences between

gain adaptation and adaptation to visuomotor rotation [35]. Different types of adaptation

could result in different adaptation-dependent modulations.

We found adaptation-dependent modulation in a component in the 1st task-relevant spatial

module (Fig 6A). Modulation was evident between Experiments 2 and 3. In these experiments,

the subjects performed lower and higher jumps via motor adaptation. There is a possibility

that the difference in jumping height affected the 1st task-relevant spatial module. If this possi-

bility is correct, we should expect invariant task-relevant modules and variant motion data

across Experiments 2 and 3. Because the relevance of motion to performance was modeled as

yk = ∑i,jXi,j,kWi,j, the difference in motion data with the same task relevance resulted in different

jumping heights. In contrast to this speculation, the task-relevant modules differed between

Experiments 2 and 3 (Fig 6A). In both Experiments 2 and 3, the subjects performed diverse

jumping heights from 40% to 60% Max target height. If the jumping height affected the rele-

vance of motion to performance W, the relevance should change within each experiment

appropriate for lower and higher target heights. In contrast to this speculation, W was con-

stant, and the difference in motion data X in each trial modulated jumping height within each

experiment (Fig 5). Thus, adaptation rather than the difference in jumping height possibly

affected the relevance of motion to performance W, i.e., task-relevant spatial and temporal

modules.

A possible explanation for why a linear regression works well is an analogy with the motor

primitive framework. The motor primitive framework can successfully model motor adapta-

tion [28, 36, 37]. In this framework, a nonlinear motor command u is determined as the linear

weighted sum of nonlinear neural activities A: u = ∑iτiAi. The weighted coefficients τi are mod-

ified to minimize the movement error between the actual and desired movement performance.

When Ai is a nonlinear function of the desired movement and appropriately high-dimen-

sional, appropriate linear combinations of nonlinear neural activities can generate desired

motor commands, which has been theoretically validated in the framework of a basis function

network [38]. In our case, the motion data X can be a nonlinear function of movement perfor-

mance because body dynamics are nonlinear, and movements are performed to achieve task

requirements. Additionally, the motion data are appropriately high-dimensional when we use

multiple time frames rather than only time frames at release timing. Thus, an appropriate lin-

ear summation Xw while using multiple time frames could predict the actual movement

performance.

The kinematic data at the release timing should be enough to determine performance in

ballistic tasks. In our case, we expected to model jumping height h by parabola using release

position p and release velocity v as h ¼ pþ v2

2g, where g = 9.8(m/s2) was gravitation acceleration;

nevertheless, the prediction error was 0.382±0.103 in comparison to 0.196±0.0168 by the ridge

regression. We calculated p and v by using forward kinematics. This worse prediction by

parabola may be caused by measurement error. Even in the existence of measurement error, a

ridge regression works well because a ridge regression is equivalent to a regression while

assuming the existence of nonbiased measurement noise [10]. Another possible reason why

the ridge regression showed better prediction accuracy than the parabola regression is the

number of variables utilized in each framework, i.e., the parabola utilized two variables (i.e., p
and v) and the ridge regression utilized four variables (i.e., toe, ankle, knee, and hip angles)

multiplied by the number of time frames. In contrast to this possibility, the temporal variations
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of each joint angle show correlations, resulting in collinearity, which causes the regression

coefficients to be nonvalid [39]. Therefore, a larger number of variables is not always better for

predicting performance. A ridge regression is an effective way to overcome collinearity and

enabled us to obtain valid regression coefficients [22]. In summary, a ridge regression is an

effective way to predict performance under the existence of observation noise and collinearity.

Our approach was a data-driven approach in contrast to modeling the relevance of motion

to performance by forward kinematics or parabolas [8, 9]. The strength of the data-driven

approach is its applicability even when we do not know the relevance of motion to perfor-

mance. In our vertical jump setting, it is possible to model the jumping height by a parabola

function with the position and velocity of the back position at the release timing. By linear

expansion of the parabola function, it is possible to explore task-relevant and task-irrelevant

components. This framework is referred to as GEM [9]. In this case, we cannot consider any

temporal information. Because the relationship between motion and performance is evident to

some degree at the release timing, how motion 10 msec before the release is related to perfor-

mance is unknown. A data-driven approach enables us to consider these unknown relation-

ships while estimating the relationship based on data. Additionally, the prediction accuracy

was better when considering the temporal variation compared to that using parabolic model-

ing [10]. By considering temporal information, we can obtain both spatial and temporal mod-

ules (Eq 4). Furthermore, the data-driven approach allows us to clarify the relationship

between motion-relevant and task-relevant modules (Eq 5). However, the data-driven

approach requires certain amounts of data to achieve a higher prediction accuracy (cf. [40–

42]). With sufficient data, a data-driven approach enables us to consider the relevance of time-

varying and multidimensional motion data to performance, task-relevant and task-irrelevant

dimensions [10, 24], and task-relevant spatiotemporal modules (Eq 3, Fig 6).

In summary, the current study proposed a framework of task-relevant modules (Eq 3) to

reconcile the following two concepts to solve the redundancy problem: motion-relevant mod-

ules [1–7] (Eq 1) and task-relevant motion components [1, 8–10]. We analytically derived the

nontrivial relationship between task-relevant modules and motion-relevant spatiotemporal

modules (Eq 5). Due to the nonlinear relationship, there were large gaps between the task- and

motion-relevant modules (Figs 4 and 6). To examine the functional role of task-relevant mod-

ules, we examined adaptation-dependent modulations of task-relevant modules. Consistent

with our speculation, motor adaptation significantly affected the task-relevant modules rather

than motion-relevant modules (Fig 6).

Methods

Materials and methods

Experimental setup. The detailed experimental setup is provided in our previous publica-

tion [10]. The following are the details of the participants, data acquisition, and data

preprocessing.

Participants. Thirteen healthy volunteers (aged 18–22 years, two females) participated in

all our experiments, which were approved by the ethics committee of the Tokyo University of

Agriculture and Technology and were performed in accordance with all guidelines and regula-

tions. All participants were informed of the experimental procedures in accordance with the

Declaration of Helsinki, and all participants provided written informed consent before the

start of the experiments. On the first day, the participants underwent ten practice trials and

160 baseline trials with pseudorandomly changing targets (40%, 45%, 50%, 55%, or 60% of the

maximum jumping height) to become familiarized with the experimental setting. On the sec-

ond, third, and fourth days (not consecutive), they participated in Experiments 1, 2, and 3. The
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orders of Experiments 2 and 3 were counterbalanced across the subjects. All experimental set-

tings and some data were reported in our previous study [10].

Data acquisition and processing. The jumping motions were recorded in 120 Hz using

six cameras (Optitrack Flex 13, NaturalPoint Inc., Corvallis, Oregon). Markers were attached

to each participant’s back (TV10), right hip joint (femur greater trochanter), right knee (femur

lateral epicondyle and femur medial epicondyle), right heel (fibula apex of the lateral malleolus

and tibia apex of the medial malleolus), and right toe (head of the 2nd metatarsus). The marker

position data were filtered with a 12th-order, 10-Hz zero-phase Butterworth filter using

MATLAB 2016a. The joint angles between the right toe and heel (q1), right heel and shank

(q2), right shank and thigh (q3), and right thigh and trunk (q4) were calculated in the sagittal

plane (Fig 1A). Because the current study focused on a vertical jump with the arms crossed in

front of the trunk, it was possible to focus only on lower limb and trunk motions. Throughout

the current study, we focused on a four-link model of the lower limbs in the sagittal plane. The

time of release was detected based on the moment at which the vertical toe position exceeded

10% of the maximum height in each trial. All experimental settings and some data were

reported in our previous study [10].

Details of the practice trials. During the practice trials (Fig 1C), to inform the subjects of

their back position, the cursor position was displayed during preparatory motions, during

jumping motions, and after jumping motions. This setting allowed the subjects to become

familiar with our experimental setting.

Details of the baseline and learning trials. In the baseline and learning trials, the cursor

position was visualized before and after the jumping motions. In the baseline trials, the target

line was set to either 40%, 45%, 50%, 55%, or 60% of the height at the vertical jump with maxi-

mum effort in each subject (Fig 1C). Each target height appeared once within the five trials in

a pseudorandom manner.

In the learning trials, in Experiment 1, the target height was fixed to be 50% of the maxi-

mum height across the trials. The purpose of Experiment 1 was to assess whether false feed-

back induced motor adaptation. As described in our earlier study [10], we confirmed that false

feedback induced motor adaptation.

In the learning trials in Experiments 2 and 3, the target height was fixed to be 50% in the

first 30 trials. We applied false feedback, the magnitude of which gradually increased because

these gradually applied perturbations can yield motor adaptation without awareness [29, 33,

34, 43]. The motor adaptation that occurs without awareness enables us to examine motor

adaptation with few cognitive factors. In the first 10 of 30 trials, the subjects performed a verti-

cal jump under normal visual feedback. In the following 10 trials, the position of the feedback

cursor changed 0.005% per trial, resulting in a 0.05% change in the 20th trial in the learning

trials. In Experiment 2, the cursor position was visualized as 0.05% larger than the actual jump-

ing height. The subjects needed to jump 0.05% lower than the height in the baseline trials to

position the cursor at the target height. In Experiment 3, the cursor position was visible at a

location 0.05% lower than the actual jumping height. In the remaining 10 trials, the magnitude

of the false visual feedback was fixed at 0.05% to enable the learning effect to be stable. After 30

trials, the target height was set to either 40%, 45%, 50%, 55%, or 60% of the maximum height

once in three trials as a probe trial. These probe trials allowed us to examine whether the sub-

jects adapted to the false visual feedback regarding the target height that differed from the

learning target height (i.e., 50% of the maximum height). The target height in the two consecu-

tive trials was set to 50% to allow the subjects to maintain motor adaptation at the trained tar-

get height [10].
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Task-relevant spatiotemporal modules. The current study proposed a way to extract

task-relevant spatiotemporal modules. We utilized a ridge regression and singular value

decomposition. The following provides the details of the procedures.

Ridge regression: Standardization procedures are indispensable for estimating the relevance

of motion to performance ~W~ such that yk ¼
P

i

P
jxi;j;k

~W~
i;j, where yk is the predicted perfor-

mance at the kth trial, and xi,j,k is the standardized motion data for a ridge regression, includ-

ing the ith spatial feature and jth temporal feature. Performance data dk and motion data xi,j,k
were standardized such that 1

K

PK
k¼1
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K

PK
k¼1

d2
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1 for all i and j. Therefore, the averaged value across the trials should be 0, and the trial-to-trial

variability should be 1 for all data. For standardization, the original motion data ~X~
i;j;k were

transformed as follows:
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is the standard deviation.

Without these standardizations, the largest variable element in the motion data is estimated to

be related to performance. To fairly compare all elements in the motion data, the standardiza-

tion procedure is indispensable.

After standardization, the relevance of motion to performance ~W~ is estimated by minimiz-

ing the cost function as follows:

E ~W~
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2

X

k
ðdk �

X

i

X

j
~Wi;jxi;j;kÞ

2
þ
s2

2

X

i

X

j
~W~2

i;j: ð7Þ

The first term on the right-hand side in Eq 7 denotes the minimization of fitting error from

motion to performance data. The second term denotes regularization of the norm of ~W~ with

regularization parameter σ2. Equivalently, under the existence of independent and identically

distributed Gaussian observation noise ξi,j,k associated with xi,j,k, with a mean of 0 and variance

of s
2

K (K denotes the total number of trials), minimization of the fitting error with noise averag-

ing hEð ~W~Þi can be written as follows:

hE ~W~

� �
i ¼

1

2

X

k

Z

p x1;1;k

� �
dx1;1;k:::

Z

p xI;J;k
� �

dxI;J;kðdk �
X

i

X

j
~W~

i;j xi;j;k þ xi;j;k
� �

Þ
2

or

hE ~W~

� �
i ¼

1

2

X

k
ðdk �

X

i

X

j
~W~

i;jxi;j;kÞ
2
þ
s2

2

X

i

X

j
~W~2

i;j;

where p(ξi,j,k) denotes the probability density function of ξi,j,k. Thus, the cost function (Eq 7)

corresponds to the minimization of the fitting error in the presence of observation noise. In

any experimental setting, observation noise is unavoidable. A ridge regression is an effective

method with which to estimate the relevance of motion to performance under the existence of

observation noise.

Normalization in singular value decomposition: To extract task-relevant spatiotemporal

modules, we need to standardize motion data in a different manner from a ridge regression.

To estimate motion-relevant spatiotemporal modules, motion data are standardized such that
1

JK

P
j

P
kXi;j;k ¼ 0 and 1

JK

P
j

P
kX

2
i;j;k ¼ 1. Thus, the averaged value across both time frames and
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trials should be 0, and the variability across both time frames and trials should be 1 for all spa-

tial elements i. For standardization, the original motion data ~X~
i;j;k should be standardized as

follows:

Xi;j;k ¼

~X~
i;j;k � mi

si
; ð8Þ

where mi ¼
1

JK

P
j

P
k
~X~

i;j;k and si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

JK

P
j

P
k

~X~
i;j;k � miÞ

2
�r

. To compare task-relevant and

motion-relevant spatiotemporal modules, we should utilize the same standardization proce-

dure. Inserting Eq 6 into Eq 8 yields

Xi;j;k ¼
si;jxi;j;kþmi;j � mi

si
or xi;j;k ¼

siXi;j;k � mi;jþmi
si;j

. By using this relation, the relevance of motion to

performance yk ¼
P

i

P
jxi;j;k

~W~
i;j can be rewritten as follows:

yk ¼
X

i

X

j
Xi;j;kWi;j þ const: ¼ hXk;Wi þ const:; ð9Þ

where Wi;j ¼
si
si;j

~W~
i;j and const: ¼

P
i

P
j
~W~

i;j
mi � mi;j

si;j
. Because const. does not include both X and

W, it adds some bias to the predicted performance.

After the calculation of Eq 9, we apply SVD to W as W = ∑rλrsrtr, where sr and tr are task-

relevant spatial and temporal modules. The relevance of motion to performance can be rewrit-

ten as

yk ¼
X

r

lrs
T
r X:;:;ktr þ const::

Relationship between task-relevant modules and motion-relevant modules. In this sub-

section, we utilize vectorized notations of W and Xk, i.e., w = vec(W)2R[IJ,1] and xk = vec(Xk)2

R[1,IJ]. Additionally, we define a motion data matrix as x = (x1,. . .,xK)2R[K,IJ], i.e., a ridge

regression can be written as the minimization of cost function

E wð Þ ¼ 1

2
d � xwÞT d � xwð Þ þ s2

2
wTw

�
. In these formats, the relevance of motion to perfor-

mance w can be rewritten as

w ¼ ðxTxþ s2IÞ� 1xTy;

where I denotes an identity matrix, and σ2 is the same regularization parameter as in Eq 7.

By using SVD, a vectorized motion dataset xk2R[1,IJ] can be written as xk ¼
XRst

r¼1

oruk;rvr,

where Rst is the number of modules, ωr�0 is the relevance of the rth module used to recon-

struct xk, uk,r denotes how vr2R[1,IJ] is related to the kth trial, and vr is the rth motion-relevant

spatiotemporal module. Notably, vr includes both spatial and temporal information in a mixed

manner in contrast to an independent manner such as motion-relevant (Eq 1) and task-rele-

vant modules (Eq 3). Thus, the SVD of x is x = UHVT, where U2R[K,K] is an orthonormal

matrix, H2R[K,IJ] includes the square root of eigenvalues of xxT in each diagonal term (i.e., hi,i
= ωi, where o2

i is the ith eigenvalue of xxT), the other terms equal 0, and V ¼ ðvT
1
; . . . ; vT

ðI�JÞÞ 2

R½IJ;IJ� is an orthonormal matrix whose row (vTi ) corresponds to the motion-relevant spatiotem-

poral module in Eq 5. Notably, this module includes both spatial and temporal modules in an

intermixed manner, such as time-varying synergy [44].
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Based on the SVD, the relevance of motion to performance w can be rewritten as

w ¼ ðxTxþ s2IÞ� 1xTd ¼ VðHHT þ s2IÞ� 1VTxTd;

where we utilize V−1 = VT because of its property as an orthonormal matrix. Under the stan-

dardization for a ridge regression, xT d = β, where bi ¼
PK

k¼1
xkidk ¼ Corðxi; dÞ = ci. Because

the (r, r)th element of the diagonal matrix (HHT+σ2I)−1 equals 1

o2
rþs

2, the relevance of motion

to performance w satisfies the following:

w ¼
X

r

1

o2
r þ s

2

~̂b
~
^

rvr ¼
X

r

f orð Þgvr Cor x; dð Þð Þvr;

where ~̂b
~
^

r ¼ cvr ¼ gvrðCorðx; dÞÞ, c = (c1, c2,. . .,cI×J), and 1

o2
rþs

2 ¼ f orð Þ.

Motion-relevant modules. The current study utilized SVD to extract motion-relevant

spatial and temporal modules. To extract motion-relevant spatial modules invariant across tri-

als, we applied SVD to motion data Xs2R[I,JK] as Xs ¼ BsAsC
T
s . The motion data were stan-

dardized such that 1

I

P
iXr;ði;jÞ ¼ 0 and 1

I

P
iX

2
r;ði;jÞ ¼ 1. The columns of the extracted Bs2R[I,I]

corresponded to motion-relevant spatial modules invariant across trials. Notably, the extracted

modules via SVD are the same as the modules estimated via a PCA.

To extract motion-relevant temporal modules invariant across trials, we applied SVD to

motion data Xt2R[J,IK]. The procedures used to standardize and extract the modules are the

same as those used in the motion-relevant spatial modules invariant across trials.

Contribution of task-relevant modules to the reconstruction of the original motion

data. In Fig 4A, we evaluated the contribution of task-relevant modules to the reconstruction

of the original motion data based on a comparison to the contribution of motion-relevant

modules. In calculating the contribution of motion-relevant modules (e.g., Bs) to reconstruct-

ing the original motion data (e.g., Xs), the eigenvalue matrix AsA
T
s in BsXsX

T
s B

T
s ¼ AsA

T
s repre-

sents the contribution. The rth spatial module or the rth row of Bs contributes to the

reconstruction of the motion data as bs;rXsX
T
s b

T
s;r ¼ a2

s;r. The normalized contribution to the

reconstruction of the motion data by r̂ modules was determined as
Pr̂

r¼1
a2
s;r=
PR

r¼1
a2
s;r, where

R indicates the rank of the matrix XsX
T
s .

We calculated the contribution of task-relevant modules as follows. First, motion data were

set to be X2R[K,IJ], where spatial and temporal information was considered together. Second,

the relevance of motion to performance was set to be wr = vec(Wr), where Wr = λrsrtr. Third,

we calculated l̂r ¼ wrXX
TwT

r in the same manner as that in the motion-relevant modules,

although wr was not an eigenvector of XXT. Finally, the normalized contribution to the recon-

struction of the motion data by r̂ modules was calculated as
Pr̂

r¼1
l̂r=
PR

r¼1
l̂r.
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