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Abstract

A crossdated, replicated, chronology of 114 years (1901–2014) was developed from internal

growth increments in the shells of Glycymeris glycymeris samples collected monthly from

the Bay of Brest, France. Bivalve sampling was undertaken between 2014 and 2015 using

a dredge. In total 401 live specimens and 243 articulated paired valves from dead speci-

mens were collected, of which 38 individuals were used to build the chronology. Chronology

strength, assessed as the Expressed Population Signal, was above 0.7 throughout, falling

below the generally accepted threshold of 0.85 before 1975 because of reduced sample

depth. Significant positive correlations were identified between the shell growth and the

annual averages of rainfall (1975–2008; r = 0.34) and inflow from the river Elorn (1989–

2009; r = 0.60). A significant negative correlation was identified between shell growth and

the annual average salinity (1998–2014; r = -0.62). Analysis of the monthly averages indi-

cates that these correlations are associated with the winter months (November–February)

preceding the G. glycymeris growth season suggesting that winter conditions predispose

the benthic environment for later shell growth. Concentration of suspended particulate mat-

ter within the river in February is also positively correlated with shell growth, leading to the

conclusion that food availability is also important to the growth of G. glycymeris in the Bay of

Brest. With the addition of principle components analysis, we were able to determine that

inflow from the River Elorn, nitrite levels and salinity were the fundamental drivers of G. gly-

cymeris growth and that these environmental parameters were all linked.

Introduction

Annually-resolved palaeoenvironmental archives such as tree-rings [1, 2, 3] ice cores [4, 5, 6] and

corals [7, 8] have provided valuable insights into the terrestrial and tropical marine environments
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of the past. Up until the last decade, however, no proxy archive with a similarly high resolution

had been developed for the marine environment of the mid and high latitudes [9]. During the

past decade, with the use of the shells of long-lived bivalve molluscs, in particular Arctica islan-
dica [10, 11, 12], Panopea abrupta [13, 14, 15], and Glycymeris spp. [16, 17, 18], this gap in knowl-

edge has begun to close. These species, as well as others, can be used to build extended decadal to

multicentennial annual-resolved chronologies using techniques established within the field of

dendrochronology [12]. These chronologies, especially when they can be precisely dated by

being anchored in time with shells of a known date of death, provide a stratigraphy for geochem-

ical and increment width proxies which, when successfully calibrated against instrumental series,

can be used for palaeoenvironmental reconstructions at an annual resolution [19].

Growth increments found in the shells can provide useful information about the biology,

ontogeny and environment of the individual and its population [20, 21, 22]. These increments

can be formed regularly, for example as annual or tidal increments, or intermittently as a result

of disturbance events that cause metabolic stress to the animal [20]. Endogenous growth

rhythms have been found in a number of marine bivalve species. For example, tidal growth

increments in shell formation have been identified in Chione fluctifraga and C. cortezi and are

characterized as corresponding to emersion–immersion cycles [23]. Other species exhibit

reduced or even interrupted shell growth during gametogenesis due to the allocation of ener-

getic resources towards the production of gametes, such as Crassostrea gigas [24]. In other

examples, such as the Antarctic bivalve Yoldia eightsi, endogenous cyclicity in growth has been

observed for which there is no clear explanation [25].

Growth increment widths have also been successfully used to reconstruct seawater temper-

atures [15, 26] and climate oscillations [27]. More intermittent links with seawater tempera-

tures were described by Butler et al [10] and Marali and Schöne [28]. In addition, other studies

have found relationships between bivalve growth and various other environmental variables.

For example, Helama et al [29] and Mette et al [30] found that A. islandica shell growth was

related to the winter NAO, Gutierrez-Mas [31] found Glycymeris spp. fossils to be responding

to sea-level rise and Bušelić et al [32] correlated the growth of G. bimaculata, in part, with the

salinity of the surrounding waters.

The focus of this study is on Glycymeris glycymeris which is another species that has been

used for reconstruction of past climatic and environmental variables [16, 26, 33]. G. glycymeris
is a fairly large bivalve with a maximum length of 80 mm [26] that inhabits the north eastern

Atlantic continental shelf from Cape Verde to Norway in water depths of up to 100m in areas

with strong bottom currents [34]. Previous research has shown (i) that the periodic growth

increments in G. glycymeris are formed annually and are synchronous within populations [16,

26, 33] and (ii) that individuals can live for nearly 200 years [16, 35]. This species is therefore

an ideal proxy archive for marine paleoenvironmental studies as it can provide replicated and

crossdated chronologies of shell material, with annual resolution and absolute dating. If suffi-

cient quantities of suitable fossil material are available it will be possible to extend these chro-

nologies back through several centuries.

The study site is in the Bay of Brest, a semi-enclosed mixed marine/estuarine ecosystem

with an area of 180 km2 and an average depth of 8 m. The Bay of Brest is connected to the

Atlantic shelf (Iroise Sea) by a strait to the west that is 2 km wide and 40 m deep, and is fed by

two rivers. The larger river, the Aulne, has a catchment area of 1822 km2 and the smaller Elorn

has a catchment of 280 km2. These two rivers provide up to 85% of the total freshwater input

into the bay [36]. It is therefore a suitable region for an investigation into the influence of river

inflow upon the hydrography, biological and environmental dynamics within the bay.

A major difference between the open ocean and semi-enclosed bays has to do with the

dynamics of seasonal phytoplankton blooms [37]. Increasing nutrient loading during the last
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decade, resulting from intensifying agricultural practice, has focused attention on the possible

trend towards coastal eutrophication. Estuarine ecosystems, particularly those in enclosed or

semi-enclosed bays, are subject to high nutrient loading, but each bay responds differently to

such inputs [38]. While the emergence of eutrophic conditions is characteristic of some coastal

areas, others, including the Bay of Brest, have not yet exhibited such a critical evolution [39].

A typical configuration of factors drive biogeochemical dynamics in such semi-enclosed

bays: density stratification is potentially induced by aperiodic river discharges, but stirring by

tidal currents and wind prevents sustained vertical stratification in these partially mixed waters

[39]. At the other end of the system, hydrodynamic exchanges with the open ocean limits the

accumulation of organic matter [40]; however, intermittent inputs by river flow can maintain

nutrient availability even after periods of high consumption [41].

The objective of this study is to create an extended and annually resolved G. glycymeris chro-

nology and to evaluate its potential as an environmental indicator and archive of proxy records

for past climatic and hydrographic variability. In order to achieve this objective, the following

goals were set; (i) to determine the feasibility of crossdating live- and dead-collected shell mate-

rial using G. glycymeris samples from the Bay of Brest, north-west France, (ii) to establish that

these samples can be used to build a well-replicated and statistically robust chronology, (iii) to

identify relationships between environmental factors and the growth of G. glycymeris.

Methods

Sample collection

Sampling permit was given by the director of the Interregional Directorate for the Sea (North

Atlantic—Western English Channel) on behalf of the Prefect of Brittany Region (sampling

permit n˚101/2014). Our study site, the Banc de la Cormorandière (48˚20026˝ N, 4˚30044˝ W),

is a subtidal dune situated 20 m below the surface. It is located in the western part of the Bay of

Brest, near its outlet and is subject to strong tidal currents (Fig 1). Living G. glycymeris and

dead shells were collected monthly between September 2014 and November 2015. In total 401

live specimens and 243 articulated paired valves from dead G. glycymeris were collected in 20-

25m water depth using a dredge deployed from the RV Albert Lucas (future access to these

shells can be obtained through Dr. Julien Thébault (julien.thebault@univ-brest.fr)). Of the 243

pairs of valves from dead specimens, 114 were excluded from further consideration because of

extensive bioerosion. A total of 14 shells live-collected from the same site in 2012 and archived

at Université de Bretagne Occidentale were also used in the analysis.

Seawater temperature and salinity have been monitored weekly from 1998 to present at

the SOMLIT-Brest station located at the outlet of the Bay of Brest (48˚21030” N, 4˚33006” W),

using a Sea-Bird SBE 19 CTD profiler (Sea-Bird Electronics, Inc.). The sampling station,

which is open to oceanic influence, is located in front of Ste-Anne-du-Portzic at the boundary

between the Iroise Sea and the Rade de Brest (Fig 1). Sampling is carried out weekly, at 2 m

depth, and five physico-chemical factors are measured: temperature, conductivity, dissolved

oxygen, pH and turbidity, as well as a biological parameter (fluorescence of chlorophyll α).

In addition, the buoy MAREL-Iroise provides automatic records of temperature, conduc-

tivity, dissolved oxygen, pH, and turbidity measured every 20 min at a location 50m from the

SOMLIT-Brest station (48˚21’28”N, 4˚33’05” E). These monitoring stations are located less

than 3 km away from the shell sampling site.

Shell preparation

The morphometrics (shell length, height, width, and total dry shell mass) of all the collected

shells were measured using an automatic vernier caliper at 0.01 cm precision and recorded.
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The shell mass was recorded on a balance to the nearest 0.1 g. The recorded biometrics were

then used to select 44 live- and 30 dead-collected shells for sectioning. The selected shells

were those which were the largest by height, and the heaviest by total shell mass, chosen on the

basis that these were likely to be the longest-lived (see [10]). Shells which were damaged by the

dredge or fouled were excluded.

The selected live- and dead-collected shells were sectioned using the methods described by

Ramsay et al [43]. A 3–4 cm section was cut from the hinge through to the ventral margin

along the axis of maximum growth using a diamond tipped blade mounted on a rotary grind-

ing saw, making sure that the apex of the umbone was included in the section. The cut section

was then embedded into Escil polyester resin and placed in an oven set at 30˚C until dry before

a final section was cut with a precision saw (Struers Secotom-10) along the axis of maximum

growth. The cut surface was ground using silicon carbon paper (grades 800–4000) fixed to a

mechanical grinding machine (Struers TegraPol-35) before being polished using 3μm dia-

mond paste. The polished shell sections were then etched in 0.1M HCl for 90 seconds, soaked

in a water bath and left to air dry [16, 35, 43]. Acetate peel replicas of the etched surfaces were

then produced using methods described by Richardson [20].

The prepared acetate peels were digitally photographed with a Zeiss AxioCam MRc5 digital

camera mounted on a Zeiss Lumar.V12 light-transmitting microscope under 40 and 80× mag-

nification (Fig 2). The software Axiovision V4.9.1 was used to create photo mosaics from the

individual photographs, and the growth increments seen in the images were crossdated visu-

ally using the list year method [44]. This technique is based on the assumption of synchronous

growth in individuals sampled from the same area [44, 45]. The growth increments were then

digitally measured, using ImageJ software. Because the increment widths in G. glycymeris typi-

cally show little variability, a mean value was taken of three sets of measurements in order to

minimize the effect of measurement error [33]. The growth measurements were taken in the

hinge rather than the ventral margin as the hinge provides a more consistent orthogonal tran-

sect through the increments [35].

Fig 1. Location of Brittany in France and sample location within Brittany. Circle indicates sample site

and ‘X’ shows the position of SOMLIT-Brest research station. Adapted from Thébault & Chavaud [42].

https://doi.org/10.1371/journal.pone.0189782.g001
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Chronology construction

Standard statistical techniques derived from dendrochronology were used to crossdate the

growth increment series [12, 13, 16, 17, 33, 46]. Only those samples within which the growth

increments were well defined and which were taken from individuals that were over 20 years

old were used for chronology development. In total 20 live-collected and 18 dead-collected

individuals satisfied these criteria. The year of collection (2012, 2014 or 2015) was assigned to

the most recent partial growth increment of the live-collected specimens; this is the incomplete

increment found on the outer edge of the hinge.

The dendrochronological crossdating application COFECHA V6.06P [47, 48] was used to

crossdate the growth increments between different individuals. For the dead collected speci-

mens, where the date of death was unknown, 2004 was initially assigned to the most recent

growth increment so that the series could be input to COFECHA. COFECHA was configured

to fit a 20-year cubic smoothing spline with 50% wavelength cutoff to the measured time series.

This 20-year smoothing was chosen due to the young average age of the specimens included in

the analysis along with the standard 50% wavelength cut-off. Each time series was then divided

by the values predicted by the spline, isolating high-frequency variability and standardizing

each series to a mean of one [48]. The overall average of the correlations between each individ-

ual and the average of all others was reported as the series intercorrelation. The dead collected

individuals were reassigned new arbitrary ages at ten-year intervals until COFECHA could

give a potential fit. Once a fit was found the list year method was used to check that the match

was also visually correct. The successfully crossdated shell series were used to construct a mas-

ter chronology using the dendrochronology application ARSTAN for Windows (version 41d,

[49]).

We used detrending methods that have been previously applied in sclerochronological

studies to produce G. glycymeris [16] and G. pilosa chronologies [17]. We first applied an adap-

tive power transformation to each series to stabilise variance throughout the growth series

[50]. Once this was completed, a negative exponential function was fit to the transformed

series to remove the ontogenetic growth curve. In 6 cases, however, ARSTAN indicated that a

15-year cubic spline with 50% frequency cut off provided the best fit [51] by announcing that

Fig 2. A digital photomosaic of an acetate peel replica of growth increments in the G. glycymeris

hinge. Black scale bar is 500μm. Black arrows indicate marker years where there was increased growth.

Shell ID: 14101004, collected in October 2014.

https://doi.org/10.1371/journal.pone.0189782.g002
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the previous function would lead to a negative detrended growth curve. ARSTAN creates three

versions of the master chronology (standardized (STD), residual (RES) and ARSTAN (ARS)),

which model autoregression in different ways. In this study, there were no significant differ-

ences between the three versions, so only the STD chronology will be used in the remainder of

this analysis.

Chronology validation

Accelerator mass spectrometry (AMS) radiocarbon (14C) dating was used to validate the cross-

dating between four dead-collected G. glycymeris that cross matched with each other but could

not be visually incorporated into the master chronology. CaCO3 samples from all four shells,

drilled close to the ventral margin, were sent to Beta Analytic, Miami, USA, for analysis. Con-

ventional Δ14C determinations were corrected for a regional marine radiocarbon reservoir age

effect (MRRE) using0020ΔR of −48 ± 45 years [52] and, as all samples were post-bomb (post-

1950), they were calibrated using regional bomb-pulse calibration curves created by Scourse

et al [46], on the basis of the marine box model used by Reimer et al [53]. Shallow, well-mixed,

locations like the Bay of Brest have a response similar to the German Bight or Oyster Ground

which approximate the atmospheric bomb-pulse because carbon is readily exchanged and

mixed in such settings. As such the pMC (% modern carbon) values were compared with the

German Bight and Oyster Ground curves found in Scourse et al [46].

Environmental analysis

The STD chronology standardized growth index (SGI) was compared to available variables

from the local SOMLIT-Brest monitoring station, as well as the North Atlantic Oscillation

(NAO). The NAO is an index of fluctuations in atmospheric pressure at sea level between the

subpolar and subtropical regions [54]. It is an indicator of weather patterns (wind, tempera-

ture, moisture, etc.) in the North Atlantic, especially the strength and direction of westerly

winds and storm tracks during the winter months [55]. The winter NAO index used here is

defined as the normalized pressure difference between the Azores (high-pressure) and Iceland

(low-pressure) [54], averaged over the months December-February.

The same winter months were averaged for the East Atlantic Pattern (EAP) and compared

to the SGI. The EAP has a strong impact in Western Europe by influencing sea surface temper-

ature or modulating mean precipitation rates and hydrological processes [56].

The SGI was compared with temperature, salinity and chlorophyll α data acquired by

the SOMLIT-Brest monitoring station from 1998 to 2014. Further comparisons were made

between the SGI and rainfall using a dataset from Brest-Guipavas first published by Klein

Tank et al [57].

Data about the river flow rates of both the Elorn and the Aulne, nitrite and suspended par-

ticulate matter (SPM) was provided by Hydro Bank, which is administered by the Service Cen-

tral d’Hydrométéorologie et d’Appui à la Prévision des Inondations (service du Ministère de

l’Ecologie, du Développement Durable et de l’Energie). This data can be found at http://www.

hydro.eaufrance.fr/.

The correlating environmental data were standardised (μ = 0, σ2 = 1) and analysed using

principal components analysis (PCA). Missing values were corrected using a mean value

imputation. The scores for the principal components that accounted for the majority of the

variance (PC1, PC2 and PC3) were tested for significant correlations (using Pearson’s correla-

tion) with the SGI.
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Results

Biometrics and growth

In total 401 live- and 243 dead-collected G. glycymeris with paired valves were collected

between September 2014 and November 2015. The mean shell length of all specimens collected

was 59.2 mm (σ = 9.3 mm). The mean length of the dead-collected valves was 61.8mm (σ = 6.9

mm; range 34.6 mm to 77.1 mm), and that of the live-collected valves was 52.5 mm (σ = 8.2

mm; range between 24.6 mm and 69.4 mm). There was also a difference between the shell

mass of the live- and dead-collected shells, the overall average being 42.4 g (σ = 19.4 g). The

dead-collected paired valves weighed an average 55.3 g (σ = 14.7 g; range 8.6 g to 114.8 g),

while the live-collected shells weighed much less with an average of only 34.62 g (σ = 14.1 g;

range 3.1 g to 95.9 g).

The age ranges of the live-collected shells was 5 to 43 years, with an average of 19 years

(σ = 9 years). This is low compared to the ages of the shells live-collected in 2012, whose aver-

age age was 27 years (σ = 9 years; range 25 years to 44 years). The dead collected shells had a

greater longevity with an average of 44 years (σ = 17 years; range 24 years to 70 years). The

maximum age of live-collected specimens from all of the 2015, 2014 and 2012 collections was

50 years, whereas the longest lived dead-collected valve analysed was 70 years. The mean lon-

gevity of the shells used to construct the chronology was 32 years.

Chronology

G. glycymeris has strong synchronous growth that allows it to be crossdated. Signature years of

increased growth, such as 2005, 2003, 2001, 1995 and 1983, were found in almost all samples.

No missing increments were observed in any sample. Non-annual growth lines were present

in all sampled individuals, but these were easily distinguished from the annual increments as

they were always lighter in colour than the annual banding.

The chronology created with only live-collected specimens has a mean sensitivity of 0.189,

with an interseries correlation of 0.497. When the dead collected shells are added to extend the

chronology further back in time, the mean sensitivity remains almost identical at 0.190, and

the interseries correlation rises slightly to 0.502. Using only live-collected individuals, the repli-

cated chronology extends from 1975 to 2015, with five individuals in the chronology at 1975

(Fig 3C). When series from the dead collected shells are added, the replicated chronology

extends back to 1901 with at least 3 individuals. One specimen reaches back to 1891. The

Expressed Population Signal (EPS), a measure of chronology strength, falls below the conven-

tional threshold of 0.85 [58]; (see Discussion for further explanation) prior to 1975 because

of the rapid fall in sample depth as live-collected specimens drop out of the chronology, but

remains above 0.7 throughout. The chronology was truncated at 1901 because the running

EPS (calculated over a 20 year window with a 7 year overlap) could not be calculated before

that point (Fig 3C).

Chronology validation

The four AMS 14C determinations derived from the ventral margins of shells were dated as

post-bomb (post 1950) and were therefore calibrated using the curves for German Bight and

Oyster Ground described by Scourse et al [46]. The calibration indicated that the individuals

had died c.1960 or post 2005 (S1 Table), confirming their placement in the master chronology

between 1955 and 1970.
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Environmental drivers

In the Bay of Brest, growth of G. glycymeris was negatively correlated to annually averaged

salinity (r = -0.62, p = 0.006) over the period 1998–2014. Growth was positively correlated

with the annually averaged flow rate of the River Elorn (r = 0.60, p = 0.005) over the period,

1989–2009 and with rainfall (r = 0.34, p = 0.03) over the period 1975–2008 (Fig 4). No signifi-

cant correlations were found with any other annually averaged variable.

When the monthly averages of each environmental variable were correlated with the chro-

nology, the strongest correlations with salinity were for the months of January (r = -0.62,

p = 0.008) and February (r = -0.54, p = 0.020), and also for November (r = -0.61, p = 0.01) and

December (r = -0.71, p = 0.001) of the previous year. The months for which SGIs correlated

most strongly with inflow of the River Elorn were January (r = 0.52, p = 0.022) and February

(r = 0.53, p = 0.019) as well as December of the previous year (r = 0.49, p = 0.033) (Fig 5). In

February alone, there were significant correlations with nitrite concentration (NO2) (r =

-0.464, p = 0.022) and suspended particulate matter (SPM) (r = 0.500, p = 0.01) (Fig 5).

Principal components analysis

The standardised environmental parameters of nitrite, River Elorn inflow, salinity and rainfall

were analysed using a PCA. The first principle component (PC1) accounted for 51.9% of the

variance, PC2 accounted for 21.2% and PC3 of 17.7%. PC4 and PC5 accounted for less than

Fig 3. A) Detrended increment measurements (grey lines) and ARSTAN created standardized (STD) chronology (black line); B) EPS and RBar values

calculated in a 20 year window with a seven year overlap. The horizontal line shows the 0.85 threshold (see text); C) The position of each of the shells

in the chronology. The grey lines indicate shells sent for radiocarbon analysis.

https://doi.org/10.1371/journal.pone.0189782.g003
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15% of the variance and were subsequently disregarded from further analysis (S2 Table). Two

of the environmental parameters had similar strength loadings on PC1 (River Elorn Inflow;

0.51; nitrite, 0.55). Another strong loading in PC1 was salinity (-0.52) although it was a nega-

tive loading. SPM was the strongest loading on PC2 (0.93) and rainfall was strongest in PC3,

showing strong synchrony between these environmental factors and their respective principle

components (Fig 6 (see S3 Table for all loadings)). PC1 was positively correlated with the SGI

(r = 0.35, p = 0.02) whereas neither PC2 (r = -0.12, p = 0.44) or PC3 (r = 0.17, p = 0.29) were

found to have significant correlations.

Discussion

In this study we examined the internal growth increment series in shells of the marine bivalve

G. glycymeris collected from the Bay of Brest, France. Series from 20 live- and 18 dead-collected

shells were successfully crossdated to construct a replicated chronology extending from 1901

to 2014. The longest-lived shell analyzed was a dead collected individual whose longevity was

estimated at 70 years, making it the longest-lived individual of this species so far found in

north-west France (Royer et al [26] have previously reported a maximum longevity of 46

years). It is interesting to note that other studies, conducted at higher latitudes, found signifi-

cantly greater longevity in G. glycymeris [16, 33, 35], with Reynolds et al [16] identifying a spec-

imen that had lived for 192 years. Reynolds et al [16] collected their samples from north-west

Scotland, whereas Ramsay et al [35] and Brocas et al [33] sampled the waters surrounding the

Fig 4. Pearson correlation coefficients of annually averaged environmental data with SGI. Significant correlations (p < 0.05) are marked with a

star.

https://doi.org/10.1371/journal.pone.0189782.g004

Riverine influence on growth of G. glycymeris in NW France

PLOS ONE | https://doi.org/10.1371/journal.pone.0189782 December 20, 2017 9 / 19

https://doi.org/10.1371/journal.pone.0189782.g004
https://doi.org/10.1371/journal.pone.0189782


Fig 5. Comparison of chronology with environmental data. A) Pearson correlation coefficients of monthly environmental data

with the SGI. Significant correlations (p < 0.05) are marked with a star. Dotted line indicates the change between years (e.g.

previous and current year). B-E) biplots of significant environmental data (averaged monthly) and the chronology.

https://doi.org/10.1371/journal.pone.0189782.g005
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Isle of Man. This supports the hypothesis that there is a latitudinal trend, with longevity

increasing at higher latitudes. Moss et al [59] found this effect in many different bivalves

including species from the commercially important genera Veneridae, Pectinidae, and Mytili-
dae and attributed it to differences in temperature and the limited and highly seasonal food

availability that affects populations at higher latitudes. They theorise that the longer lifespan

may be a consequence of limited metabolism, and that long life could be the key to reproduc-

tion because with limited food availability individuals could not always rely on the energy

resources to allow annual spawning.

Fig 6. Environmental data with the respective leading principle component (PC) scores. Environmental parameters included in analysis

are: salinity, River Elorn inflow rate, nitrite levels and rainfall. Each environmental parameter was normalised (mean = 0, variance = 1).

https://doi.org/10.1371/journal.pone.0189782.g006
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Wigley et al [58] determined that an EPS of 0.85 indicates that the signal in the chronology

is a sufficiently good representation of the signal in the whole population. This chronology

achieves that threshold after 1975, but because of the reduced sample depth, EPS drops below

0.85 before that date, sometimes falling as low as 0.7. Since all the comparisons with environ-

mental data here relate to the period after 1975, the chronology signal strength can be consid-

ered adequate for these analyses. The use of this chronology as a robust reconstruction tool is

contingent on its being strengthened prior to 1975 with the addition of growth increment

series from more shells.

The significant correlation observed between G. glycymeris growth and the inflow of the

River Elorn is to be expected. The rivers feeding into the Bay of Brest are a substantial source

of nutrients that sustain a large amount of primary productivity in the bay [56, 60]. Although

the River Elorn is the smaller of the two rivers, it is closer to the sample site than the larger

River Aulne, and it is therefore reasonable to conclude that it might have a more direct influ-

ence on the growth of this G. glycymeris population. Although a significant negative correlation

was found between growth and salinity, it is unlikely that there is a direct relationship between

the change in salinity and growth. Colonese et al [61] found a similar relationship between

growth, freshwater circulation and salinity using intra-shell δ18O and δ13C values of the fresh-

water mollusc Anomalocardia flexuosa from southern Brazil. However, G. glycymeris is a

marine stenohaline species with an optimum salinity at 34 [62], so it is unlikely that an increase

in salinity would cause growth to decrease, especially as average salinity in the Bay of Brest is

below the upper tolerance limit for the species and very close to the optimum. It can therefore

be assumed that another variable, also related to river inflow, is controlling growth. Del Amo

et al [63] reported correlations (Spearman’s rank correlation) between concentrations of silicic

acid and phosphate and river inflows during 1993–94 that were higher for the Elorn than for

the Aulne. The long term trend to lower Si:N molar ratios [39] has resulted in silicates and

phosphates, rather than nitrates, being the main limiting nutrients in the Bay of Brest [60, 63].

It is therefore feasible that the Elorn is more significant than the Aulne in the delivery of limit-

ing nutrients to the Bay of Brest, so that shell growth is more sensitive to changes in inflow

from the Elorn. This hypothesis should, however, be treated with caution as it is based on mea-

surements for a single annual cycle.

The strong positive correlation between growth and suspended particulate matter (SPM) in

February supports the hypothesis that food availability is an important driver of shell growth

in the Bay of Brest. As G. glycymeris is part of the endofauna, living below the surface of the

sediment, the predominant effect of nutrients on shell growth must occur after the particles

settle. Active pumping and biodeposition by benthic suspension feeders have been found to

increase the rate of settlement of suspended matter on the sediment [64]. For example, De

Vries & Hopstaken [65] have previously estimated, for Grevelingen (The Netherlands), that

biodeposition by benthic suspension feeders increases particulate matter settlement by at

least three times compared to passive sedimentation [66]. In the Bay of Brest, Barnes et al [67]

found that biodeposition by Crepidula fornicata led to siltation of sediment as well as signifi-

cantly reduced particle resuspension. This activity by C. fornicata appears to be a crucial factor

in the development of a silicate pump in the Bay of Brest, with the biologically limiting silicates

retained in the bay as a result of such biodeposition and contributing to diatom dominated

phytoplankton blooms during the spring and summer [66, 68]. C. fornicata is found in great

numbers (500–1300 individuals/m-2) close to the sample site of this study [55, 66], and it is

likely that the retention of nutrients in the area through biodeposition is directly related to the

availability of nutrients to G. glycymeris at this site.

High levels of chlorophyll α are not necessarily correlated with high growth rates in bivalves

[69]. Lorrain et al [70] observed that large bottom concentrations of chlorophyll α, particularly
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after diatom blooms, could have a negative effect on the ingestion or respiration of P. maximus
juveniles, either by gill clogging or by oxygen depletion at the water-sediment interface associ-

ated with the degradation of organic matter. G. glycymeris has a ciliated gill structure which

allows for potential food to be sorted upon the gills themselves, rather than through the diges-

tion process and unwanted material is passed to the edges of the gills demibranchs [71]. This

structure of constant sorting and movement of particles along the gills means that gill clogging

is more likely than in species with a lophophore or siphon [72].

Overall, phytoplankton is thought to be only a small part of the diet of G. glycymeris [34]

and therefore SPM is likely a much better representation of food availability for this species

within the normal seasonal cycle. This is not the first time such a conclusion has been made.

Galap et al [73] states that bacteria enriched detritus, collected from the sediment, constitutes

as the principle nutrient source for G. glycymeris in the Douarnenez Bay, France. Also, this

is not restricted to G. glycymeris in France, the same has been observed in Mali Ston Bay, Croa-

tia, where the main food source of G. nummaria is detritus, particularly in the autumn/winter

months [74].

The negative correlation observed with nitrite (NO2) is likely due to the high toxicity of the

compound. Widman et al [75] found that, after ionised ammonia, NO2 was the most toxic

nitrogen based compound for Argopecten irradians irradians. Argumugan et al [76] observed

that Mytilus galloprovinciais and Crassostrea gigas produce NO2 as a by-product of their reac-

tive oxygen intermediates, although these are the only species found to do so. While Merce-
naria mercenaria and C. virginica have been shown to have a strong tolerance for nitrite [77],

the same has not been observed in G. glycymeris. More research needs to be carried out on the

Glycymeris genera as up until now there have been no studies of their response to environmen-

tal NO2. This is particularly important in areas such as the Bay of Brest, where inflows of nitro-

gen compounds have increased ten times over the course of the 20th century [78].

The addition of principle components analysis (PCA) related nitrite levels to the inflow

from the River Elorn as well as finding a negative relationship to salinity (S3 Table) grouping

them together for analysis within PC1. This leads to the conclusion that the nitrite levels in

the Bay of Brest are being fed by the River Elorn. As this grouping correlated strongly with the

SGI, it can be concluded that all of these factors are driven together and that they influence the

growth of G. glycymeris. More information is needed to pull apart exactly which of these envi-

ronmental factors is the most important. Although correlations were found with SPM levels in

February (Fig 5), the lack of correlation between the SGI and PC2 implies that this correlation

may be coincidental.

In contrast with other bivalve growth studies [33, 79], no significant correlation was found

between the growth of G. glycymeris and the winter NAO (wNAO). The wNAO reflects winter

conditions in Northern Europe, as it indicates the direction of storms caused by winds blowing

across the Atlantic [80]. Royer et al [26] found that the growing season for G. glycymeris in the

Bay of Brest is May-October, and is therefore lagging the period of maximum pressure gradi-

ents in the North Atlantic (upon which the wNAO index is based) by several months. The

same authors also found no correlation between the wNAO and growth in their population

from the Chausey Islands, and concluded that this was because of the time lag. However, it has

been suggested by Schöne et al [79] that the state of the NAO in winter could predispose the

environment to favour shell growth later. Correlations between the wNAO and shell growth,

even if they are only intermittent [30], seem to occur at higher latitudes than the populations

in NW French waters investigated by Royer et al [26] and in this study. This suggests that the

effect of the positive phase of the wNAO is to divert the Atlantic storm tracks into UK and

Norwegian waters. The result is that the lagged signal of the wNAO is more strongly expressed

in bivalve populations living directly under the path of the stronger storms that occur when
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the wNAO is in its positive phase. For the G. glycymeris population studied here, it is likely

that local factors are more important for growth than major climate oscillations. For example,

Grall and Glémarec [81] describe the river Elorn as being heavily polluted by agricultural run-

off and this may lead to larger scale environmental signals such as the NAO being masked in

the shell growth records [82].

Tréguer et al [55] found a positive correlation between sea surface salinity, rainfall and the

East Atlantic Pattern (EAP) in the Bay of Brest. It could be assumed that, because the growth

rate of G. glycymeris in this location is controlled by rainfall and river runoff (indirect correla-

tion with salinity), it would be linked with the EAP as well. However, our study shows that this

is not the case. Tréguer et al [55] only used data spanning fifteen years, on the other hand this

study utilised almost forty years by comparing the EAP with the created SGI, going back fur-

ther in time than salinity observations within the bay allow. The difference between the results

in this paper and those by Tréguer et al [55] lends weight to the requirement of longer proxies

in order to establish significant climatic trends [83].

Conclusions

This study indicates that Glycymeris glycymeris in the Bay of Brest is highly sensitive to the

fresh water inflow from the River Elorn, as well as to food availability mediated by increased

SPM in the late winter. As the length of the chronology extends to periods before measured

environmental data was available, it will be possible to reconstruct such variables using the

chronology SGIs, subject to improvement of the chronology signal (EPS) by adding more

shells to the chronology before the 1970s. It will also be possible to integrate other biological

data (such as fish otolith chronologies, changes in benthic species composition, and phyto-

plankton observations) into this research, using mixed effects models to test the relationships

between local environmental variables and different combinations of ecological and biological

responses. Given the large quantities of fossil material available in the relatively small area sam-

pled for this study, we are confident that a robust chronology extending further back in time

can be constructed. In addition, with the use of radiocarbon dating, we will be able to construct

floating chronologies for earlier periods of climatic and environmental interest. This study

highlights the importance of location as a factor in the degree to which individual growth in a

population responds to climatic and environmental change. Localised records such as these

have great potential for the calibration of regional climate models as they provide unique

sources of annually-resolved and locality-specific palaeoclimate information that is often not

available from instrumental measurements.
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28. Marali S, Schöne BR. Oceanographic control on shell growth of Arctica islandica (Bivalvia) in surface

waters of Northeast Iceland—Implications for paleoclimate reconstructions. Paleogeogr Paeleoclim.

2016; 420:138–149
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