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Mucin-type O-glycosylation, a predominant type of O-glycosylation, is an evolutionarily
conserved posttranslational modification in animals. Mucin-type O-glycans are often
found on mucins in the mucous membranes of the digestive tract. These glycan
structures are also expressed in other cell types, such as blood cells and nephrocytes,
and have crucial physiological functions. Altered expression of mucin-type O-glycans
is known to be associated with several human disorders, including Tn syndrome and
cancer; however, the physiological roles of mucin-type O-glycans in the mammalian brain
remains largely unknown. The functions of mucin-type O-glycans have been studied in
the fruit fly, Drosophila melanogaster. The basic structures of mucin-type O-glycans,
including Tn antigen (GalNAcα1-Ser/Thr) and T antigen (Galβ1–3GalNAcα1-Ser/Thr), as
well as the glycosyltransferases that synthesize them, are conserved between Drosophila
and mammals. These mucin-type O-glycans are expressed in the Drosophila nervous
system, including the central nervous system (CNS) and neuromuscular junctions
(NMJs). In primary cultured neurons of Drosophila, mucin-type O-glycans show a
characteristic localization pattern in axons. Phenotypic analyses using mutants of
glycosyltransferase genes have revealed that mucin-type O-glycans are required for CNS
development, NMJ morphogenesis, and synaptic functions of NMJs in Drosophila. In
this review, we describe the roles of mucin-type O-glycans in the Drosophila nervous
system. These findings will provide insight into the functions of mucin-type O-glycans in
the mammalian brain.

Keywords: mucin-type O-glycans, mucin-type O-glycosylation, T antigen, Drosophila, nervous system,
neuromuscular junction

INTRODUCTION

Mucin-typeO-glycans, one of the major types ofO-glycan, are evolutionarily conserved in animals.
They are generally found on mucins, which are mucus glycoproteins expressed on the mucous
membranes of the digestive tract, and are necessary for protecting the gut, for example, from
physical damage and bacterial infection. Mucin-type O-glycans are conjugated to many proteins
other than mucins and have been shown to play crucial roles in various mammalian cell types, such
as blood cells (Wang et al., 2012; Kudo et al., 2013), nephrocytes (Fuseya et al., 2020; Stotter et al.,
2020), and submandibular cells (Tian et al., 2012). In addition, unusual expression of mucin-type
O-glycans has been associated with several human disorders, including Tn syndrome (Berger, 1999;
Ju and Cummings, 2005), IgA nephropathy (Suzuki et al., 2008; Hiki, 2009), heterotaxy (Fakhro
et al., 2011; Boskovski et al., 2013), and cancer (Springer, 1984; Ju et al., 2008; Radhakrishnan et al.,
2014). However, the functions of mucin-type O-glycans in the mammalian brain remains unclear.
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In contrast to mammals, the functions of mucin-type O-
glycans have been well studied in the Drosophila nervous
system. The genome of Drosophila, which is used as a model
organism, is about 60% homologous to that of humans. Notably,
about 75% of the genes responsible for human diseases are
present in Drosophila as orthologs (Ugur et al., 2016). About
half of the genes encoding human glycosyltransferases have
orthologs in Drosophila (Yamamoto-Hino et al., 2015), and
those orthologs have been shown to synthesize various glycan
structures that are conserved in mammals, including some types
of mucin-typeO-glycan such as Tn antigen (GalNAcα1-Ser/Thr)
and T antigen (Galβ1-3GalNAcα1-Ser/Thr; Nishihara, 2020).
Here, we summarize our current understanding of the roles of
mucin-type O-glycans in the Drosophila nervous system.

Biosynthesis of Mucin-Type O-Glycans in
Drosophila
In mammals, there are various structures of mucin-type O-
glycans, including four common core structures (Bennett et al.,
2012). In Drosophila, by contrast, there are three main glycan
structures of mucin-type O-glycans, namely, Tn antigen, T
antigen (core 1), and glucuronylated T antigen (GlcAβ1-3Galβ1-
3GalNAcα1-Ser/Thr; Figure 2A; Kramerov et al., 1996; Aoki
et al., 2008; Breloy et al., 2008). Mass spectrometry analysis
revealed that the expression levels of Tn antigen, T antigen,
and glucuronylated T antigen account for, respectively, about
20%, 55%, and 10% of O-glycans in Drosophila embryos (Aoki
et al., 2008). In mammals and Drosophila, polypeptide N-
acetylgalactosaminyl-transferases (ppGalNAcTs) synthesize Tn
antigen by the addition of an N-acetylgalactosamine (GalNAc)
to serine (Ser) or threonine (Thr) residues of the core protein
(Bennett et al., 2012; Tran and Hagen, 2013). Humans and mice
have 20 and 19 ppGalNAcTs, respectively, whereas Drosophila
has 12 ppGalNAcTs.

After the addition of GalNAc, core 1 β1,
3-galactosyltransferase 1 (C1GalT1) transfers galactose (Gal)
to the GalNAc residue in a β1, 3-linkage and synthesizes
T antigen both in mammals and in Drosophila. Whereas
mammalian C1GalT1 requires a molecular chaperone, Cosmc
(also known as C1GalT1C1), for its enzymatic activity (Ju
and Cummings, 2002), Drosophila C1GalT1 (dC1GalT1) does
not (Müller et al., 2005). After the synthesis of T antigen,
sialylated T antigen (Siaα2-3Galβ1-3GalNAcα1-Ser/Thr) is
synthesized in mammals; however, sialylated T antigen has not
been identified in Drosophila (Schwientek et al., 2007; Aoki
et al., 2008). In addition, although one sialyltranseferase (SiaT)
has been identified in Drosophila, it does not show catalytic
activity for the transfer of sialic acid (Sia) to T antigen (Koles
et al., 2004). Instead of the synthesis of sialylated T antigen
in Drosophila, glucuronylated T antigen is produced by β1,
3-glucuronyltransferase-P (dGlcAT-P), which predominantly
transfers glucuronic acid (GlcA) to the Gal residue in a β1,
3-linkage (Kim et al., 2003; Breloy et al., 2016; Itoh et al., 2018).
Therefore, Drosophila glucuronylated T antigen is considered to
correspond to mammalian sialylated T antigen because the two
glycan structures contain negatively charged monosaccharides,
namely, GlcA and Sia.

Expression of Mucin-Type O-Glycans in
the Drosophila Nervous System
In vivo Expression of Mucin-Type O-Glycans
In Drosophila embryos, dC1GalT1 mRNA and T antigen, which
can be labeled by anti-T antigen antibody or peanut agglutinin
(PNA), are expressed in the central nervous system (CNS),
including the brain and ventral nerve cord (VNC; Tian and Ten
Hagen, 2007; Lin et al., 2008; Yoshida et al., 2008). T antigen
is first expressed in the CNS at embryonic stage 13 and then
abundantly expressed in the ladder-like pattern of the VNC at
stage 16 (Yoshida et al., 2008). T antigen colocalizes with antigen
of the CNS marker BP102. In dC1GalT1 mutant embryos, T
antigen expression in the CNS is completely abolished, showing
that dC1GalT1 has a central role in T antigen synthesis in the
CNS during embryonic development (Lin et al., 2008; Yoshida
et al., 2008).

At the larval stages, dC1GalT1 mRNA is also detected in the
CNS (Lin et al., 2008). Moreover, lectin staining has revealed
that both Tn antigen and T antigen are expressed in larval
neuromuscular junctions (NMJs; Haines et al., 2007; Dani et al.,
2014; Jumbo-Lucioni et al., 2014; Itoh et al., 2016, 2018). In
dC1GalT1 mutant larvae, T antigen expression at NMJs is
decreased, showing that dC1GalT1 is required for T antigen
synthesis at these synapses (Itoh et al., 2016). Moreover, T
antigen expression at NMJs is upregulated in dGlcAT-Pmutants,
suggesting that glucuronylated T antigen is also expressed at
these synapses (Figure 2B; Itoh et al., 2018).

Previous studies have revealed that laminin subunits and
dystroglycan (Dg), both of which are expressed in the Drosophila
nervous system, carry mucin-type O-glycans (Haines et al.,
2007; Bogdanik et al., 2008; Lin et al., 2008; Schneider and
Baumgartner, 2008; Nakamura et al., 2010); however, the
functions of mucin-type O-glycans on these core proteins
remain unknown. Dg also carriesO-mannosyl glycans, which are
synthesized by the Drosophila protein O-mannosyltransferase 1
(dPOMT1) and dPOMT2 (Ichimiya et al., 2004; Ueyama et al.,
2010). Loss of either of these two enzymes causes defects in NMJs
and axonal connections of sensory neurons (Wairkar et al., 2008;
Baker et al., 2018).

Localization of Mucin-Type O-Glycans in Primary
Cultured Neurons
It has been reported that T antigen shows distinctive localization
in the axons of primary cultured neurons derived from
Drosophila embryos (Kinoshita et al., 2017). The axons of
primary cultured neurons are divided into two compartments,
namely, the proximal segment and the distal segment (Figure 1A;
Katsuki et al., 2009). Both the axon guidance receptors, Derailed
(DRL) and BP102 antigen are specifically localized to the
proximal segment of the axon, while two other axon guidance
receptors, roundabout 2 (ROBO2) and ROBO3, are specifically
localized to the distal segment of the axon. T antigen localization
is also restricted to the proximal segment of axons, similar toDRL
and BP102 antigen (Kinoshita et al., 2017).

Ultrastructural analysis by atmospheric scanning electron
microscopy (ASEM) has revealed that T antigen accumulates
near the boundary between the proximal and distal segments of
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FIGURE 1 | Proposed mechanism of Shot-mediated transport of membrane
proteins carrying mucin-type core 1 glycans to the proximal axonal segment.
(A) Schematic diagram showing a Drosophila primary cultured neuron, in
which the axon is divided into proximal and distal segments by the
intra-axonal boundary. (B) Schematic diagram showing the proposed
transport mechanism. Transport vesicles containing proteins carrying T
antigen are transferred by kinesin on microtubules from the soma to the point
where two tubulin bundles are in contact with each other in the axon. The
vesicles become detached from the microtubules and are transferred to
F-actin, which is linked to microtubules by the crosslinking protein Shot.
Subsequently, the vesicles are transferred by myosin on F-actin to the plasma
membrane at the intra-axonal boundary, where the membrane proteins
carrying T antigen spread to the proximal segment. Figure created with
BioRender (https://BioRender.com).

the axon, known as the intra-axonal boundary. Null mutations
of the gene encoding Short stop (Shot), a protein that
crosslinks F-actin and microtubules, resulting in impairment
of the proximal localization of T antigen, which in turn is
rescued by the expression of wild-type Shot. ASEM analysis
has revealed that the formation of microtubule bundles is
disturbed in Shot null mutants, showing that Shot is involved
in microtubule formation. Moreover, loss of the F-actin-binding
domain of Shot also results in impairment of the proximal
localization of T antigen but does not affect microtubule
bundles. Therefore, these results demonstrate that the F-actin-
biding domain of Shot is essential for the trafficking of
mucin-type core 1 glycans to the proximal axonal segment.
ASEM observations have also revealed that F-actin accumulates
near the intra-axonal boundary similar to T antigen (Kinoshita
et al., 2014). Furthermore, two tubulin bundles in the axon are in
contact at the intra-axonal boundary. Taking all these findings
together, Kinoshita et al. (2017) have proposed a mechanism
for Shot-mediated axonal trafficking of membrane proteins
carrying mucin-type core 1 glycans to the proximal axonal
segment (Figure 1B).

Functions of Mucin-Type O-Glycans in the
Central and Peripheral Nervous System
The phenotypes of the CNS in dC1GalT1 and dGlcAT-Pmutants
have been analyzed. Although depletion of dC1GalT1 leads
to loss of T antigen expression in the embryonic CNS, the
morphology of the CNS is normal (Lin et al., 2008; Yoshida
et al., 2008). These data show that T antigen is dispensable
for the development of the CNS during embryogenesis. In
the larval stages, however, dC1GalT1 null mutants display a
malformed brain hemisphere and greatly extended VNC (Lin
et al., 2008), showing that mucin-type core 1 glycans are required
for subsequent CNS development. Moreover, this extended VNC
phenotype is also observed in dGlcAT-P null mutants (Pandey
et al., 2011). The dGlcAT-Pmutant larvae also display a reduction
in the length of motor neuron axons that extend from the VNC
to target muscles. Because the flies grow extensively during
larval stages, motor neuron axons need to extend in parallel to
the enlargement of the larval body. Pandey et al. (2011) have
therefore suggested that, in dGlcAT-Pmutants, the VNC extends
abnormally in order to compensate for the tension caused by
the impaired growth of motor neuron axons. The extended
VNC phenotype is rescued by overexpressing dGlcAT-P in
hemocytes. Collectively, these data suggest the possibility that
blood cell-derived mucin-typeO-glycans produced by dGlcAT-P
are involved in the elongation of peripheral nerves.

Functions of Mucin-Type O-Glycans in
Neuromuscular Junctions
The Drosophila Neuromuscular Junction as a Model
System for Mammalian Central Synapses
Drosophila larval NMJs are a good model for studying synapses
in the mammalian CNS (Menon et al., 2013). Drosophila
NMJs are easy to observe because the synapses are large and
specified individually. They are glutamatergic and use ionotropic
glutamate receptors (GluRs) that are homologous to AMPA-type
GluRs in the mammalian CNS. In Drosophila larvae, motor
neuron axons stereotypically innervate postsynaptic muscle cells,
which are respectively numbered and regularly arranged in each
hemisegment (Figure 2C). The NMJs consist of a branched chain
of synaptic boutons, which are oval-shaped structures. Each
presynaptic bouton is surrounded by subsynaptic reticulum,
which is a folded structure of the postsynaptic membrane.
The boutons contain an active zone, which is a site of
neurotransmitter release, on the presynaptic side and GluR
clusters on the postsynaptic side.

Phenotypic Analysis of ppGalNAcT Mutants
The functions of mucin-type O-glycans in NMJs have been
studied in Drosophila larvae. Loss of either ppGalNAcT3
or ppGalNAcT35A upregulates (i) expression of Tn antigen;
(ii) molecular assemblies of presynaptic active zones and
postsynaptic GluRs; and (iii) neurotransmission strength evoked
at the NMJs (Dani et al., 2014). Ultrastructural observation has
shown that the number of presynaptic vesicles near the active
zone and the depth of the postsynaptic pocket are increased
in the two ppGalNAcT mutants. In addition, the components
of integrin signaling, including the synaptic Position Specific 2
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FIGURE 2 | Mislocalization of NMJ boutons and loss of BM components in dC1GalT1 and dGlcAT-P mutants. (A) In Drosophila, there are three main glycan
structures of mucin-type O-glycans, namely, Tn antigen (GalNAcα1-Ser/Thr), T antigen (Galβ1-3GalNAcα1-Ser/Thr), and glucuronylated T antigen
(GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr). Polypeptide N-acetylgalactosaminyl-transferases (ppGalNAcTs) transfer N-acetylgalactosamine (GalNAc) to serine (Ser) or
threonine (Thr) residues of the core protein in an α1-linkage to synthesize Tn antigen. Core 1 β1,3-galactosyltransferase 1 (dC1GalT1) transfers galactose (Gal) to the
GalNAc residue of Tn antigen in a β1,3-linkage to synthesize T antigen. β1,3-glucuronyltransferase-P (dGlcAT-P) transfers glucuronic acid (GlcA) to the Gal residue of
T antigen in a β1,3-linkage to synthesize glucuronylated T antigen. (B) Confocal images of larval neuromuscular junctions (NMJs) on muscle 6 in wild-type (upper)
and dGlcAT-P mutant (lower). NMJs are stained with anti-horseradish peroxidase (HRP) antibody (a presynaptic marker) and peanut agglutinin (PNA; a T antigen

(Continued)
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FIGURE 2 | Continued
marker). T antigen expression colocalizes with the presynaptic marker. The
expression level of T antigen at NMJs, as well as on the muscle surface
around them, is higher in dGlcAT-P mutant than in wild-type. Scale bar: 5
µm. (C) Upper, schematic diagram showing Drosophila larva. CNS, central
nervous system. Lower, schematic diagram showing structures of the
nervous system and body wall muscles of a larva, dissected along the dorsal
midline. Motor neuron axons extend from the CNS to each abdominal
segment, which are numbered in A1–A6. Muscle cells in each hemisegment
are regularly arranged, and their arrangement is symmetric. Muscles 6 and
7 in A3 are indicated in magenta. (D) Left, whereas NMJ boutons are
localized near the boundary between muscles 6 and 7 in wild-type larvae,
many NMJ boutons are mislocalized at the muscle 6/7 boundary in
dC1GalT1 and dGlcAT-P mutants. The mutant NMJs also show a decreased
number of branches. Right, cross-sectional view of muscles 6 and 7.
Whereas the two muscles are apart from each other and individually covered
with separate basement membranes (BMs) in wild-type, the two muscles are
connected through the mislocalized boutons and covered with a single
continuous BM in dC1GalT1 and dGlcAT-P mutants. The components of
BMs, such as type IV collagen and nidogen (Ndg), are lost at or just beneath
the mislocalized boutons. M6, muscle 6; M7, muscle 7. Figure created with
BioRender (https://BioRender.com). (E) Confocal images of NMJs on
muscles 6 and 7 in A3 in wild-type (left) and dGlcAT-P mutant (right). NMJs,
muscle fibers, and BMs are stained with anti-fasciclin II (Fas II) antibody,
Phalloidin, and anti-Ndg antibody, respectively. Upper, in the surface sectional
view of the muscles, NMJ boutons are localized near the boundary between
the two muscles in wild-type, but are mislocalized at the boundary in
dGlcAT-P mutant (arrowheads). Middle, in the internal sectional view of the
muscles, each muscle is covered with a continuous BM at the boundary in
wild-type, but the BMs are partially lost at the boundary in dGlcAT-P mutant
(arrowheads). Lower, in the cross-sectional view of the areas within white
dotted lines in the upper panels, the two muscles are apart from each other
and are individually covered with separate BMs in wild-type, but are attached
to each other and covered with a single continuous BM in dGlcAT-P mutant.
A bouton is ectopically localized at the muscle 6/7 boundary in dGlcAT-P
mutant (arrowhead). Scale bars: 20 µm (upper and middle panels) and 10
µm (lower panel). (F) Transmission electron micrographs (TEM) of the muscle
6/7 boundary in wild-type and dGlcAT-P mutant. For each genotype, the right
panel shows a high magnification view of the area bordered by the rectangle
in the left panel. In wild-type, arrowheads indicate a BM that covers the
muscle surface. In dGlcAT-P mutant, the presynaptic side of mislocalized
NMJ boutons is indicated in green. Whereas no NMJ boutons are observed
in the cleft between the two muscles in wild-type, some NMJ boutons are
observed in the cleft and connect the two muscles in dGlcAT-P mutant. Scale
bars: 3 µm (left panels), 300 nm (right panel, wild-type), and 500 nm (right
panel, dGlcAT-P mutant).

(αPS2) integrin receptor and transmembrane tenascin ligand,
are downregulated at the NMJs of both ppGalNAcT mutants.
Moreover, the two mutants display the impairment of activity-
dependent synaptic plasticity and the suppression of activity-
dependent changes in integrin signaling and postsynaptic
pocket size. All these phenotypes are restored to wild-type
in double mutants of the two ppGalNAcTs. Tissue-specific
rescue experiments have revealed that, on both the pre- and
postsynaptic side of NMJs, ppGalNAcT3 and ppGalNAcT35A
regulate Tn antigen expression, synaptic molecular assemblies,
neurotransmission strength, and αPS2 integrin expression.
Furthermore, inhibition of integrin signaling blocks synaptic
plasticity in the two ppGalNAcT mutants.

Collectively, therefore, Dani et al. (2014) have suggested that
ppGalNAcT3 and ppGalNAcT35A genetically suppress each other
on both sides of the synapse to regulate O-GalNAc glycosylation,

as well as synaptic molecular assemblies, neurotransmission
strength, and activity-dependent plasticity through integrin
signaling. The suppressive regulation between ppGalNAcT3 and
ppGalNAcT35A is apparently linked to the balanced function
of the two genes. As a result, the loss of either ppGalNAcT3
or ppGalNAcT35A impairs the balance between the two genes;
thus, other ppGalNAcT may become dysregulated, leading to the
upregulation of Tn antigen expression and other phenotypes as
described above. Because of the suppressive interaction between
ppGalNAcT3 and ppGalNAcT35A, these phenotypes are restored
to wild-type in double mutants.

Phenotypic Analysis of dC1GalT1 and dGlcAT-P
Mutants
Recent studies have found that mucin-type O-glycans
synthesized by dC1GalT1 and dGlcAT-P also play crucial
roles in larval NMJs. Mutation in either dC1GalT1 or dGlcAT-P
leads to morphological defects in the NMJs formed on the large
abdominal muscles 6 and 7. In Drosophila, the axon terminal
of a motor neuron branches and establishes NMJ boutons near
the boundary between muscles 6 and 7. While most boutons are
localized near the muscle 6/7 boundary in wild-types, many NMJ
boutons are ectopically localized at the boundary in dC1GalT1
and dGlcAT-Pmutants (Figures 2D,E; Itoh et al., 2016, 2018).

InDrosophila, basement membranes (BMs) cover the surfaces
of the muscles and NMJ boutons, except for the synaptic cleft
between the presynaptic bouton and the postsynaptic muscle
(Koper et al., 2012). In the internal sectional view of muscles
6 and 7, wild-type shows continuous BMs at the muscle
6/7 boundary; however, dC1GalT1 and dGlcAT-P mutants
display a partial loss of BM components, such as type IV collagen
and nidogen (Ndg), at the muscle 6/7 boundary (Figure 2E;
Itoh et al., 2016, 2018). In the cross-sectional view of the two
muscles, they are individually covered with separate BMs in
wild-type; however, in the dC1GalT1 and dGlcAT-P mutants,
they are covered with a single continuous BM, and the BM
components are lost at or just beneath the mislocalized bouton
at the muscle 6/7 boundary (Figures 2D,E). Further analyses
have revealed that the mislocalized boutons in the two mutants
tend to localize at or just above the site of the missing BM
components at the muscle 6/7 boundary. Ultrastructural analysis
has further revealed that some boutons are localized at the
cleft between muscles 6 and 7 and connect these two muscles
(Figure 2F). During larval stages, BM components such as
type IV collagen are secreted from the fat body to hemolymph
(body fluid) and deposited on various tissue surfaces in contact
with hemolymph (Pastor-Pareja and Xu, 2011). It is possible
that, in the dC1GalT1 and dGlcAT-P mutants, the mislocalized
boutons, which connect the two muscles, physically prevent
the deposition of BM components just below them, leading
to the formation of a single continuous BM across the two
muscles. Therefore, the ectopic localization of NMJ boutons at
the muscle 6/7 boundary may be a direct cause of the loss of BM
components just beneath these boutons. In addition, analysis of
double heterozygousmutants of dC1GalT1 and dGlcAT-P reveals
that the two genes genetically interact with each other. Taken
together, these data clearly demonstrate that glucuronylated T
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antigen, rather than unmodified T antigen, is essential for the
normal localization of NMJ boutons. Moreover, glucuronylated
core 1 glycans are also involved in NMJ arborization because
dC1GalT1 and dGlcAT-Pmutants display a decreased number of
NMJ branches on muscles 6 and 7.

Various ultrastructural defects are observed on both the
pre- and postsynaptic sides of NMJ boutons in dC1GalT1
and dGlcAT-P mutants (Itoh et al., 2016, 2018). Although
most of these defects differ between the two mutants, both
show a decrease in the length of postsynaptic density (PSD),
which comprises huge protein complexes including GluRs
and scaffolding proteins. Therefore, these data suggest that
mucin-type O-glycans synthesized by dC1GalT1 and dGlcAT-P
are also involved in PSD formation.

DISCUSSION

Although little is known about their function in the mammalian
nervous system, the physiological roles of mucin-type O-glycans
have been well studied in this organ in Drosophila. Mucin-type
O-glycans have been shown to be expressed in the Drosophila
nervous system, including the CNS and NMJs. In primary
cultured neurons, mucin-type core 1 glycans are localized in
the proximal axonal segment by Shot-mediated trafficking.
Phenotypic analyses have shown that the mucin-type O-glycans
produced by dC1GalT1 and dGlcAT-P might be involved in
CNS development and peripheral nerve elongation. At NMJs,
the mucin-type O-glycans regulated by ppGalNAcT3 and
ppGalNAcT35A control synaptic molecular assemblies,
neurotransmission strength, and synaptic plasticity via integrin
signaling. Moreover, glucuronylated core 1 glycans contribute
to normal NMJ bouton localization, NMJ arborization, and
PSD formation. Thus, mucin-type O-glycans play crucial roles
in the Drosophila nervous system. Because glucuronylated core
1 glycans are thought to correspond to mammalian sialylated
core 1 glycans, as described above, we suggest the possibility that
functions may be conserved between these two glycan structures
in the nervous system of Drosophila and mammals, respectively.

A previous study has revealed that the glycoprotein fasciclin
I (Fas I), a homophilic cell adhesion molecule, controls NMJ
arborization and synaptic transmission (Zhong and Shanley,
1995), suggesting that cell adhesion between neuron and
muscle regulates NMJ morphology and synaptic function.
Overexpression of Fas I leads to altered morphology of muscle
6/7 NMJs, similar to that observed in dC1GalT1 and dGlcAT-P

mutants. In the glomerular epithelium of the mammalian kidney,
Podocalyxin carrying negatively charged sialylated mucin-type
O-gycans has been shown to have anti-adhesive properties,
which is required for precise formation of the filtration slit
(Takeda et al., 2000; Doyonnas et al., 2001). Negatively charged
glucuronylated core 1 glycans in Drosophila may also have
similar anti-adhesive properties. Therefore, we propose the
idea that, in dC1GalT1 and dGlcAT-P mutants, a decrease in
glucuronylated core 1 glycans on cell adhesion molecules such as
Fas I may facilitate neuron muscle interaction in NMJs and thus
cause defects in NMJ arborization and localization.

Previous studies have revealed that ppGalNAcT13 is
specifically expressed at a high level in the mouse brain and
is essential for the differentiation of neural stem cells through
glycosylation and stabilization of podoplanin (Zhang et al.,
2003; Xu et al., 2016). Although information about the roles of
mucin-type O-glycans in the mammalian brain remains limited,
recent studies have suggested that mucin-typeO-glycosylation by
several ppGalNAcTs is associated with human brain disorders,
including Alzheimer’s disease (Akasaka-Manya et al., 2017; Liu
et al., 2017) and a congenital disorder of glycosylation (CDG;
Zilmer et al., 2020). Because the basic structures of mucin-type
O-glycans, including Tn antigen and T antigen, are conserved
between Drosophila and mammals, the findings in Drosophila
nervous system will be helpful in our understanding of not only
the roles of mucin-type O-glycans in the mammalian brain but
also the mechanisms underlying human brain disorders.

Drosophila is also used as a model system for studying
complex brain functions, including cognitive behavior, learning,
and sleep. In future studies, analyzing the impact of glycosylation
deficiency in these brain functions is likely to lead to the
discovery of unprecedented glycan functions in the mammalian
brain.
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