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Abstract

Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and 
disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with 
elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select 
for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV vari-
ants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. 
The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one 
passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant 
DWV-B strain (DWV-A derived 5′ IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased 
through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through 
passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino 
acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related 
viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral 
dynamics.

DATA SUMMARY
All supporting qPCR and processed sequenced data can be 
found in the Supplementary Tables (available in the online 
version of this article). Raw sequencing reads have been 
deposited in the NCBI Sequence Read Archive (Bioproject 
number PRJNA731530). Inoculum consensus genome 
sequences for DWV-A and the recombinant DWV-B/A were 
deposited on NCBI (MT940255-MT940256).

INTRODUCTION
Antagonistic interactions are mediated by complex interac-
tions between the genomes of the interacting organisms. 
Over time, these long-term relationships drive co-evolution 

through continuous ‘arms races’, and may lead to a stable 
system, providing that all other abiotic and biotic factors 
remain static [1]. In reality, these variables very rarely 
remain constant, and as the disease ecology context changes, 
the stabilized dynamics are disrupted. One such change in 
host-pathogen dynamics is through the introduction of a 
disease vector [2]. Vectors can increase pathogen horizontal 
transmission rates and increase virulence, or disease severity, 
by potentially bypassing immune defenses of the host or 
lessening dependency of the virus on its host for transmis-
sion. Indeed, arthropod-transmitted pathogens represent a 
majority of disease pressures on human health and agricul-
ture (Institute of Medicine (US) [3]. Investigating how host, 
pathogen, and vector systems interact in static environments 
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and subsequently react to altered ecological contexts can 
provide key insights into host-pathogen evolution.

The honey bee-virus-vector system represents a critical 
emerging infectious disease system in this key pollinator 
species [4, 5]. Deformed wing virus (DWV), a (+)ssRNA 
Picornavirus-like virus, is one of the major pathogens 
infecting the western honey bee (Apis mellifera) across the 
globe [6–8]. DWV infection phenotype ranges from covert, 
asymptomatic infection of individual bees, severe symptoms 
in individual bees including physical deformities [6], behav-
ioural changes [9–11], reduced longevity [12], and, if infection 
is sufficiently severe at the group level, can result in colony 
mortality [13]. DWV is transmitted through multiple routes, 
including vertical transmission from parent to offspring, 
and horizontal transmission through contaminated food 
and glandular secretions [14]. In the past decades, DWV has 
acquired a new method of introduction, vector transmission 
by the Varroa destructor mite, an ectoparasitic mite that feeds 
on developing and adult honey bees [15–17]. Transmission 
typically occurs when a DWV-infected Varroa mite slices 
through the cuticle to feed on the hemolymph and fat body 
of the developing pupae [18, 19], which results in high levels 
of DWV infection across bee tissues [8]. If levels are high 
enough, pupae emerge as adults with deformed wings among 
other symptoms. At the colony level, in the absence of Varroa, 
DWV is associated with a mild infection phenotype [20], but 
when these two stressors are coupled together at uncontrolled 
levels, they are associated with significant honey bee colony 
losses in temperate regions [21–23] and are the most critical 
stressors of honey bee health globally [24, 25].

At the molecular level, DWV transmission by Varroa is 
associated with increased viral titres, which is correlated 
with increased symptoms [18, 26–28]. In geographic regions 
where Varroa has been more recently introduced, honey bees 
and other species exhibit higher DWV loads [24, 29–32]. 
Specific DWV ‘master variants’, DWV-A [8] and DWV-B 
(also known as Varroa destructor virus-1) [33], are known to 
be transmitted by Varroa [34], have continuously changing 
incidence and distribution across the globe [35, 36], and their 
recombinants are associated with Varroa transmission and 
high virulence [28, 37, 38]. Another less common variant, 
DWV-C [39], has also been identified within Varroa mites 
[40]. Attempts to definitively assign any DWV variants with 
increased virulence have been challenging. McMahon et al. 
[35] suggested that DWV-B was more virulent than DWV-A 
in honey bee adults in laboratory assays [35], while Mordecai 
et al. (2016) [38] investigated DWV populations at the colony 
level, and proposed that DWV-B, having an avirulent pheno-
type, protects colonies from the more lethal DWV-A [39]. 
More recently, studies suggest that these variants are equally 
virulent [41], or that both are lethal [42, 43].

The phenotype of increased virulence and observed viral 
variant shifts associated with the introduction of Varroa may 
be indicative of virus evolution [5, 44]. Thus, the introduc-
tion of Varroa as a vector and subsequent observation of 
altered DWV variant dynamics has provided an excellent and 

ecologically relevant model to investigate how vectors can 
influence disease evolution and host-pathogen interactions in 
real time. However, based on recent studies in which DWV 
was passaged across generations of pupae in controlled labo-
ratory settings, DWV virulence was found to either decrease 
[45, 46], which is contrary to previously suggested virulence 
theory [2], or DWV virulence was found to be unaffected 
by passaging, perhaps suggesting that DWV has already 
adapted to vector transmission [47]. However, these studies 
either evaluated viral populations after only a single passage 
[45], examined only one strain of DWV [47], or included 
co-infecting viruses with weaker associations with Varroa 
[46]. As time, strain variation, and co-infecting pathogens are 
all critical determinants of disease evolution, it is, therefore, 
critical to investigate the mechanism of vector influence on 
viral virulence evolution in a DWV-specific context through 
time through stricter models to then incorporate back into 
full disease frameworks. Understanding how viral transmis-
sion by Varroa generates more virulent DWV is critical for 
developing methods for improving bee health while providing 
broader insights into how viruses, vectors, and hosts funda-
mentally interact and evolve.

Through molecular approaches, we sought to investigate 
how the Varroa transmission route of direct injection into 
the hemolymph of pupal honey bees can alter DWV-A and 
DWV-B variant populations. We simulated Varroa transmis-
sion by serially passaging multiple lineages of DWV popula-
tions via injection through five generations of in vitro reared 

Impact Statement

Antagonistic relationships between organisms are fasci-
nating, complicated, and critical to understand, particu-
larly when these relationships result in diseases that 
endanger populations of critical species like insect polli-
nators. We investigated how the introduced and highly 
successful ectoparasite Varroa destructor alters the viru-
lence (disease severity) and evolution of a pathogen that 
it transmits, deformed wing virus (DWV) in honey bees 
(Apis mellifera). Through simulated vector transmis-
sion, we found that mixed DWV populations increased in 
titre and displayed individual differences in proportions 
of variants, demonstrating that simulated vector trans-
mission does impose selection on these viral popula-
tions. Furthermore, two main variants demonstrated 
differences in selection signatures and abundance of 
missense mutation, which can potentially affect disease 
outcomes and evolution. Contrary to other studies, these 
passaged populations were all highly virulent to devel-
oping pupae. Further studies are needed to understand 
the mechanisms by which simulated transmission and 
Varroa transmission selects for altered viral variants, and 
how these different master variants interact with each 
other and with the host.
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honey bee pupae, assessing whether these DWV populations 
were associated with survival rate differences, then measuring 
variant levels from each passage via qPCR and next generation 
sequencing. We recreated the selective pressure of a Varroa 
transmission route, but with more stringent parameters than 
natural conditions, to understand if and how an introduced 
vector transmission route influences viral populations, from 
single nucleotide variation to full master variant levels, and 
host-virus interactions.

METHODS
Honey bee samples
Bees were collected in Summer 2018 from a Penn State 
University research colony with a single drone inseminated 
(SDI) queen – this allowed for approximately 75 % related-
ness between sister bees due to the honey bee’s haplodiploid 
sex-determination system [48], and therefore, minimized 
the effect of differing honey bee host genetics influencing 
DWV infection. This SDI colony was inspected weekly to 
ensure health status (i.e. low virus infection and low parasite 
load) and confirm the presence of the original queen. Honey 
bees were in vitro reared [49]. This allowed for controlled 
development across samples, and also limited other unknown 
environmental variables that may affect DWV infection 
(including exposure to DWV from the colony during early 
development).

Virus inoculum
The original starting inoculum was isolated from a single, 
symptomatic (i.e. deformed wings) adult bee collected in 
Baton Rouge, Louisiana, USA, from a colony with a high 
Varroa mite infestation (Simone-Finstrom, personal commu-
nication). Crude isolations were conducted to create inocula 
from Passages 1 through 5. Virus inocula were prepared from 
individual bees using the following protocol : 2 ml screw-
cap microcentrifuge tubes with 2 mm zirconia beads were 
sterilized with a UV-cross linker for 2 min. Individual bees 
(flash-frozen and kept at −80 °C until processing) were placed 
into 2 ml screw-cap microcentrifuge tubes, and a fixed volume 
of 500 µl of molecular grade water was added. Bees were 
homogenized using a Bead Ruptor Elite (Omni International, 
Kennesaw, GA) at 6.5 ms for 45 s. Tubes were then placed on 
ice then centrifuged for 3 min at 6.5 m s−1. Supernatant was 
removed and passed through a sterile 0.2 µm syringe filter to 
separate viral particles from honey bee cells. This crude isolate 
was kept at 4 °C for no longer than a week (for injections and/
or RNA extractions) and stored long-term at −80 °C.

Virus passaging
The viral passaging paradigm is summarized in Fig. 1. The 
starting inoculum was injected into in vitro reared honey bee 
pupae at the white-eyed stage (14 days post-egg-laying). For 
the initial inoculum, the virus concentration was approxi-
mately 1×106 genome equivalents per microlitre, and was 
approximately 1.3 : 1 DWV-A : DWV-B. The inoculum did 
not include other common bee viruses including sacbrood 

virus and black queen cell virus, determined by Illumina 
sequencing (see below, Next Generation Sequencing). Then 
1.5 µl of the inoculum was injected into each bee using a 
mouth aspirator with an attached 10 µl capillary tube pulled 
into a needle. Needles were changed between sample groups 
to avoid cross-contamination. To measure DWV levels from 
the original colony and the effect of the injection itself on 
DWV levels, control bees (in vitro reared, but otherwise 
unmanipulated) and PBS-injected bees (injected with 1× 
PBS) were included as controls (referred to as ‘no inject’ and 
‘PBS’ controls). Bees were collected and flash-frozen 4 days 
post-injection (DPI), 3 days prior to emergence from pupa-
tion (i.e. eclosion). Note that typically the virus would be 
transmitted to other bees after emergence by the adult bee or 
the associated Varroa mite, and thus our protocol simulates a 
stricter transmission paradigm than natural conditions.

To passage a virus, viral inocula with confirmed DWV (see 
below, Virus Quantification) was injected into two new in 
vitro reared honey bee pupae at the white-eyed stage using 
the method described above and again isolated 4 DPI. 
Inoculums generated from passaging were not normalized 
by titre between passages – bees were homogenized in a fixed 
volume (500 ul) and directly injected to the next round of 
bees without titering. If bees perished prior to 4 DPI, they 
were removed from the study. While crude isolations were 
prepared from control bees (i.e. ‘no inject’ and ‘PBS’) for 
background DWV quantification, inocula from ‘PBS’ bees 
were not passaged, and ‘PBS’ bees were injected with fresh 
1× PBS each experiment.

Survival assays
Survival assays were conducted in Fall 2019 with two Penn 
State University research SDI colonies: the original SDI 
colony from 2018, containing the same genotype of bees 
through which the virus was passaged, and an additional 
SDI colony naive to the passaged virus. Honey bees were in 
vitro reared [49] and injected at the white-eyed stage with 
the ‘P1’ (passaged once) and a subset of ‘P5’ (passaged five 
times) passaged virus, normalized to a concentration of 106 
genome equivalents per microlitre. Groups also included ‘no 
inject’ and ‘PBS’, as before, as well as the starting inoculum 
(‘P0’), which appeared to have lost infectiousness after a 
year in storage, and can instead be considered an additional 
control. After injections, pupae were kept in incubators at 
34.5 °C and approximately 75 % R.H. Mortality was monitored 
every 24 h. At eclosion (adult emergence from pupation, 
7 days post-injection), surviving bees were transferred to petri 
dishes separated by treatment group and supplied with 30 % 
sucrose (ad libitum), and incubated 34.5 °C and approximately 
85 % R.H. This paradigm was repeated across seven trials total.

Virus quantification
RNA was extracted from 30 µl of each virus inoculum using 
a Direct-zol RNA Miniprep kit (Zymo Research, Irvine, CA) 
following the manufacturer’s protocol, using 90 µl QIAZOL 
reagent (Qiagen, Hilden, Germany), and eluted in 25 ul 
molecular grade water. RNA concentration was quantified 
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using a NanoDrop 1000 Spectrophotometer (ThermoFisher 
Scientific, Maltham, MA). cDNA was prepared from each 
sample using a High-Capacity cDNA Reverse Transcription 
Kit with RNase Inhibitor (ThermoFisher Scientific) using the 
following reaction mix: 1 µl of 10× Buffer, 0.4 µl of 25× dNTP 
mix, 1 µl of 10× random primers, 0.5 µl of Reverse Tran-
scriptase, 0.5 µl of RNAse Inhibitor, and 6.6 µl of RNA. cDNA 

was diluted 1 : 20× to allow a sufficient amount of cDNA for 
all real-time quantitative PCR (qPCR) reactions. qPCR was 
conducted using PowerUp SYBR Green Master Mix (Ther-
moFisher) using the following reaction mix : 5 µl SYBR, 1 µl 
of 10× Forward Primer, 1 µl of 10× Reverse primer, 1 µl of 
water, and 2 µl cDNA. qPCR was conducted using a 7900HT 
Fast Real-Time PCR system (Applied Biosystems) under the 

Fig. 1. Schematic for the DWV passaging paradigm. (a) Each injection experiment included bees that were in vitro reared but unmanipulated 
(Control, no inject), PBS injected (Control, PBS inject), and bees injected with deformed wing virus (DWV+). At 4 days post-injection (4 DPI), 
pupae were collected and crude inocula were created from individual pupae. This paradigm resulted in one ‘passage’. Inocula created 
from single bees were subsequently injected into two new pupae, and again harvested 4 DPI, and passaged inocula were again prepared 
from individual pupae. This method was repeated for five passages. All passaged inocula were assessed for DWV titres via qPCR. 
Passage 1 inocula and a subset of inocula from Passage 5 were also assessed for virulence differences in survival assays. The starting 
inoculum, Passage 1 inocula, and all Passage 5 inocula were sequenced to identify nucleotide variation that shifted through passaging. 
(b) From one starting DWV population, multiple lineages were established in Passage 1, and a total of 47 final viral populations (Passage 
5), were created through this passaging paradigm.
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following parameters: 50 °C for 2 min, 95 °C for 10 min, then 
cycle 40×95 °C for 15 s and 60 °C for 1 min, and then a disso-
ciation stage step for melting curve analysis. qPCR primers 
can be found in Table S11. GAPDH (P1) and eIF3-S8 (P2-P5) 
are included as the internal reference to confirm successful 
RNA extraction and cDNA synthesis for each sample.

DWV levels were calculated from qPCR experiments as abso-
lute quantification (genome equivalents) per nanogram RNA 
based off standard curves created from serial dilutions (102 
- 106) of gBlocks (Integrated DNA Technologies, Coralville, 
IA) designed to match the PCR amplicon for each primer set. 
Individual levels of DWV-A and DWV-B targeting the capsid 
(CP) and non-structural (NS) regions were measured using 
strain specific primers [28]. Raw and cleaned qPCR data can 
be found in Supplementary Tables.

Next generation sequencing
RNA extracted from the starting inoculum, Passage 1, and 
Passage 5 viral populations was sent to the Pennsylvania State 
Genomics Core Facility (University Park, PA, USA) for library 
preparation and sequencing. Libraries were prepared from 
viral populations of individual bee samples, and named using 
the following nomenclature : Passage-Lineage-Sample (e.g. 
P1-M-01 is Sample one from the M lineage from Passage 1). 
The 55 samples were sequenced on the Illumina Miseq plat-
form, resulting in 150 nucleotide single end stranded mRNA 
reads. Total reads per sample ranged between 307 630–599 780 
(Table S15). Reads were assessed for quality with FastQC 
(version v0.11.9) and quality trimmed with Trimmomatic 
(version 0.39, option SLIDINGWINDOW:4 : 30).

Inoculum consensus DWV-A and DWV-B genomes were 
created by aligning reads from the inoculum sample (P0-X-
01) to DWV-A and -B reference genomes from NCBI (Ref. 
NC_004830.2 and NC_006494.1, respectively) using Hisat2 
(version 2.1.0) [50]. Variants were then called, indexed, and 

normalized, and consensus fastq sequence file generated with 
bcftools (version 1.8) [51]. The fastq file was converted to 
fasta with bcftools ​vcfutils.​pl vcf2fq, and bases with qualities 
less than 20 were converted to Ns using seqtk (version 1.3-
r106) [52]. This method successfully constructed a consensus 
DWV-A genome, approximately 97 % similar to the DWV-A 
NCBI reference (NC_004830.2, determined by blast 
(2.10.1+), default settings), and the protein coding sequence 
of our DWV-B consensus genome approximately 99 % similar 
to the DWV-B NCBI reference (NC_006494.1), with a 5′ end 
of approximately 1 kb undetermined due to low quality. De 
novo assembly by Trinity (version v2.1.1) [53] and blast did 
not identify any contigs that sufficiently covered this missing 
region. We therefore instead assembled contigs using Trinity 
from the Passage 1 samples, and created a consensus ‘P1’ 
genome by taking contigs >8500 bp, converting to all the 
same strand using seqkit seq (options -r -p), and creating 
a multisequence alignment using Clustal Omega (version 
1.2.3) [54]. This alignment was loaded into Jalview (version 
2.11.1.4) [55], and a consensus genome was calculated from 
this alignment. The ‘P1’ consensus genome was then used as 
a reference (rather than NC_006494.1) for constructing the 
inoculum DWV-B consensus genome. This reconstruction 
revealed that the missing region, the putative IRES region, of 
our DWV-B consensus genome aligns closer to DWV-A (97 % 
similarity to NC_004830.2) compared to only 83 % similar 
to DWV-B (NC_006494.1), indicating this appears to be a 
recombinant DWV-B inoculum genome (for simplicity, we 
refer to this recombinant strain as DWV-B, as most of the 
genome, including the protein coding region, is DWV-B).

Reads from all samples were then aligned to the inoculum 
consensus DWV-A and -B genomes using Hisat2. No reads 
in inoculum or passaged samples aligned to DWV variant C 
(CEND01000001.1), and less than 0.01 % of reads per sample 
aligned to other common bee viruses in the USA (chronic bee 
paralysis virus (NC_010711.1), Israeli acute paralysis virus 
(NC_009025.1), Lake Sinai virus 2 (NC_035467.1), sacbrood 
virus (NC_002066.1), black queen cell virus (NC_003784.1)), 
and thus these samples did not appear to host active infections 
by any of these viruses and were therefore considered free of 
other co-infecting viruses.

For phylogenetic analyses, consensus DWV-A and DWV-B 
genomes for all samples were generated using methods 
above, but instead utilizing the inoculum DWV-A and 
DWV-B consensus genomes as references. Multi-sequence 
alignments of generated consensus genomes and additional 
reference genomes (DWV-A reference (NC_004830.2), 
DWV-A from Pennsylvania (AY292384.1), kakugo virus 
(AB070959.1), DWV-B reference (NC_006494.1), DWV-B 
from Vespa velutina (MN565037.1), two recombinant 
DWV-A/DWV-B genomes (KX373900.1, MN538210.1), 
and DWV-C (CEND01000001.1)) were then generated with 
Clustal Omega using default settings. Multisequence align-
ment was then imported into MEGAX (version 10.1.8) for 
phylogenetic tree construction, calculating nucleotide diver-
sity, and selection analysis [56]. Maximum Likelihood trees, 
nucleotide diversity, and codon-based Z-tests for selection 

Fig. 2. Percent survival across groups. Survival rates of virus passaged 1 
and 5× were significantly different than control groups (P-value<2e-12). 
Nearly all mortality in the 1 and 5× passaged virus groups occurred on 
or before 7 days post-injection, coinciding with adult eclosion.
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Fig. 3. Total DWV levels significantly increase after five passages. (a) Total DWV (targeting both DWV-A and DWV-B) levels by passage 
determined by qPCR. DWV levels were significantly higher in Passage 4 and 5 compared to all earlier passages (Wilcox Rank Sum test, 
P<0.005) (b) Distribution of total DWV levels in individual samples across passages (coloured by lineage). (a, b) DWV levels in controls 
(no-inject, PBS) were low to no detection, and therefore are not shown here, but can be found in Fig. S1 and Supplemental Tables.
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were calculated with default settings and bootstrapped using 
1000 replicates.

Variants within DWV-A and -B populations were called using 
bcftools and filtered with vcftools (Minor Allele Frequency 
>0.02, Minimum Quality >20, Minimum Depth >100; similar 
to [57]) and annotated using SNPeff (version 5.0) [58], and 
potential functions were predicted by identifying variable 
positions on the DWV-A crystal structure PDB 5MV6 [59] 
in Chimaera (version 1.5) [60]. Nucleotide diversity across 
the DWV-A and -B genomes was calculated utilizing vcftools 
(version 0.1.16). Consensus genomes constructed from the 

starting inoculum, as well as raw sequence reads can be found 
on NCBI (Reference: MT940255- MT940256, BioProject: 
PRJNA731530).

Statistical analyses
Statistical analyses were conducted in RStudio (version 
1.2.5033) using the ‘stats' package (version 3.6.3). Wilcoxon 
rank-sum test for total DWV ~Passage was calculated after 
Shapiro-Wilk normality test (​shapiro.​test()), indicated non-
normally distributed data, using the ​pairwise.​wilcox.​test() 
with Bonferroni correction. For DWV variants ~Passage, 
quantities were first transformed to normalize the data (NS 
quantities 1/3, CP quantities 1/4), then two-way Analysis of 
Variance (ANOVA) was calculated. Kaplan-Meier survival 
analysis and Cox proportional hazard were conducted in R 
using the ‘survival’ (version 2.38) and ‘survminer’ packages 
[61–63].

RESULTS
An overview of the study design can be found in Fig. 1. For 
these experiments, a successful ‘passage’ is defined as injecting 
the DWV population into a white-eye stage pupa, and 
collecting the subsequent virus 4 days post-infection (DPI). 
The virus populations used for passaging will be referred to 
as ‘inoculum’ or ‘inocula’ (plural). Starting with one DWV 
inoculum, we successfully infected 10/14 individual pupae. 
Each of the ten resulting inocula was passaged a second time, 
injecting each inoculum into two bees each, and 8/10 were 
successfully passaged in at least 1/2 bees injected, creating 
15 inocula. In Passage 3, 13/15 inocula from Passage 2 were 
successfully passaged, creating 18 inocula; in Passage 4, 17/18 
from Passage 3 were successfully passaged into 26 inocula; 
in the final Passage, Passage 5, all 26 inocula from Passage 
4 were successfully passaged into 47 final inocula. Note that 
for Passage 1, 10/14 bees were successfully infected, and 4/14 
pupae had low to no DWV; for Passages 2 onward, any unsuc-
cessful inocula were not due to lack of infection, but instead 
due to pupae perishing prior to collection at 4DPI.

Survival assays indicate no virulence differences 
between the passaged virus populations
To assess the effect of passaging on the virulence of the viral 
populations, representative inocula from the eight main-
tained lineages were chosen from Passage 1 and Passage 5, 
and inocula were normalized to 106 genome equivalents 
per microlitre to assess for genetically coded differences in 
virulence (versus differences due to overall viral load). Across 
seven trials, inoculum passaged one and five times caused 
significantly more rapid mortality than the controls (Fig. 2, 
P-value <2e-12). However, the passaged populations did not 
significantly differ in mortality (P-value=0.24). The sharp 
drop in mortality at 7 days post-injection coincided with 
adult eclosion (i.e. emergence from the pupal stage). There 
was no significant difference in mortality across seven trials 
and across the two colonies assessed (Fig. S1a, b). We did not 

Fig. 4. DWV variant levels significantly increase after five passages (a, b) 
DWV-A and DWV-B levels by passage targeting two regions of the DWV 
genome, (a) non-structural region and (b) capsid region, determined by 
variant-specific qPCR. DWV levels were significantly higher in Passage 
5 (P5) compared to all other passages (two-way ANOVA, P<0.01) (c, 
d) Scatter plots of DWV-A and DWV-B levels by passage targeting 
two regions of the DWV genome, (c) Non-structural region (Pearson 
correlation=0.884 (0.836–0.919, 95 % confidence, P-value<2.2e-16) 
and (d) Capsid region (Pearson correlation=0.837 (0.771–0.885, 95 % 
confidence, P-value<2.2e-16), determined by variant-specific qPCR. (a–
d) DWV levels in controls (no-inject, PBS) were low to no detection, and 
therefore are not shown here, but can be found in Supplemental Tables.
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collect information on wing deformities, as most infected bees 
perished during development.

Total DWV levels increase through passaging
Each individual inoculum was tested for total DWV (i.e. 
DWV-A  +B) via qPCR. Average DWV levels increased 
through passages (Fig. 3a). DWV Levels of Passages 4 and 
5 were significantly higher than levels of the earlier passages 
(pairwise Wilcoxon Rank Sum, P<0.005), with no significant 
difference between the earlier passages. The distribution of 
DWV levels across individual inocula across passages can 
be found in Fig. 3(b). There was low to no DWV in control 
samples (see Fig. S3, Supplemental Tables).

Total DWV variant levels also increase through 
passaging
In addition to total DWV (DWV-A +B), inocula were tested 
for two variants of DWV at two regions of the genome, using 
previously established variant-specific primers to target the 
DWV-A or DWV-B genome at approximately 4800–5000 
and 8600–8880, henceforth referred to as the ‘Capsid’ (‘CP’) 
or ‘Non-structural’ (‘NS’) regions (as in [28], respectively). 
Levels of DWV variants at both regions mirrored a similar 
rise through passaging as levels of total DWV (Figs 4a, b and 
S4a, b). In general, levels of DWV-A and DWV-B in Passage 5 
at both regions were higher than the DWV variants in Passage 
1 and 2 (Fig. 4a, b, two-way ANOVA, P<0.0011).

Correlation assessment demonstrate associations 
between passages, variants, and regions
Correlations between levels of DWV (DWV-A, DWV-B, and 
total DWV) within passages, with the previous passage, and 
with their starting levels in Passage 1 can be found in Fig. S4. 
All DWV levels were positively associated with Passage; thus, 
as Passage increased, so too did total levels of total DWV or 
levels of DWV–A and DWV–B as measured at both regions, 
confirming our previous analysis (Figs 3a and 4). Levels of 

DWV-A, DWV-B, and total DWV were significantly posi-
tively correlated to one another within their passage. When 
comparing DWV-A and DWV-B in a given passage to the 
variant levels of their previous passage, all but DWV-B at the 
CP region were significantly positively associated with DWV 
populations in the previous passage; thus, higher DWV levels 
in a given passage were associated with higher DWV levels in 
the subsequent passage (Fig. S4).

Overview of sequencing results of the inoculum, 
Passage 1, and Passage 5
Analysis of the starting inoculum revealed a DWV-A 
consensus genome approximately 97 % similar to the NCBI 
reference genome (NC_004830.2, Fig.  5). Our DWV-B 
consensus genome was revealed to be a recombinant strain 
(see ‘Methods’ for more information), with the protein 
coding region most similar to DWV-B, while the first 1 kb 
(the putative internal ribosome entry site (IRES)) was more 
similar to DWV-A (Fig. 5). When aligning reads from the 
inoculum sample to these inoculum consensus genomes, we 
find approximately 1.3 : 1 DWV-A to DWV-B reads. Patterns 
of DWV-A : DWV-B ratios in the passaged samples similarly 
tracked what was observed in the qPCR experiments - higher 
counts for DWV-B than DWV-A in Passage 1 samples, with 
Passage 5 samples at an average ratio of 0.8 : 1 reads aligning 
to consensus DWV-A to DWV-B. Read depth was fairly even 
across the genome, with notable spikes in read depth across 
all samples (Fig. S5a, Table S15). Depth at the 5′ end is high 
in all samples, likely due to the similarity between DWV-A 
and the recombinant end of the DWV-B genome.

DWV-A has a higher nucleotide diversity than 
DWV-B
When examining the sub-consensus variation within our 
DWV populations, we found that the DWV-A populations 
have higher nucleotide diversity across the genome compared 
to the DWV-B populations (Fig.  5). DWV-B, conversely, 

Fig. 5. Variation across DWV-A and DWV-B genome populations. Reference maps for DWV-A (purple) and recombinant DWV-B (orange), 
labelled with genomic region used in nucleotide diversity analysis. The recombinant DWV-B genome consisted of a DWV-A derived 5' 
IRES region (97 % similarity to the DWV-A reference NC_004830.2, compared to only 83 % similar to the DWV-B reference NC_006494.1) 
and the rest of genome consisting of DWV-B. The caret in the DWV-B figure indicates the recombination point. Nucleotide diversity 
across DWV-A and DWV-B consensus genomes across Passage 1 and Passage 5 is shown below. Variable sites with missense mutations 
resulting in amino acid changes are denoted with (+).
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only exhibited increased nucleotide diversity near the RNA 
dependent RNA polymerase coding region, and at the 
5′ end (Fig. 5). As the 5′ end of the recombinant DWV-B 
represents a region more similar to DWV-A, it is not clear 
whether this is representative of increased diversity in this 
region of the recombinant DWV-B genome, or increased 
variation within DWV-A populations that is being misclas-
sified due to sequence similarity. Percent variation was not 
significantly associated with increased levels of DWV-A 
or DWV-B (Supplemental Figure 5b), nor associated with 
average read depth for either variant (Fig. S5c). Lineages differ 
in their DWV-A percent variation through passaging, with 
some samples increasing through passaging (e.g. Lineage M), 
some decreasing (e.g. Lineage J), while others remain similar 
through passaging (e.g. Lineage C).

Relationships between consensus DWV populations 
across passages
Phylogenetic analysis of whole genome DWV-A and DWV-B 
consensus genomes across samples can be found in Fig. 6. The 
two main clusters represent DWV-A and DWV-B clades. The 
DWV-A clade further resolves by lineage, but not by Passage. 
Due to the high similarity across the consensus DWV-B 

genomes, we observe much less resolution within this clade 
(Fig. S6).

DWV diversity and selection indices across DWV 
variant, passaging, and regions
Nucleotide diversity was lower in Passage 5 samples than 
Passage 1 samples, for both DWV-A and DWV-B. Generally, 
there was no difference when comparing selection indices 
between Passage 1 and Passage 5 samples within the DWV 
quasispecies (i.e. DWV-A and -B consensus genomes across 
samples) (Table 1). When comparing DWV-A and DWV-B, 
both showed signatures of neutral and positive selection 
across the coding region (Table 1). When comparing across 
different regions of the genome, DWV-A maintained a 
consistent pattern of neutral and negative selection signatures, 
while DWV-B had significant neutral and negative signatures 
at the non-structural region, and only negative signatures in 
the structural region (Table S16).

Variants across populations were found in 
functional regions of the viral genomes
Variants were identified across both the DWV-A and DWV-B 
genome. A total of 192 variants were identified for DWV-A 

Fig. 6. Phylogeny of DWV-A and DWV-B passaged populations. Maximum likelihood trees with 1000 bootstrap replicates generated from 
full genome nucleic acid sequences for all consensus DWV-A and DWV-B populations. Clades representing Passaged populations were 
collapsed for clarity; non-collapsed trees can be found in Fig. S6.
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across all samples; these variants were not unique to indi-
vidual samples, but often shared within lineages across 
passaging (Table S16). DWV-B contained fewer variants, 
only 41 identified across all samples (Table S17). A proportion 
of these variants identified across all DWV-A and DWV-B 
were classified as missense, 8.3 % (16/192) and 12.2 % (5/44), 
respectively (Tables  2, S16 and S17), and were identified 
across the genomes. Across all variants (i.e. coding and non-
coding), only 20 % (8/41) of variants increased from Passage 1 
to Passage 5 in DWV-B populations, whereas 58.3 % (112/192) 
variants increased from Passage 1 to Passage 5 in DWV-A 
populations. As variants are often shared across samples 
within lineages, this may be an artefact of some lineages are 
being more highly represented in Passage 5. Several vari-
ants, though, increased across multiple lineages, such as the 
missense variant at DWV-A position 9181 (Met2679Ile) that 
was detected in only the C lineage in Passage 1, but in Lineages 
C, K, L, M in Passage 5. Additionally, some DWV-A missense 
variants were identified in regions of interest, such as within 
the DWV-A VP1 ‘spike’ (Ala754Val, Asn832Asp, Ala884Ser, 
Fig. S7) [59, 64] and within conserved functional motifs of 
the 3C protease (His2190Leu) and the RNA-dependent RNA 
polymerase (RDRP) (Lys2806Arg) [8].

DISCUSSION
Here, we investigated how different DWV variant populations 
responded to vector transmission of DWV in developing 
honey bee pupae. Varroa transmission of DWV was simu-
lated by directly injecting DWV into white-eyed pupae, with 
successfully replicating virus collected 4 days post-infection, 
and subsequently injected into a new white-eyed pupa. This 
procedure was repeated five times, creating eight lineages of 
virus and 47 final DWV populations. Levels of total DWV 
and two major DWV variants increased significantly through 
passages, demonstrating that the vector transmission route 
can indeed influence DWV populations. Next generation 

sequencing of viral populations collected at Passage 1 and 
Passage 5 demonstrated that the DWV-B population was a 
DWV-A/DWV-B recombinant strain, with a DWV-B protein 
coding region and putative internal ribosome entry site (IRES) 
region more similar to DWV-A. Interestingly, while there was 
higher genetic variation in DWV-A versus DWV-B, both vari-
ants exhibited signatures of neutral and negative selection 
across their genomes. While the main impacts of passaging 
appeared to be on the ratios of A and B in the viral popula-
tions, several lineages accumulated missense mutations across 
functional regions of the DWV-A which may contribute to 
differences in viral characteristics and host-virus interactions.

The overall increase in DWV loads is contrary to what has 
been observed in previous studies. Remnant et al. [46] found 
that levels of DWV decreased with passaging, while the levels 
of two other co-infecting bee viruses (sacbrood virus and 
black queen cell virus) increased substantially with passaging. 
Thus, the authors suggested that the more virulent DWV was 
eliminated by vector transmission [46]. Similarly, Gisder et 
al. [45] found decreased DWV virulence, but only measured 
after one passage [45]. In the case of Yañez et al. [47], DWV-A 
remained consistent across passages, and virulence, measured 
by manifested disease symptoms (i.e. presence or absence 
of deformed wings) was not found to be associated with 
either levels or genetics [47]. Our observation of consistently 
increasing DWV levels through passaging may be the result of 
selection for DWV that replicates within the 4 DPI selection 
window, and through this bias towards increasing amounts of 
faster replicating viruses, the subsequent viral passages were 
able to amplify to higher and higher levels. These bees were 
also free of any other non-DWV viral species that could have 
competed with and eliminated the DWV variants, allowing 
these variants to persist and accumulate. Moreover, we also 
conducted multiple passages, which intensified any conse-
quences of our passaging paradigm. Clearly, the timing of 
viral collection during artificial selection (or the timing of 

Table 1. Estimates of the nucleotide diversity and selection indices for the DWV-A and DWV-B consensus genomes, calculated in megaX

Diversity and selection indices across the coding sequence

DWV-A

Sample Passage Nucleotide diversity (π) Tajima’s D Codon-Based Z Test of Selection
(Nei-Gojobori)

neutral positive negative

Passage 1 0.00339 (SE 0.00043) −2.373 P=6.549E-17* P=1 P=7.131E-24*

Passage 5 0.0009 (SE 0.0002) −2.368 P=3.4195E-12* P=1 P=1.7456E-13*

DWV-B

Sample Passage Nucleotide diversity (π) Tajima’s D Codon-Based Z Test of Selection
(Nei-Gojobori)

neutral positive negative

Passage 1 0.00103 (SE 0.00024) −0.182 P=0.0007* P=1 P=0.0002*

Passage 5 0.00051 (SE 0.00013) −0.298 P=0.0008 * P=1 P=0.0002 *



11

Ray et al., Journal of General Virology 2021;102:001687

Ta
bl

e 
2.

 M
is

se
ns

e 
va

ri
an

ts
 a

nn
ot

at
ed

 b
y 

S
N

P
eff

 w
ith

in
 D

W
V-

A
 a

nd
 D

W
V-

B
 q

ua
si

sp
ec

ie
s 

po
pu

la
tio

ns
 a

cr
os

s 
al

l s
am

pl
es

An
no

ta
te

d 
va

ri
an

ts

D
W

V-
A

Pu
ta

tiv
e 

re
gi

on
Po

si
tio

n
N

uc
le

ot
id

e 
ch

an
ge

 �


A
A

 ch
an

ge
P0

 A
lle

le
 fr

eq
ue

nc
y

P1
 A

lle
le

 fr
eq

ue
nc

y
P5

 A
lle

le
 fr

eq
ue

nc
y

A
dd

iti
on

al
 ch

ar
ac

te
ri

st
ic

s

LP
13

19
G

>A
A

la
59

Th
r

0
0.

12
5

0.
10

87
L 

sp
ec

ifi
c, 

m
in

or
 v

ar
ia

nt
 b

y 
Pa

ss
ag

e 
5 

(P
5)

LP
14

12
A

>G
Th

r9
0A

la
0

0.
25

0.
29

35
So

le
 v

ar
ia

nt
 in

 C
 li

ne
ag

e, 
m

in
or

 v
ar

ia
nt

 in
 o

th
er

 li
ne

s

LP
15

21
A

>G
Ly

s1
26

A
rg

0
0

0.
08

70
P5

 sp
ec

ifi
c; 

M
in

or
 v

ar
ia

nt
 th

ro
ug

ho
ut

LP
 / 

st
ru

ct
ur

al
17

65
G

>T
G

ln
20

7H
is

0
0.

12
5

0.
09

78
In

 V
P2

, p
os

si
bl

y 
in

te
ra

ct
in

g 
w

ith
 R

N
A

 g
en

om
e;

 M
 li

ne
ag

e 
sp

ec
ifi

c,
 m

in
or

 v
ar

ia
nt

 
by

 P
5

St
ru

ct
ur

al
34

05
C

>T
A

la
75

4V
al

0
0.

12
5

0.
07

61
In

 c
ap

si
d 

pr
ot

ei
n 

sp
ik

e;
 M

 li
ne

ag
e 

sp
ec

ifi
c,

 m
in

or
 v

ar
ia

nt
 b

y 
P5

St
ru

ct
ur

al
36

38
A

>G
A

sn
83

2A
sp

0
0.

12
5

0.
10

87
In

 c
ap

si
d 

pr
ot

ei
n 

sp
ik

e;
 L

 li
ne

ag
e 

sp
ec

ifi
c,

 m
in

or
 v

ar
ia

nt
 b

y 
P5

St
ru

ct
ur

al
37

94
G

>T
A

la
88

4S
er

0
0.

18
75

0.
07

61
In

 c
ap

si
d 

pr
ot

ei
n 

sp
ik

e;
 in

 J 
lin

ea
ge

 in
 P

as
sa

ge
 1

 (P
1)

 b
ut

 n
ot

 P
5,

 m
in

or
 v

ar
ia

nt
 

by
 P

5 
fo

r M
 li

ne
ag

e

St
ru

ct
ur

al
44

90
T>

G
Se

r1
11

6A
la

0
0.

06
25

0.
07

61
In

 V
P3

; M
in

or
 v

ar
ia

nt
 in

 P
1 

an
d 

P5

N
on

-s
tr

uc
tu

ra
l

63
23

G
>T

G
ly

17
27

C
ys

0
0.

12
5

0.
10

87
L 

lin
ea

ge
 sp

ec
ifi

c, 
m

in
or

 v
ar

ia
nt

 b
y 

P5

N
on

-s
tr

uc
tu

ra
l

63
98

G
>A

Va
l1

75
2I

le
0

0.
18

75
0.

38
04

So
le

 v
ar

ia
nt

 in
 C

 li
ne

ag
e, 

m
in

or
 v

ar
ia

nt
 in

 o
th

er
 li

ne
s

N
on

-s
tr

uc
tu

ra
l

65
27

G
>A

A
la

17
95

Th
r

0.
5

0.
18

75
0.

13
04

So
le

 v
ar

ia
nt

 in
 N

 li
ne

ag
e, 

m
in

or
 v

ar
ia

nt
 in

 o
th

er
s

N
on

-s
tr

uc
tu

ra
l

67
02

C
>T

Th
r1

85
3I

le
0

0.
06

25
0.

07
61

M
in

or
 v

ar
ia

nt
 in

 M
 li

ne
ag

e

N
on

-s
tr

uc
tu

ra
l

77
13

A
>T

H
is2

19
0L

eu
0

0
0.

08
70

Va
ri

an
t i

n 
a 

hi
gh

ly
 co

ns
er

ve
d 

re
si

du
e 

in
 3

C
 p

ro
te

as
e 

- P
5 

sp
ec

ifi
c i

n 
K

 li
ne

ag
e

N
on

-s
tr

uc
tu

ra
l

83
30

T>
A

Se
r2

39
6Th

r
0

0.
12

5
0.

07
61

M
 sp

ec
ifi

c; 
so

le
 v

ar
ia

nt
 in

 P
1,

 m
in

or
 v

ar
ia

nt
 in

 P
as

sa
ge

 5

N
on

-s
tr

uc
tu

ra
l

91
81

G
>A

M
et

26
79

Ile
0

0.
18

75
0.

38
04

In
 P

1,
 o

nl
y 

pr
es

en
t i

n 
C

 li
ne

ag
e,

 th
en

 p
re

se
nt

 in
 C

,K
,L

, a
nd

 M
 li

ne
ag

es
 b

y 
P5

N
on

-s
tr

uc
tu

ra
l

95
61

A
>G

Ly
s2

80
6A

rg
0

0.
06

25
0.

07
61

Va
ri

an
t i

n 
a 

hi
gh

ly
 co

ns
er

ve
d 

aa
 in

 m
ot

if 
V

II
 o

f R
D

R
P;

 M
 sp

ec
ifi

c m
in

or
 v

ar
ia

nt
 

th
ro

ug
ho

ut

D
W

V-
B

Pu
ta

tiv
e 

re
gi

on
Lo

ca
tio

n
N

uc
le

ot
id

e 
ch

an
ge

A
A

 ch
an

ge
P0

 A
lle

le
 fr

eq
ue

nc
y

P1
 A

lle
le

 fr
eq

ue
nc

y
P5

 A
lle

le
 fr

eq
ue

nc
y

Li
ne

ag
e 

or
 p

as
sa

ge
 sp

ec
ifi

c?

LP
14

33
T>

C
Ty

r1
06

H
is

0
0.

31
25

0.
11

96
Sp

ec
ifi

c t
o 

C
 a

nd
 E

 li
ne

ag
es

 (e
xc

ep
t f

or
 o

ne
 P

1 
N

)

St
ru

ct
ur

al
22

75
T>

C
Le

u3
86

Ph
e

0
0.

31
25

0.
06

52
O

nl
y 

m
ai

nt
ai

ne
d 

in
 C

 li
ne

ag
e

N
on

-s
tr

uc
tu

ra
l

85
30

C
>T

Ly
s2

47
1A

sn
0

0.
12

5
0.

08
70

P 
lin

ea
ge

 sp
ec

ifi
c

N
on

-s
tr

uc
tu

ra
l

91
09

C
>T

Le
u2

66
4P

he
0

0.
25

0.
15

22
E 

an
d 

N
 li

ne
ag

e 
sp

ec
ifi

c

N
on

-s
tr

uc
tu

ra
l

91
63

C
>T

M
et

26
82

Ile
0

0.
25

0.
15

22
E 

an
d 

N
 li

ne
ag

e 
sp

ec
ifi

c



12

Ray et al., Journal of General Virology 2021;102:001687

vector transmission under natural conditions) and presence 
of alternative viruses or stressors can generate different selec-
tion pressures on viral populations [2, 65].

Ratios of DWV-A and DWV-B changed dynamically through 
the course of the experiment. After the first passage, a higher 
proportion of the viral population corresponded to DWV-B, 
despite the original DWV inoculum being comprised of 
1.3 : 1 DWV-A : DWV-B. This may be evidence of strain 
variation in replication rates, with DWV-B replicating faster 
than DWV-A. However, a previous demonstrated slightly 
higher levels of DWV-A over DWV-B during the expo-
nential replication phase (<48 h post-injection) [66]. Thus 
testing this hypothesis would require more detailed time 
course studies, ideally in cell culture. Through the additional 
passages, however, our proportions of DWV-A and DWV-B 
across the lineages become again balanced. Norton et al. 
[66] similarly found that co-infecting pupae also resulted in 
higher levels of DWV-B than DWV-A after one passage [66], 
but Gisder et al. [45] found an overall shift in the popula-
tion from DWV-B to DWV-A after one passage [45]. These 
differing results between studies may potentially be due to the 
differing methodology (some with DWV-A only, some with 
other co-infecting viruses and unequal starting variant levels; 
different collection and passaging paradigms; etc.), but serves 
to demonstrate the fundamental complexity of RNA virus 
dynamics and evolution regarding specific strains, timing, 
presence of other co-infecting viruses, and likely other factors 
associated with host physiological condition.

In these populations, there was much lower nucleotide 
diversity of DWV-B compared to DWV-A. This may be the 
result of initiating the study with samples collected from a 
single, symptomatic bee, and not be reflective of the full viral 
population across the globe. However, the DWV-B variant 
was only recently introduced to US bee populations [36], and 
thus may have not diversified as much as the DWV-A variant 
in the honey bee population from which the original samples 
were collected. Furthermore, since our virus population was 
collected in the US where Varroa is endemic, this particular 
viral population may already have been adapted to vector 
transmission, and serial passaging through vector mimicking 
methods may not result in extreme changes in variant popula-
tion or virulence. To ensure infection in our bees, we also 
injected with a high titre of virus (106 genome equivalents), 
likely higher than the number of particles introduced through 
natural Varroa transmission. Our passaging paradigm was 
therefore designed to be stricter than normal ecology – DWV 
was injected at the white-eyed stage with a high titre of virus, 
and was collected 4 days post-injection, 3 days prior to what 
would be the ‘natural’ timeline of honey bee adult eclosion, 
Varroa emergence, and potential virus transmission. This may 
be why it was possible to observe the progressively increasing 
viral levels, shifting variants, signatures of selection, and 
overall high virulence.

When examining the whole genome between passages, both 
DWV-A and DWV-B showed signatures of neutral and nega-
tive selection. This suggests that the passaging regime used 

in our study did impose indeed a selective pressure on DWV, 
similar to Yañez et al., who also found signatures of negative 
selection in their adult bee DWV populations [47]. While 
nucleotide variation was identified across both DWV-A and 
DWV-B genomes, many functional regions, such as within 
the helicase protein (previously found to be highly conserved 
[67]), did not obtain any measurable amino acid changes. A 
subset of missense variants was identified within functional 
regions of the coding region with the potential to affect viral 
infection. Particularly for DWV-A, non-conserved amino 
acid changes across multiple lineages were identified within 
the VP1 ‘spike’ region, which is hypothesized to be involved 
in interaction with the host cell and/or RNA virus genome 
release [64], and could therefore be influencing infection 
dynamics at the cellular level. Other minor variants were 
identified within conserved regions of non-structural protein 
motifs, such as the 3C protease and the within the RDRP. 
While the DWV-A variant did compete more effectively with 
DWV-B after Passage 1, further studies would be needed to 
determine if these sequence changes influenced DWV-A’s 
ability to compete with and/or the ability of the dual viral 
population to reach higher titres in later passages. Coupling 
newly developed infectious clones [68, 69], honey bee cell 
lines [70] and improved long read sequencing accuracy to 
assess viral recombination will allow for more comprehen-
sive investigations of DWV and other RNA virus molecular 
dynamics.

Previous studies have found that viruses with small genomes 
have higher mutation rates [71] [72], and virus adaptation can 
occur rapidly [73]. Furthermore, DWV in particular has been 
shown to readily form and accumulate recombinants amongst 
variants [69]. Viral populations can be considered to be ‘viral 
quasispecies’, or collections of related viral genomes reproducing 
with high mutation and recombination rates to high popula-
tion sizes [74]. While there were cases of accumulations over 
new variants in the lineages in our study, the more dramatic 
changes appear to be the result of shifts in DWV-A versus 
DWV-B abundance. The shifting variants as well as negative 
selection signatures may have been a result of our strict selection 
paradigm: by removing other forms of DWV transmission (e.g. 
oral transmission), there may have been selection against vari-
ants that support other aspects of DWV disease ecology [75]. 
Additionally, both DWV-A and/or DWV-B could be mutating, 
and any beneficial de novo mutations may not have been present 
at high enough levels by Passage 5, or be recombining [37] at 
undetected levels. Indeed, as our DWV-B consensus strain was 
already recombinant, and other studies have also identified 
DWV recombinants [66, 67]. Additionally, both qPCR and 
deep sequencing methods demonstrated increasing viral levels 
and accumulation of both DWV variants through passaging, 
again demonstrating that these viral populations show classic 
characteristics of RNA virus quasispecies.

DWV-A and DWV–B share approximately 85 % nucleotide 
similarity. Co-infections with similar strains may lead to compe-
tition between strains [76], or cooperation among strains, if they 
act as one, highly diverse, viral quasispecies [77]. Initially, there 
was competition, with one master variant (DWV-B) reaching 
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higher levels than the other after one passage, but levels quickly 
re-balanced in subsequent passages. With both variants reaching 
higher titres in later passages, this may provide evidence for 
cooperation. Both variants experienced negative selection, 
though despite this selection, DWV-A resulted in greater protein-
sequence variation overall. It remains to be determined how 
genetic variation between the strains and within populations of 
these strains potentially influence viral-viral interactions. While 
our study did not aim to select for virulence, our viral popula-
tions were highly virulent, with infected bees dying significantly 
earlier than uninfected controls. However, between once and 
five-time passaged virus, there were no observed differences 
in survival. All viral inocula were normalized to the same titre, 
but had different proportions of DWV-A and DWV-B (Fig. 3) 
and differing nucleotide variation (Tables 1 and 2) across the 
populations. These differing DWV populations did not result 
in observable differences in virulence, similar to other studies 
where no virulence differences were detected between DWV-A 
and DWV-B [41–43]. This may be further evidence that DWV 
virulence is not specific to any certain DWV master variant, but 
acts through the quasispecies population as a whole, resulting in 
higher titres associated with worsened disease [78]; alternatively, 
one or both DWV master variants could simply be present in 
these passaged populations at sufficiently high levels to result 
in high virulence. Through normalizing the amount of DWV 
between the once and five times passaged virus populations, 
we were able to investigate whether there were any genetically 
encoded differences in virulence across these passaged samples 
(either master variants or single nucleotide polymorphisms), 
but we may have also removed an essential characteristic of the 
viral population (viral levels during exposure) that may underlie 
variation in virulence. As our original starting inoculum was no 
longer infectious during survival assays, we cannot conclude 
how initial passaging affected virulence, only that continued 
passaging does not result in observable altered virulence. 
Interestingly, we did not observe a difference in virulence when 
measuring survival across different colonies – the survival of the 
colony genotype naïve to these experimentally-derived DWV 
populations was not observed to be better nor worse than the 
colony through which the virus was passaged. Heritable differ-
ences against stressors like Varroa have been observed in bees 
[79, 80], and other genotype by genotype interactions have been 
observed in other insects and their pathogens [81–83]; thus, 
additional studies investigating genotype by genotype interac-
tions between DWV and honey bees should be conducted.

The passaging paradigm used in this study provides insights 
into how viral variants can respond to different selection pres-
sures. However, the results of this lab-based protocol cannot 
necessarily be used to predict DWV dynamics under complex 
ecological conditions. First, there may be other DWV-A and B 
variants circulating in the USA or around the globe that behave 
differently than the variants we used in this study. Second, with 
both qPCR and sequencing, we cannot directly say whether all 
genome copies were indeed infectious particles without cell 
culture based tests such as plaque forming assays. Third, as we 
used injections as an approximation for vector transmission, 
which allowed for standardized injections across samples and 

passages, but did not incorporate all features of Varroa vector 
transmission and parasitization, such as its disruption of the 
honey bee immune response while Varroa feeds [18]. Fourth, 
there are other routes of transmission that occur in honey bee 
colonies which may favour the maintenance of variants or 
combinations of variants. Our model simulated a system in 
which Varroa acts as a vector in a non-propagative manner 
[84], and instead focused on the effect of the shorter incuba-
tion time (4 days) and the effect of the viral population directly 
into the open circulatory system of the developing bee, and how 
this direct transmission route and shortened incubation time 
affected the viral population and resulting virulence within 
and across master variants. Thus, while we demonstrated that 
direct transmission alone can drive viral population differences, 
further studies incorporating additional complexities, such as 
Varroa’s capacity to immunocompromise, or by incorporating 
Varroa itself, are needed to fully understand how the introduc-
tion of Varroa has affected DWV, and how vector transmission 
can alter disease evolution.

Varroa, historically a parasite of the eastern honey bee Apis 
cerana, was introduced to A. mellifera populations in the mid-
20th century, and with no co-evolved defenses in A. mellifera 
against this ectoparasite, it rapidly spread unchecked to vulner-
able honey bee populations across the globe, transmitting DWV 
along the way [17, 25]. Due to these two unchecked stressors, 
in addition to other factors including pesticide usage and 
landscape alteration, US beekeepers lose an average of 30–40 % 
of their colonies each year [85], causing economic strain on 
beekeepers and potentially threatening agricultural produc-
tion. With such a high rate of evolution and interdependence 
with its host and community, and additional factors like Varroa 
recently and dramatically altering disease ecology, bee viruses 
are an obvious and critical avenue for continued investigation in 
pollinator health [7]. Furthermore, the DWV/Varroa epidemic 
is just one example of widespread, unsustainable emerging 
infectious disease affecting agricultural and ecological systems. 
There is an abundance of vector-borne viruses that influence 
human, animal, and plant health across the globe, and detailed 
laboratory studies can provide valuable information and 
perhaps insights into the fundamental principles through which 
vectors selected for altered viral populations and influence host-
pathogen interactions and evolution.
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