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Studying analog series to find structural transformations that enhance the activity and ADME properties of lead
compounds is an important part of drug development. Matched molecular pair (MMP) search is a powerful tool
for analog analysis that imitates researchers' ability to select pairs of compounds that differ only by small well-
defined transformations. Abstraction is a challenge for existing MMP search algorithms, which can result in the
omission of relevant, inexact MMPs, and inclusion of irrelevant, contextually dissimilar MMPs. In this work, we
present a new method for MMP search that returns approximate results and enables flexible control over ab-
straction of contextual information.We illustrate the concepts and mechanics of our method with a series of ex-
emplar MMP queries, and then benchmark search accuracy using MMPs found by fragment indexing. We show
that we can search for MMPs in a context dependent manner, and accurately approximate context independent
fragment index basedMMP search over a range of fingerprint and dataset conditions. Ourmethod can be used to
search for pairwise correspondences among analog sets and bolster MMP datasets where data is missing or
incomplete.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Analog Search is Important for Lead Optimization

Successful optimization of lead compounds requires the iterative ap-
plication of structural modifications that yield favorable changes in tar-
get activity profiles and ADMET properties. Traditionally, this process
has been the sole domain ofmedicinal chemistry teams. Researchers as-
sembled analog series data by hand, guided by their knowledge of com-
pounds that had been synthesized and tested within their organization.
They would then generate hypotheses using techniques such as Free-
Wilson analysis [1], Hansch analysis [2], Topliss schemes [3], and Craig
plots [4]; and combine data driven insights with expertise to prioritize
compounds for synthesis and testing in each design iteration. Today,
the overall process of lead optimization is similar, but the volume chem-
ical information in corporate and public databases is too large for devel-
opment teams to processwithout computational support. The challenge
has driven innovation in search and index of analog sets in chemical
libraries.

1.2. MMPs and MMP Search Are Useful Computational Constructs

Matched molecular pairs (MMPs) are a concept in analog analysis
that formalizes a particular type of analog relationship: two molecules
that differ at a single site by a specific transformation. MMP analysis
. on behalf of Research Network of C
has been successfully used to study the effects of transformations on
ADME properties [5,6], solubility [7], chemical activities [8], as well as
bioisosterism and activity cliffs [9–11]. A diverse set supervised and un-
supervised approaches to MMP search have been described using 2D
fingerprints [12], maximum common substructure alignment [9,12,
13], SMILES/SMARTS editing [5,7,14,15], and molecule fragmentation
[16,17]; though many are difficult to evaluate because the software or
detailed descriptions of the underlying algorithms are not in the public
domain. The unsupervised algorithm published by Hussain and Rea is
currently the most widely used [17]. It efficiently discovers all MMPs
in a dataset by exhaustive fragmentation at non-ring single bond sites
followed by indexing of cores and substituents into a bipartite data
structure.

1.3. MMP Search is Limited by Abstraction

The key limitation of MMP search is abstraction. By definitionMMPs
group together pairs of molecules with the exact same transformation.
Unfortunately, this excludes many near-MMPs relevant to the analysis.
Griffen et al. gave the example of using a methyl sulfone addition for an
analysis where the effect of the desired ethyl sulfone addition had not
been previously observed [18]. Furthermore, transformation indexing
is done in a context independent manner; all scaffolds undergoing a
particular transformation are grouped together. We refer to the molec-
ular context as the common substructure and transformation site
shared by two analogs. For example, for the methylation of L-Dopa
into 3-O-methyl-L-Dopa, the transformation would be the replacement
of hydrogen by a methyl group, and the context would be the 3-
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hydroxyl substituent of L-Dopa. Papadatos et all demonstrated how
much context matters by comparing context specific and global distri-
butions of transformation effects on hERG inhibition [19]. We also
note that the issues arising from the exactness of fragment indexing
and the looseness of scaffold grouping exacerbate each other. Aswenar-
row the rage of contexts to be more specific, we would also expect to
find fewer MMPs that match any particular transformation. Thus there
is a need for methods of querying MMPs that can return approximate
matches and flexibly integrate varying amounts of contextual
information.

1.4. We Propose More Flexible MMP Search

In this work, we develop a method for flexible MMP search that al-
lows varying levels of abstraction. Our method represents chemical
transformations as vector differences, in a manner similar to Sheridan
et al. [12], with the difference that we use dimensionality reduction
techniques to embed molecule vectors in continuous space and refor-
mulate MMP search as a supervised query. Our queries return approxi-
mate MMPs, and our continuous vectors allow us dynamic control over
the level of abstraction at which we search. First we develop our search
method and demonstrate its mechanics on an exemplar analog series of
nucleic acids and nucleosides. Second, we benchmark MMP recall on
datasets of varying size and diversity using embedded molecule
vectors derived from several different underlying fingerprint represen-
tations. Finally, we summarize our results and highlight some consider-
ations for using our method.

2. Methods

2.1. 2D Fingerprint and MMP Generation

We generated 2D chemical fingerprints and MMPs using RDKit
for Python 3.0 [20]. We encoded chemical structures using four
types of fingerprints. Extended connectivity fingerprints (ECFP_6),
atom pair fingerprints (APFP), topological torsion fingerprints
(TTFP), and RDKit Path Fingerprints (RDFP). For each fingerprint
type, we used the default settings as inputs, and returned finger-
prints as unfolded, sparse vectors. For MMPs we used a max frag-
ment length of 10 atoms, and max fragment ratio of 0.3. We
implemented vector generation in R-3.03.

2.2. Molecule Vector Generation

We embedded 2D fingerprints in continuous space using kernel
principal components analysis (KPCA), a non-linear dimensionality re-
duction technique similar to principal components analysis (PCA) and
multidimensional scaling [21]. We used Tanimoto similarity (aka
Jaccard index) as our kernel function. Vector generation can be broken
down into three steps:

(1) Compute the Tanimoto matrix: Compute a kernel matrix of
Tanimoto similarities T(X,X) over all pairs of data instances
(xi,xj)∈X ,X.

T xi; xj
� � ¼ xi∩xj

xi∪xj

(2) Solve the Eigenvalue problem: Factor the Tanimoto matrix by
solving the eigenvalue problem. Here ϕ(X) denotes the data
represented as continuous vectors, and the matrices Q and Λ
are the eigenvectors and eigenvalues of the Tanimoto similarity
matrix.

ϕ Xð Þ � ϕ Xð ÞT ¼ QΛQT ¼ T X;Xð Þ
ϕ Xð Þ ¼ QΛ1=2
(3) Embed the data in continuous space: Compute a vector of
Tanimoto distances andmultiply by the eigenvectors and inverse
square root of the eigenvalues to project the data instances into
the principal component space.

ϕ xið Þ ¼ T xi;Xð Þ � QΛ−1=2

Like classical PCA, the features returned by KPCA are orthogonal and
ordered by their explanatory power. Similar considerations for dimen-
sionality reduction also apply. Unlike classical PCA, KPCA is non-linear
and dot products of Tanimoto KPCA embedded vectors approximate
Tanimoto similarities.

2.3. Analog Search

We have broken down our method into four component concepts
that build on each other into approximate MMP search: the analog
score, basic search, basic feature selection, and uncoupled feature sets.
Our method was implemented using built in functions R-3.0.3.

2.4. Analog Score

The analog score is ameasure of similarity between relationships.We
score the similarity of pairwise relationships {a,b} and {c,d}with the fol-
lowing formula:

Score a : b∷c : dð Þ ¼ b−aþ cð Þ∙d
b−aþ cð Þk k dk k

We point out that the algebraic structure of the score gives a non-
intuitive logical equipoise a :b : :c:d≡a:c : :b :d.

2.5. Basic Search

Our search objective is to find the molecules that correctly or ap-
proximately complete an MMP as an analogy:

Given molecules a; b; cf g; find d∈D such that a : b :: c : d

To search a list of candidates (D), we compute analog scores for the
input triple (a,b,c) with each molecule (d) in the list, order D by score,
and return the top n results.

2.6. Basic Feature Selection

The subset of components used to represent the data is an indepen-
dent parameter in the search. We call this the dimensionality parameter
p. While dimensionality reduction is typically done by using the first
pbn principal components, it is not the case that the components must
be included or excluded in consecutive order (order of decreasing vari-
ance). Thus we introduce the more general notation ω⊆{1,… ,n} to de-
note an active subset of components used to represent the data, and the
indicator function I(ω), where I(ω)jj=1 if j∈ω else it is 0. For example,
if we wish to represent the data using the first three principal compo-
nents, thenω={j: j≤3} and I(ω)11= I(ω)22= I(ω)33=1. The reduced di-
mension representation of a molecule vector ϕ(x)ω is given by:

ϕ xið Þω ¼ ϕ xið Þ � I ωð Þ
2.7. Uncoupled Feature Sets

To flexibly control the level of abstraction at which we search, we
decompose query vectors into two components: (a) the difference of
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twomolecules – the relation, and (b) the remaining summandmolecule
– the target.

b−aþ cð Þ⏟
query

¼ b−a⏟
relation

þ c⏟
target

Importantly, we select features independently for relation and tar-
get. Specifically, we assign each term a feature selector parameter – ωr

and ωt. For example, we may wish to compute a query with a coarse
grained relationship, using only the first three principal components
ωr={j : j≤3}, and a more detailed representation of the target, using
the first 20 components ωt={j : j≤20}. We compute the query vector
using the following formula:

b−að Þ � I ωrð Þ þ c � I ωtð Þ

2.8. Search Examples

We provide a series of four examples, centered on the analog series
of nucleic acids and nucleosides, to illustrate the analog score, basic
search, basic feature selection, and uncoupled feature sets. Our example
dataset consists of 1398 small molecule, FDA approved drugs from
Drugbank [22], and 635 biologically important metabolites from the
KEGGBRITE ontology [23]. We excluded non-human native classes
from the KEGGBRITE set such as marine, fungal, and phytochemical
compounds. After duplicate and salt removal, we filtered by molecular
weight, excluding molecules outside of the range 100–700 to focus on
molecules in the “druglike” size range.

For the analog score, we computed scores for all 8 unique analogous
nucleobase pair permutations e.g. {a :g∷c : t, a : t∷g :c,…}. For basic
search, we queried a set of analogous nucleobase/nucleoside MMPs,
and return the top 5 search results as well as the search rank of the cor-
rect nucleoside. For basic feature selection,we computed the same set of
queries, and tracked the search ranks of all nucleosides as we varied the
number of principal components used to represent the data from 3 to
150. For uncoupled feature selection, we independently varied the fea-
ture selector parametersωr andωt each over the range 4–50 and record-
ed the search rank of the correct nucleoside. We computed analog
scores and basic search using the first 20 principal components.

2.9. Approximate Context Independent MMP Search Benchmarking

We tested the accuracy of approximate MMP recall with the follow-
ing protocol. For each dataset: (a) find a set of true positive analogous
MMPs using fragment indexing, compute completion queries for all
unique analogous pairs, and record the search rank of the correct top re-
sult in each case. We executed this over a set of 72,251 compounds,
grouped into 102 activity class datasets, and further consolidated into
Easy, Intermediate, and Difficult superclasses on the basis of dataset
size and diversity [24,25]. The number of compounds and mean
ECFP_4 Tanimoto coefficient for each superclass reported by Jasial
et al. is shown in Table 1 [25]. We downloaded structures from ChEMBL
in SMILES format, and removed salts.

We used the following feature selection strategy to approximate the
context independence of fragment indexing MMP search. Given mole-
cule vectors a ,b, we set ωr={j :ajbjb0}. In other words, we represent
the transformations using features for which the molecules that define
Table 1
Size and diversity of MMP search benchmarking dataset superclasses.

N (mean) Mean Tc

Easy 2967 (135) 0.28
Intermediate 25,175 (504) 0.19
Difficult 47,109 (1570) 0.11
the transformation differ in sign. For target molecules we used the full
rank representation ωt={j :λjN10−10}.

3. Results

3.1. Molecule Vector Generation

Fig. 1 shows a plot of the nucleobases and nucleosides along the first
and third principal axes. Analogous nucleobase/nucleoside MMPs have
similar spatial orientations.

3.2. Analog Score

The sorted scores of the 8 unique possible analogous nucleobase pair
arrangements are shown in Fig. 2 along with the structures of the
nucleobases: adenine, guanine, cytosine, and thymine. The top scoring
pairwise alignment gives the correct purine/pyrimidine, hydrogen
bond donor/acceptor correspondences.

3.3. Basic Search

Fig. 3 shows the results of 4 basic supervised MMP searches. MMPs
queries across hydrogen bond donor/acceptor contexts (A :A∗∷G :G∗)
perform better than queries across purine/pyrimidine contexts
(A :A∗∷C :C∗), which perform better than queries across both contexts
(A:A∗∷T:T∗).

3.4. Basic Feature Selection

Fig. 4 shows the effect of dimensionality reduction on search. Plots
display the search ranks of all four nucleosides as we vary the number
Fig. 1. Nucleic bases and nucleosides in continuous space. Plot showing the
arrangement of nucleic bases and nucleosides in continuous space generated by KPCA.
Coordinates along the first and third principal component axes are shown. Analogous
nucleobase/nucleoside pair correspondences map to corresponding spatial orientations.



Fig. 2. Analog score. The structures of nucleic acids and scores for all unique base pair analogies. The analog score has the non-intuitive equipoise score(a:b: :c:d)=score(a:c: :b:d).
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of principal components in each search example. All nucleosides are
highly ranked at low dimension. Rankings diverge as dimension in-
creases. At high dimension the nucleoside used to construct the query
saturates at the top result. Basic feature selectionwas not able to recover
queries across hydrogen bond donor/acceptor contexts (Fig. 4(c), (d)).
We did not observe anymeaningful change in rankings above 150 prin-
cipal components.
3.5. Uncoupled Feature Sets

Fig. 5 shows the search rank of the correct nucleoside for each
query as we independently vary the number of principal compo-
nents used to represent relationships (transformations) and targets
(molecules). Computing the relationship/transformation vector at
low dimension (4–12), and adding it to a high dimension target/
molecule vector (20–25) rescued queries across purine/pyrimidine
contexts (Fig. 5(c), (d)), and did not significantly diminish perfor-
mance on queries across hydrogen bond donor/acceptor contexts
(Fig. 5(a)(b)).
 

Fig. 3. Basic search. Search results for four nucleobase/nucleoside MMP queries, each with a d
across H-donor/acceptor context. (b) Query for Thymidine across H-donor/acceptor contexts.
both H-donor/acceptor and purine/pyrimidine contexts. The rank of each intended top result i
3.6. Approximate Context Independent MMP Search Benchmarking

Fig. 6 shows the distribution of search ranks assigned to the correct
top result in MMP queries for continuous vectors derived from four 2D
fingerprint types: APFPs, ECFPs, RDFPs, and TTFPs. Note that we report
the absolute rather than the percentile rank. We computed 44,371
(mean = 2016/class), 1,011,564 (mean = 20,231/class), and
4,958,361 (mean = 165,288/class) unique MMP queries for activity
class datasets in the Easy, Intermediate, and Difficult superclasses. The
distribution of absolute ranks did not change significantly relative to
the diversity and size of the datasets in each superclass.
4. Discussion

4.1. Analog Score Is a Way to Test Similarity of Relationships

The analog score measures the similarity of chemical transforma-
tions. Our use of vector differences is similar in concept to the T-
Analyze program [12] with the difference that we have algebraically
ifferent degree of contextual similarity between analogous pairs. (a) Query for Guanosine
(c) Query for Cytidine across purine/pyrimidine contexts. (d) Query for Thymidine across
s shown at the bottom of its table.



Fig. 4. Basic feature selection. The four nucleobase/nucleoside MMP queries computed using a range of principal components to represent the data. (a) Query for Guanosine across H-
donor/acceptor context. (b) Query for Thymidine across H-donor/acceptor contexts. (c) Query for Cytidine across purine/pyrimidine contexts. (d) Query for Thymidine across both H-
donor/acceptor and purine/pyrimidine contexts. The x-axis on each plot indicates the number of principal components used to represent the data, and the y-axis shows search rank
percentile. For each query, the search ranks of all nucleosides are shown.
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Fig. 5. Uncoupled feature selection. The four nucleobase/nucleosideMMP queries computed using varying numbers of principal components to represent transformations/relation (ωr)
and molecules/target (ωt). (a) Query for Guanosine across H-donor/acceptor context. (b) Query for Thymidine across H-donor/acceptor contexts. (c) Query for Cytidine across purine/
pyrimidine contexts. (d) Query for Thymidine across both H-donor/acceptor and purine/pyrimidine contexts. For each query, the x-axis and y-axis respectively indicate relation (ωr)
and target (ωt) vector dimensions used to compute the query. The color of each cell indicates the rank of the intended result for that query.
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Fig. 6. Context independent search benchmarking.MMP recall over 102ChEMBL activity classes for continuous vectors derived from different underlyingfingerprint types. Activity clas-
ses are grouped into (a) “Easy”, (b) “Intermediate”, and (c) “Difficult” super classes on the basis of size and diversity. For each condition, the box andwhisker plot shows the distribution of
the search rankings for the correct top result.
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rearranged the scoring function.

b−a ≈ d−c⏟
T−Analyze

⟺b−aþ c ≈ d⏟
Analog Score

Our function is conceptually similar to supervised MMP queries
where a specified transformation is applied to a template molecule [7,
26]. However,we can run in unsupervisedmodewherewe exhaustively
compute all pairwise analogies among a set of molecules; or supervised
mode, in which one or more of the molecules are specified in advance
and held constant. The results of unsupervised mode show some of
the flexibility of vector based MMP search. The analogous transforma-
tion A :C∷G :T would not be found by fragmentation at acyclic bonds,
but here it is an equivalent top result.

4.2. SupervisedMMP Search Returns Ordered Lists of Similarly RelatedMol-
ecules; Context Dependence is a Challenge

MMP search returns lists of near MMPs. In Fig. 3(a), (b), we return
closely related, approximateMMPmolecules alongwith the correct nu-
cleoside.We showunsuccessful searches in Fig. 3(c), (d) to demonstrate
that transformation vectors encode information about the molecular
contexts in which they occur. Sheridan reported a similar effect where
transformation vectors clustered together on the basis of context [12];
here it has a confounding effect on searches across purine/pyrimidine
contexts. To recover those examples, we would like to operate closer
to the context independent manner of fragment indexing schemes.

4.3. Basic Feature Selection Allows Us to Include and Exclude Contextual
Information

Fig. 4 shows how feature selection can be used to exclude contextual
information, but not without challenges. Adding features in order of
variance can be interpreted as moving from a coarse to a fine-grained
representation of the data. At low dimensionwe have excluded a signif-
icant amount of contextual information, but retained information about
the transformation. The correct nucleosides are highly ranked, but indis-
tinguishable from other nucleosides. This is problematic because we
would like to discriminate between nucleosides and other closely relat-
ed molecules to order search rankings. Conversely, we have enough in-
formation at high dimension to resolve nucleosides, but the
transformations are now context specific. The problem is that we have
two types of entities, transformations and molecules, and we would
like to represent them at different levels of abstraction. But this is not
permitted by typical modes of feature selection. Fortunately, we can
separate the level of abstraction for transformations (relationships)
and molecules (targets).

4.4. Uncoupling Relation and Target Feature Sets is the Secret Sauce

Decomposing query vectors into relationship and target terms with
separate feature sets gives us theflexibility to represent transformations
and molecules at different levels of abstraction. Our interpretation of
Fig. 4 suggests that the combination of a low dimensional relationship
vector, with a high dimensional target vector would recover queries
across purine/pyrimidine contexts. This is verified in Fig. 5.

4.5. Adaptive Feature Selection Approximates Fragment Index MMP search

With our adaptive feature selection heuristic, we are able to accu-
rately approximate fragment index based MMP search (Fig. 6). Recall
of fragment indexed MMPs was robust over a range of dataset size
and diversity conditions.

4.6. Feature Selection Is the Primary Consideration of Our Work

The key idea in our work is that uncoupled feature sets enable us to
represent relationships and targets at different levels of abstraction, and
thus achieve a more flexible search capability. However, this raises the
question of how one should select feature sets. Our results show our
method is quite sensitive to feature selection (Figs. 4 and 5). To answer
is difficult because the issue is closely linked to one of how much con-
textual information should be used in search computations. This is
often unclear because what constitutes an equivalent transformation
is highly subjective and application specific. Thus, the feature selection
strategy should be dictated by the particular needs of the application.

For the demonstration examples, our objective was to illustrate dif-
ferent aspects of our method. We chose a grid search over consecutive
feature sets because of its intuitive interpretation of moving from a
coarse to a detailed representation of the data. In our examples, we
showed that we were able access parameter settings that recovered
queries of transformations in dissimilar contexts; but the non-
smoothness of search rankings in Figs. 4 and 5 suggests that contextual
information is not stored in consecutive feature sets, and the strategy
would not generally suffice for context independent search.
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For benchmarking, our objective was to approximate context inde-
pendence.Weused a roughheuristic to identify context from information
contained in the query vectors. For querymolecules a and b, features that
match in sign positively contribute to their similarity score and encode
their similar parts (context); and those that do notmatch negatively con-
tribute and encode their dissimilar parts (transformation).

sim a; bð Þ∝a � b ¼ ∑
match

a jb j
�� ��

⏟
context

− ∑
mismatch

ajb j
�� ��

⏟
transformation

In between full context dependence and independence, there are a
range of strategies, not limited to reordering transformation features
relative to their expected variance and incorporating information
about contextual difference of the target molecule, which can be used
to tune searches.

4.7. Embedded Vectors Are Only as Good as Underlying Representations

A key consideration is the underlying representation used to encode
the molecules. Fig. 6 shows it has a measurable effect on accuracy and
robustness of search. We found that properties of the 2D fingerprints,
such as the repetition insensitivity of binary ECFPs, were passed on to
their continuous vectors. We suspect that the RDKit fingerprint repre-
sentation performs better because of its property that substructure rela-
tionships between molecules correspond to subset relationships
between their fingerprints. Fingerprint hyperparameters should also
be taken into account. We encoded 2D fingerprints as unfolded sparse
vectors because in some cases folding resulted in Tanimoto matrices
with negative eigenvalues; which is problematic because kernel func-
tions are required to be positive semi definite, and violation of this con-
straint can cause computations to break down in unpredictable ways.

4.8. Embedding Technique is Another Hyperparameter

Another key consideration is the technique used to embed the data
in continuous space. We prefer Tanimoto KPCA because it returns un-
correlated features whose dot products approximate Tanimoto coeffi-
cients; but it is just one of a variety of techniques for embedding
molecules in continuous space. In addition to using alternative similar-
ity metrics and distance-based embedding methods, neural network
embedded graph convolution fingerprints [27,28] are a new type of
continuous representation that has shown superior QSAR performance,
and could be used with our method. Our method is adaptable to any
continuous coordinate representation where the following condition
is met: similar chemical structure transformations yield similar trans-
formation vectors. This corollary of linear algebraic consistency should
be kept in mind because it is not necessarily the case that differences
computed using any set of continuous descriptors should correspond
to meaningful chemical structure relationships.

5. Conclusion

MMPs are a useful tool to study analog relationships and local QSAR,
but current MMP search methods are brittle compared to intuitive no-
tions of what constitutes a matched analog pair. Efficient index based
search methods enforce precisely defined context independent trans-
formations that can miss near MMPs relevant to an analysis. Likewise,
previous iterations of vector based MMP search enforce strict context
dependence and feature set coupling that can fail to group together
transformations occurring in different contexts.

We demonstrate a new vector based method for computing approxi-
mate MMP queries that allows us to flexibly include or exclude varying
degrees of contextual information. We have benchmarked its accuracy
for approximate context-independentMMP recall. Given the incomplete-
ness of high confidence assay data in chemical databases, ourmethod can
be used to find suitable approximate replacements in cases where the
properties of a specific analog found by fragment indexing are uncertain
or have not been observed. Our method can also be used to bolster the
size ofMMPdatasets to improve statistical power. Perhaps themost inter-
esting aspect of our work is that kernel embedding can be applied to any
symbolic representation that supports similarity computation, opening
the prospect of searching and characterizing relationships between non-
structural aspects of chemicals such as binding affinity profiles; or even
higher order chemical entities such as analog series.

References

[1] Kubinyi H. Free Wilson analysis. Theory, applications and its relationship to Hansch
analysis. Mol Inform 1988;7:121–33.

[2] Hansch C, Fujita T. p-σ-π Analysis. A method for the correlation of biological activity
and chemical structure. J Am Chem Soc 1964;86:1616–26.

[3] Topliss JG. Utilization of operational schemes for analog synthesis in drug design. J
Med Chem 1972;15:1006–11.

[4] Craig PN. Interdependence between physical parameters and selection of substitu-
ent groups for correlation studies. J Med Chem 1971;14:680–4.

[5] Gleeson P, Bravi G, Modi S, Lowe D. ADMET rules of thumb II: a comparison of the
effects of common substituents on a range of ADMET parameters. Bioorg Med
Chem 2009;17:5906–19.

[6] Keefer CE, Chang G, Kauffman GW. Extraction of tacit knowledge from large ADME
data sets via pairwise analysis. Bioorg Med Chem 2011;19:3739–49.

[7] Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, et al. Matched
molecular pairs as a guide in the optimization of pharmaceutical properties; a
study of aqueous solubility, plasma protein binding and oral exposure. J Med
Chem 2006;49:6672–82.

[8] Schönherr H, Cernak T. Profound methyl effects in drug discovery and a call for new
CH methylation reactions. Angew Chem Int Ed 2013;52:12256–67.

[9] Sheridan RP. The most common chemical replacements in drug-like compounds. J
Chem Inf Comput Sci 2002;42:103–8.

[10] Wassermann AM, Bajorath Jr. Chemical substitutions that introduce activity cliffs
across different compound classes and biological targets. J Chem Inf Model 2010;
50:1248–56.

[11] Hu X, Hu Y, Vogt M, Stumpfe D, Bajorath Jr. MMP-cliffs: systematic identification of
activity cliffs on the basis of matched molecular pairs. J Chem Inf Model 2012;52:
1138–45.

[12] Sheridan RP, Hunt P, Culberson JC. Molecular transformations as a way of finding
and exploiting consistent local QSAR. J Chem Inf Model 2006;46:180–92.

[13] Raymond JW, Watson IA, Mahoui A. Rationalizing lead optimization by associating
quantitative relevance with molecular structure modification. J Chem Inf Model
2009;49:1952–62.

[14] Hajduk PJ, Sauer DR. Statistical analysis of the effects of common chemical substitu-
ents on ligand potency. J Med Chem 2008;51:553–64.

[15] Stewart KD, ShirodaM, James CA. Drug Guru: a computer software program for drug
design using medicinal chemistry rules. Bioorg Med Chem 2006;14:7011–22.

[16] Haubertin DY, Bruneau P. A database of historically-observed chemical replace-
ments. J Chem Inf Model 2007;47:1294–302.

[17] Hussain J, Rea C. Computationally efficient algorithm to identify matched molecular
pairs (MMPs) in large data sets. J Chem Inf Model 2010;50:339–48.

[18] Griffen E, Leach AG, Robb GR, Warner DJ. Matched molecular pairs as a medicinal
chemistry tool: miniperspective. J Med Chem 2011;54:7739–50.

[19] Papadatos G, Alkarouri M, Gillet VJ, Willett P, Kadirkamanathan V, Luscombe CN,
et al. Lead optimization using matched molecular pairs: inclusion of contextual in-
formation for enhanced prediction of hERG inhibition, solubility, and lipophilicity.
J Chem Inf Model 2010;50:1872–86.

[20] Landrum G. RDKit: open-source cheminformatics. (Online) http://www.rdkit.org.
(Accessed 2006, 3, 2012).

[21] Schölkopf B, Smola A, Müller K-R. Nonlinear component analysis as a kernel eigen-
value problem. Neural Comput 1998;10:1299–319.

[22] Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank:
a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids
Res 2006;34:D668–72.

[23] Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation
and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res
2010;38:D355–60.

[24] Heikamp K, Bajorath Jr. Large-scale similarity search profiling of ChEMBL compound
data sets. J Chem Inf Model 2011;51:1831–9.

[25] Jasial S, Hu Y, Vogt M, Bajorath J. Activity-relevant similarity values for fingerprints
and implications for similarity searching. F1000Res 2016:5.

[26] Lewis ML, Cucurull-Sanchez L. Structural pairwise comparisons of HLM stability of
phenyl derivatives: introduction of the Pfizer metabolism index (PMI) and
metabolism-lipophilicity efficiency (MLE). J Comput Aided Mol Des 2009;23:
97–103.

[27] Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-
Guzik A, et al. Convolutional networks on graphs for learning molecular fin-
gerprints. Advances in neural information processing systems, 2015; 2015
2224–32.

[28] Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions:
moving beyond fingerprints. J Comput Aided Mol Des 2016;30:595–608.

http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0005
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0005
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0010
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0010
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0015
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0015
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0020
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0020
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0025
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0025
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0025
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0030
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0030
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0035
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0035
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0035
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0035
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0040
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0040
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0045
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0045
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0050
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0050
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0050
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0055
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0055
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0055
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0060
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0060
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0065
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0065
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0065
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0070
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0070
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0075
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0075
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0080
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0080
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0085
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0085
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0090
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0090
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0095
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0095
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0095
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0095
http://www.rdkit.org
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0105
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0105
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0110
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0110
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0110
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0115
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0115
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0115
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0120
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0120
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0125
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0125
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0130
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0130
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0130
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0130
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0135
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0135
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0135
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0135
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0140
http://refhub.elsevier.com/S2001-0370(16)30091-5/rf0140

	Flexible Analog Search with Kernel PCA Embedded Molecule Vectors
	1. Introduction
	1.1. Analog Search is Important for Lead Optimization
	1.2. MMPs and MMP Search Are Useful Computational Constructs
	1.3. MMP Search is Limited by Abstraction
	1.4. We Propose More Flexible MMP Search

	2. Methods
	2.1. 2D Fingerprint and MMP Generation
	2.2. Molecule Vector Generation
	2.3. Analog Search
	2.4. Analog Score
	2.5. Basic Search
	2.6. Basic Feature Selection
	2.7. Uncoupled Feature Sets
	2.8. Search Examples
	2.9. Approximate Context Independent MMP Search Benchmarking

	3. Results
	3.1. Molecule Vector Generation
	3.2. Analog Score
	3.3. Basic Search
	3.4. Basic Feature Selection
	3.5. Uncoupled Feature Sets
	3.6. Approximate Context Independent MMP Search Benchmarking

	4. Discussion
	4.1. Analog Score Is a Way to Test Similarity of Relationships
	4.2. Supervised MMP Search Returns Ordered Lists of Similarly Related Molecules; Context Dependence is a Challenge
	4.3. Basic Feature Selection Allows Us to Include and Exclude Contextual Information
	4.4. Uncoupling Relation and Target Feature Sets is the Secret Sauce
	4.5. Adaptive Feature Selection Approximates Fragment Index MMP search
	4.6. Feature Selection Is the Primary Consideration of Our Work
	4.7. Embedded Vectors Are Only as Good as Underlying Representations
	4.8. Embedding Technique is Another Hyperparameter

	5. Conclusion
	References


