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� The effect of type 2 diabetes microangiopathy on bone mineral density and bone metabolism is still unclear.
� Type 2 diabetes microangiopathy can reduce the lumbar spine, femoral neck and Ward's triangle BMD.
� Type 2 diabetes microangiopathy has a higher risk of osteoporosis or osteoporosis fractures.
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A B S T R A C T

Background: Diabetic microangiopathy is a type of vascular dysfunction. The effect of type 2 diabetes micro-
angiopathy (DMA) on bone mineral density (BMD) and bone metabolism is still unclear.
Objective: A meta-analysis was performed to investigate the effects of microangiopathy on BMD and bone meta-
bolism in type 2 diabetic patients.
Methods: We searched the PubMed, Embase, Cochrane Library and CNKI databases to identify observational
studies investigating the effects of type 2 diabetes microangiopathy on BMD or bone metabolism. The time limit
for the literature retrieval was from the establishment of the database to September 25, 2021. The New-
castle–Ottawa scale (NOS) and the Agency for Healthcare Research and Quality (AHRQ) scale were used to
evaluate the quality of the studies. RevMan 5.3 software was used for the data analysis. Stata 14.0 was used to
quantitatively evaluate the publication bias of the outcome indicators.
Results: In total, 12 observational studies were included, including 7 cohort studies, 4 case–control studies and 1
cross-sectional study. In total, 2,500 patients with type 2 diabetes were included. Among them, 1,249 patients had
microangiopathy (DMA group), and 1,251 patients did not have microangiopathy (control group). The results of
the meta-analysis showed that the BMDs of the femoral neck (SMD ¼ �1.34, 95% CI ¼ �2.22 to �0.45, P ¼
0.003), lumbar spine (SMD ¼ �0.69, 95% CI ¼ �1.31 to �0.08, P ¼ 0.03) and Ward's triangle (SMD ¼ �2.84,
95% CI ¼ �4.84 to �0.83, P ¼ 0.006) in the DMA group were lower than those in the control group. In the
comparison of the bone metabolism indexes, the contents of N-terminal propeptide of type I procollagen (P1NP)
(SMD ¼ 0.18, 95% CI ¼ 0.03 to 0.32, P ¼ 0.02), osteocalcin (SMD ¼ 6.97, 95% CI ¼ 3.46 to 10.48, P < 0. 0001),
parathyroid hormone (PTH) (SMD ¼ 0.38, 95% CI ¼ 0.03 to 0.73, P ¼ 0.03) and C-telopeptide of type 1 collagen
(CTX) (SMD ¼ 0.39, 95% CI ¼ 0.03 to 0.75, P ¼ 0.03) in serum from the DMA group were higher than those in
serum from the control group. The serum content of 25-hydroxyvitamin D3 (25(OH)D3) (SMD ¼ �0.63, 95% CI ¼
�1.19 to �0.07, P ¼ 0.03) in the DMA group was lower than that in the control group. There was no significant
difference in serum alkaline phosphatase (ALP), calcium or phosphorus between the two groups (P > 0.05).
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Conclusions: Type 2 diabetes microangiopathy can reduce the lumbar spine, femoral neck and Ward's triangle BMD
and has a higher risk of osteoporosis or osteoporosis fractures. The levels of P1NP, PTH, CTX and OC in the serum
of patients with type 2 diabetes microangiopathy are higher, and the lower 25(OH)D3 content may be a mech-
anism by which DMA destroys bone metabolism balance.
1. Introduction

Type 2 diabetes can be accompanied by multiple complications,
including microangiopathy. With improvements in people's quality of life
and the aging of the population, the incidence rate of type 2 diabetes is
gradually increasing, and the complications of diabetic nephropathy
(DN), diabetic retinopathy (DR) and diabetic peripheral neuropathy
(DPN) are also increasing [1, 2]. Previous studies have shown that pa-
tients with type 2 diabetes mellitus (T2DM) complicated with micro-
angiopathy have a significantly higher risk of fracture [3, 4]. Diabetic
microangiopathy is a type of vascular dysfunction that can change the
blood supply of microvessels in bone, affect bone metabolism, lead to
changes in the bone mineral density (BMD) and reduce bone quality [5,
6]. Some studies suggest that T2DM microangiopathy is related to
changes in BMD, and T2DM microangiopathy can reduce BMD [7, 8].
Diabetes may affect bone quality by affecting bone cells [9]. Bone turn-
over markers (BTMs) are enzymes and metabolites secreted by bone cells
that reflect bone formation, bone resorption and, subsequently, the dy-
namics of bone remodeling [10]. With the occurrence and development
of diabetic microangiopathy, the decrease in BMD due to the decrease in
hydroxylase activity, disturbance of calcium and phosphorus meta-
bolism, functional hypoparathyroidism and muscle strength weakening,
the incidence of osteoporosis is higher in patients with diabetes [11, 12,
13, 14]. BTMs can be used as independent predictors of osteoporosis and
osteoporotic fractures [15]. However, the process of bone turnover may
be affected by diabetes and its complications. In recent years, an
increasing number of researchers have focused on BMD and bone
metabolism in diabetic microangiopathy, but no definite conclusions
have been drawn. The aim of this study was to explore the relationship
between T2DM complicated with microangiopathy and BMD and bone
metabolism and discuss the role of BTMs in this relationship through a
meta-analysis to provide scientific evidence for preventing osteoporosis
and reducing fractures in patients with T2DM.

2. Materials and methods

This study follows the requirements of the Meta-analysis of Obser-
vational Studies in Epidemiology (MOOSE) statement [16].

2.1. Inclusion and exclusion criteria

The inclusion criteria were as follows: 1) The study was designed
as an observational study and included cohort, case–control and cross-
sectional studies; 2) the aim of the study was to investigate the effects
of microangiopathy on BMD or bone metabolism in T2DM; 3) the
experimental group had T2DM with microangiopathy (DMA group),
while the control group had T2DM without microangiopathy; 4) clear
diagnostic criteria for T2DM were used, and the types of micro-
angiopathy were specifically described; and 5) the outcome indexes
included BMD or bone metabolism-related indexes. There was no re-
striction on the language in which the study was published.

The exclusion criteria were as follows: 1) duplicate studies; 2)
incomplete original data or failure to obtain original data upon request; and
3) unclear outcome indicators or nonquantitative indicators, such as images.

2.2. Literature retrieval strategy

We searched the PubMed, Embase, Cochrane Library and China Na-
tional Knowledge Infrastructure (CNKI) databases to collect
2

observational studies investigating the effects of T2DM microangiopathy
on BMD or bonemetabolism. The retrieval timewas limited to September
25, 2021. In addition, we consulted and searched relevant references
included in the literature to ensure the comprehensiveness and accuracy
of the retrieved literature. Two researchers searched independently and
obtained the same results. In case of any disagreement, the issue was
discussed and resolved with the corresponding author. The search terms
included diabetes mellitus, microangiopathy, vasculopathy, bone min-
eral density and bone metabolism. The retrieval strategy for each data-
base is shown in supplementary material 1.

2.3. Literature screening and data extraction

Thee literature screening and data extraction were carried out inde-
pendently by two researchers and cross-checked. Any differences were
discussed and resolved or submitted to the corresponding author for adju-
dication. During the literature screening, first, the title was read, and then,
the abstract and full text were read after excluding obviously irrelevant
studies to ultimately determine whether to include a study. The data
extraction included 1) basic information regarding the included study,
including the title, author, year of publication, and type of study; 2) basic
characteristics of the research subjects, including sex and age; 3) outcome
indicators and measurement data; and 4) information related to the study
quality evaluation.

2.4. Evaluation of study quality

The Newcastle–Ottawa scale (NOS) was used to evaluate the quality
of the cohort studies and case–control studies [17]. The NOS scale in-
cludes the following three aspects: study population selection, intergroup
comparability and result measurement, with a total of 8 items and 9
points. Studies with a score >6 were considered high quality; those with
a score of 6 were considered medium quality; and those with a score less
than 6 were considered low quality. The Agency for Healthcare Research
and Quality (AHRQ) was used to evaluate the quality of the included
cross-sectional studies [18]. There were 11 items. If the answer was "yes",
1 point was given; if the score was less than 4, the study quality was
considered poor. The higher the score, the higher the quality of the study.

2.5. Statistical analysis

The extracted data were analyzed with RevMan 5.3 software. Since
the indicators of bone metabolism and BMD are continuous variables and
the measuring instruments are different, the combined effect quantities
are expressed by the standardized mean difference (SMD) and 95%
confidence interval (CI). The heterogeneity among the included studies
was quantitatively evaluated with an I2 test and chi-square test. If the
statistical heterogeneity among the research results was small (I2� 50%),
a fixed effect model was used for the meta-analysis; if the statistical
heterogeneity among the research results was large (I2> 50%), a random
effect model was used for the meta-analysis. If more than 3 studies
included an outcome indicator, Stata 14.0 software was used to evaluate
whether there was publication bias with Egger's test.

3. Results

3.1. Retrieval process and results

After a preliminary search, 408 relevant studies were obtained; 262
duplicate studies were eliminated, 199 studies were eliminated after
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reading the titles andabstracts, 51 studies did notmeet the inclusioncriteria
after reading the full text andwere eliminated, and, in total, 12 high-quality
studies werefinally included [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].
The process and results of the literature screening are shown in Figure 1.

3.2. Characteristics and quality of the included literature

In total, 12 articleswere included in this study, including 2,500patients;
among them, there were 1,249 cases of T2DM complicated with micro-
angiopathy and 1,251 cases of T2DM without microangiopathy. The types
of microangiopathy included DN, DR and DPN. The basic characteristics of
the included literature are shown in Table 1. The 12 observational studies
included in this study included7cohort studies [19,20,21,23,24,25,27],4
case–control studies [22, 28, 29, 30] and 1 cross-sectional study [26]. The
AHRQ score of the 1 cross-sectional study was 9, and the study quality was
high.According to theNOSscoringcriteria, the scoresof the7cohort studies
and 4 case–control studies were 7–9 and 6–8, respectively. The NOS and
AHRQ scores of the 12 included studies were greater than or equal to 6,
suggesting that the study quality was very high. Specific information
regarding the study quality scores is shown in supplementary material 2.

3.3. Meta-analysis results

3.3.1. BMD

3.3.1.1. Femoral neck BMD (g/cm2). In total, 6 studies reported the re-
sults of femoral neck BMD [21, 22, 26, 28, 29, 30], and there was
Figure 1. Flowchart showing the p

3

heterogeneity among the studies (P < 0.00001, I2 ¼ 97%); thus, a
random effect model was used to analyze the combined SMD. The results
showed that the femoral neck BMD decreased more significantly in the
DMA group than in the control group (SMD ¼ �1.34, 95% CI ¼ �2.22 to
�0.45, P ¼ 0.003; Figure 2), and the difference was statistically
significant.

3.3.1.2. Lumbar spine BMD (g/cm2). Four studies [21, 22, 29, 30] re-
ported the research results of lumbar BMD. There was heterogeneity
among the studies (P < 0.00001, I2 ¼ 89%); thus, a random effect model
was used to analyze the combined SMD. The meta-analysis results
showed that the lumbar BMD in the DMA group was less than that in the
control group (SMD ¼ �0.69, 95% CI ¼ �1.31 to �0.08, P ¼ 0.03;
Figure 3), and the difference was statistically significant.

3.3.1.3. Ward's triangle BMD (g/cm2). According to the heterogeneity
test results (P < 0.00001, I2 ¼ 97%), we used a random effect model to
analyze the combined SMD of Ward's triangle BMD. The results showed
that compared with the control group, Ward's triangle BMD in the DMA
group was significantly lower (SMD ¼ �2.84, 95% CI ¼ �4.84 to �0.83,
P ¼ 0.006; Figure 4), and the difference was statistically significant.

3.3.2. Bone metabolism

3.3.2.1. Bone formation markers
3.3.2.1.1. N-terminal propeptide of type I procollagen (P1NP) (ng/

ml). In total, 6 studies [19, 21, 23, 24, 25, 28] reported P1NP data. There
rocess of the literature search.
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was heterogeneity among the studies (P ¼ 0.06, I2 ¼ 52%); thus, a
random effect model was used for the data analysis. The results showed
that the serum P1NP content in the DMA group was higher than that in
the control group (SMD ¼ 0.18, 95% CI ¼ 0.03 to 0.32, P ¼ 0.02;
Figure 5), and the difference was statistically significant.

3.3.2.1.2. Osteocalcin (ng/ml). In total, 4 studies [24, 27, 29, 30]
reported osteocalcin data. There was heterogeneity among the studies (P
< 0.0001, I2 ¼ 100%); thus, a random effect model was used for the data
analysis. The results showed that the content of calcitonin in the serum in
the DMA group was higher than that in the control group (SMD ¼ 6.97,
95% CI ¼ 3.46 to 10.48, P < 0.0001; Figure 6), and the difference was
statistically significant.
3.3.2.2. Parameters affecting the bone metabolism index
3.3.2.2.1. Parathyroid hormone (PTH) (pg/ml). According to the re-

sults of the heterogeneity test (P < 0.000001, I2 ¼ 89%), we used a
random effect model to analyze the combined SMD of PTH. The results
showed that compared with the control group, the PTH content in the
DMA group was lower (SMD ¼ 0.38, 95% CI ¼ 0.03 to 0.73, P ¼ 0.03;
Figure 7), and the difference was statistically significant.

3.3.2.2.2. 25-Hydroxyvitamin D3 (25(OH)D3) (ng/ml). According to
the results of the heterogeneity test (P < 0.000001, I2 ¼ 97%), we used a
random effect model to analyze the combined SMD of 25(OH)D3. The
results showed that the content of serum 25(OH)D3 in the DMA group
was lower than that in the control group (SMD¼�0.63, 95% CI¼�1.19
to �0.07, P ¼ 0.03; Figure 8), and the difference was statistically
significant.
3.3.2.3. Blood biochemical indexes
3.3.2.3.1. Alkaline phosphatase (ALP) (μg/l). Three studies [21, 28,

30] reported ALP data. The heterogeneity among the studies was low (P
¼ 0.35, I2¼ 5%); thus, a fixed effect model was used for the data analysis.
The results showed that there was no significant difference in the serum
content of ALP between the DMA group and the control group (SMD ¼
�0.06, 95% CI ¼ �0.21 to 0.09, P ¼ 0. 44; Figure 9).

3.3.2.3.2. Serum calcium (mmol/l). In total, 8 studies [19, 20, 21, 23,
27, 28, 29, 30] reported data concerning the serum calcium content.
There was heterogeneity among the studies (P < 0.000001, I2 ¼ 98%);
thus, a random effect model was used for the data analysis. The results
showed that compared with the control group, the serum calcium content
in the DMA group was lower, but the difference was not statistically
significant (SMD¼�0.08, 95% CI¼�0.97 to 0.82, P¼ 0.87; Figure 10).

3.3.2.3.3. Serum phosphorus (mmol/l). In total, 5 studies [20, 21, 23,
27, 28] reported data concerning the serum phosphorus content. The
heterogeneity among the studies was low (P ¼ 0.09, I2 ¼ 49%); thus, a
fixed effect model was used for the data analysis. The results showed that
there was no significant difference in the serum phosphorus content
between the DMA group and the control group (SMD ¼ 0.04, 95% CI ¼
�0.09 to 0.16, P ¼ 0.55; Figure 11).

3.3.2.4. Bone resorption marker
3.3.2.4.1. C-telopeptide of type 1 collagen (CTX) (ng/ml). In total, 5

studies [19, 23, 24, 25, 28] reported data concerning the serum CTX
content. There was heterogeneity among the studies (P < 0.000001, I2 ¼
92%); thus, a random effect model was used for the data analysis. The
results showed that the CTX content in the serum of the patients in the
DMA group was higher than that in the patients in the control group, and
the difference was statistically significant (SMD¼ 0.39, 95% CI¼ 0.03 to
0.75, P ¼ 0.03; Figure 12).

3.3.2.4.2. Quantitative evaluation of publication bias. Stata 14.0 soft-
ware was used to carry out Egger's test of the outcome indicators that
were reported in more than three studies. Egger's test was performed for
ALP, and the results showed that P¼ 0.028, suggesting that there may be
publication bias in the research results of ALP. No publication bias was
found in the other outcome indicators (P > 0.05). The results of the



Figure 4. Forest plot for comparison of Ward's Triangle BMD between two groups.

Figure 3. Forest plot for comparison of Lumbar Spine BMD between two groups.

Figure 2. Forest plot for comparison of femoral neck BMD between two groups.
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quantitative analysis of publication bias are shown in supplementary
material 3.

4. Discussion

With the aging of the population, the incidence of osteoporosis is
increasing. Factors, such as diabetes, aging and lack of physical activity,
may cause bone loss [31, 32]. Diabetes and its complications, especially
diabetic microangiopathy, not only coexist with osteopenia and osteo-
porosis but also influence the development of other diseases. Studies
have shown that with the occurrence and progression of diabetic
microangiopathy, the degree of osteoporosis becomes more serious [6,
33, 34]. Oikawa's study found that [35] diabetic microangiopathy can
Figure 5. Forest plot for compariso
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lead to blood supply distribution and neurotrophic disorders, trabecular
ischemia and hypoxia in bone tissue. In this study, a meta-analysis of 12
observational studies revealed that the BMDs of the femoral neck, lumbar
spine and Ward's triangle of patients with T2DM microangiopathy were
significantly lower than those of patients without microangiopathy.
Regarding the bone metabolism-related indexes, the contents of P1NP,
osteocalcin, PTH and CTX in the serum from DMA patients increased,
while the content of 25(OH)D3 decreased.

In this study, by comparing the BMD of the femoral neck, lumbar
spine and Ward's triangle, we were able to draw a clear conclusion that
in patients with type 2 diabetes mellitus, the risk of bone loss and
osteoporosis is significantly higher in patients with microangiopathy.
However, in osteoporosis, changes in BMD can directly reflect the bone
n of P1NP between two groups.



Figure 8. Forest plot for comparison of 25(OH)D3 between two groups.

Figure 6. Forest plot for comparison of osteocalcin between two groups.

Figure 7. Forest plot for comparison of PTH between two groups.
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condition, but changes in BMD lag behind the biochemical indexes of
bone metabolism. Therefore, bone metabolic indexes can reflect the
current situation of bone metabolism, predict the risk of fractures, in-
fluence the decision to adopt preventive anti-osteoporosis treatment
and evaluate the efficacy of anti-osteoporosis drugs [36, 37]. Therefore,
this study also analyzed the association between T2DM complicated
with microangiopathy and bone metabolism-related indicators. P1NP
and CTX are bone metabolism markers recommended by the Interna-
tional Osteoporosis Foundation that reflect the synthesis of bone
collagen and the activity of osteoclasts, respectively [38]. When bone
mass decreases, bone metabolism accelerates, and P1NP and CTX in-
crease. Consistent with the research results reported by Zhong et al.
[39], when T2DM is combined with microangiopathy, bone metabolism
Figure 9. Forest plot for compariso
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is in a state of hyperactivity, and markers of bone formation and bone
resorption are increased at a high level of bone turnover. PTH may be
high in T2DM patients with microangiopathy, resulting in secondary
parathyroid hyperthyroidism, osteoclast activity that is greater than
osteoblast activity, and bone resorption that is stronger than bone
formation. Therefore, when T2DM patients have microangiopathy, the
bone mass decreases, the bone mineral density decreases, and the risk
of OP increases [40]. The estrogen level of menopausal women is
decreased, bone resorption is greater than bone formation, and the level
of BTMs changes, leading to bone mass reduction and BMD reduction.
Therefore, the relationship between changes in the BTM levels and
BMD in women with DMA still needs further study. 25(OH)D3 is the
main form of vitamin D in vivo and can promote osteoblast synthesis
n of ALP between two groups.



Figure 10. Forest plot for comparison of serum calcium between two groups.

Figure 11. Forest plot for comparison of serum phosphorus between two groups.

Figure 12. Forest plot for comparison of CTX between two groups.
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and the secretion of osteocalcin [41]. 25(OH)D3 plays a key role in
regulating calcium and phosphorus metabolism and vascular protec-
tion, inhibiting islet cell apoptosis, and reducing insulin resistance and
immune regulation [42]. Vitamin D regulates calcium and phosphorus
metabolism, maintains the stability of serum calcium and phosphorus
concentrations, and promotes intestinal calcium and phosphorus ab-
sorption and bone calcification [42]. Long-term deficiency of vitamin D
leads to disordered calcium and phosphorus metabolism, and calcium
and phosphorus deficiency leads to insufficient raw materials for bone
synthesis, thus affecting bone. In addition, vitamin D can interact with
PTH, and long-term vitamin D deficiency can upregulate the PTH levels
to mobilize bone calcium into the blood, accelerate osteoclast activity,
decalcify bone and lead to osteoporosis [43]. This meta-analysis further
clarifies that T2DM complicated with microangiopathy can cause bone
loss, which may lead to osteoporosis, and a possible mechanism is that
7

the levels of P1NP, PTH, CTX and osteocalcin in serum are increased
while the serum 25(OH)D3 content is reduced, thereby destroying the
bone mass balance.

Undeniably, there are some limitations in this meta-analysis. First, the
literature included in this study comprised observational studies, which
inevitably have certain selection bias due to the research design and are
weaker than randomized controlled trials in terms of precision and ac-
curacy. Second, three types of diabetic microangiopathy, DN, DR and
DPN, were included in this study, which is not conducive to under-
standing the effects of specific microangiopathy types on BMD and bone
metabolism. Third, this paper is a secondary literature study, and there is
a lack of data concerning bone metabolism indicators corresponding to
age and sex stratification, which affected our ability to further explore
changes in bone mineral density in T2DM patients with
microangiopathy.
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5. Conclusion

This study shows that in patients with T2DM, the lumbar spine,
femoral neck and Ward's triangle BMD of patients with microangiopathy
are lower, and the risk of osteoporosis or osteoporotic fractures is higher.
A possible pathological mechanism of this condition is that the higher
serum P1NP, PTH, CTX, and osteocalcin content and lower 25(OH)D3
content in patients with T2DM complicated with microangiopathy
destroy the bone metabolism balance and lead to bone loss or osteopo-
rosis. The effect of specific T2DM microangiopathies on BMD or bone
metabolism still requires further study.
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