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Abstract

Cognitive science has a rich history of developing theories of processing that charac-

terize the mental steps involved in performance of many tasks. Recent work in neu-

roimaging and machine learning has greatly improved our ability to link cognitive

processes with what is happening in the brain. This article analyzes a hidden semi-

Markov model-multivoxel pattern-analysis (HSMM-MVPA) methodology that we

have developed for inferring the sequence of brain states one traverses in the perfor-

mance of a cognitive task. The method is applied to a functional magnetic resonance

imaging (fMRI) experiment where task boundaries are known that should separate

states. The method is able to accurately identify those boundaries. Then, applying

the method to synthetic data, we explore more fully those factors that influence per-

formance of the method: signal-to-noise ratio, numbers of states, state sojourn times,

and numbers of underlying experimental conditions. The results indicate the types of

experimental tasks where applications of the HSMM-MVPA method are likely to

yield accurate and insightful results.
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1 | BACKGROUND

In cognitive science, our ability to construct theories of cognitive pro-

cesses has outstretched our ability to adequately test the theories. Cog-

nitive science theories now postulate sequences of processes,

potentially progressing in parallel, that take fractions of a second. They

postulate distributions on the durations of these processes. They allow

for subjects to take alternative solution paths that can lead to the same

result. Essentially, each time a subject undertakes to solve a problem

they follow a different journey. In contrast to this theoretical richness,

the classic measures of cognitive science are very coarse: whether an

answer is correct, total time to perform a task, activation in a brain

region, and so forth. These measures compress the journey taken on a

problem into a single number. There are measures that do try to track

the process, notably verbal protocols and eye movements. However,

verbal protocols (e.g., Ericsson, 2006) provide descriptions at a temporal

grain size much above the speed of cognition and have problems with

their reliability. In principle, eye movements (e.g., Kowler, 2011) come

closer to the speed of cognition, but this feature is typically not exploited

and eye movement data tend to be aggregated into average measures.

Neuroimaging data on the other hand have the potential for illumi-

nating and constraining detailed theories of cognitive processing. Their

potential for analyzing moment-by-moment processing has certainly

been recognized (Gonzalez-Castillo et al., 2015; King & Dehaene,

2014). While the undertaking is not trivial, there have been advances

toward bridging the gap between putative cognitive processes and the

underlying neuromechanisms that mediate that processing (Palmeri,

Love, & Turner, 2017). Techniques for linking behavioral and neural

data and combining modeling data from multiple sources are being

developed (Borst & Anderson, 2017; Cohen et al., 2017; Rubin et al.,The authors thank Cvetomir Dimov and Qiong Zhang for their comments on the article.
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2017; Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017; Turner,

Rodriguez, Norcia, McClure, & Steyvers, 2016).

With our own work in this area, we (e.g., Anderson, Betts, Ferris, &

Fincham, 2010; Anderson, Lee, & Fincham, 2014; Anderson, Pyke, &

Fincham, 2016; Anderson, Zhang, Borst, & Walsh, 2016) have devel-

oped a method that can track what is happening as a particular indi-

vidual performs a specific task. The method combines spatial pattern

matching with temporal pattern matching. The spatial pattern

matching involves using multivoxel pattern-analysis (MVPA—Norman,

Polyn, Detre, & Haxby, 2006; Pereira, Mitchell, & Botvinick, 2009) to

recognize distinct mental states from whole brain activation. The tem-

poral pattern matching involves using hidden semi-Markov models

(HSMMs; semi-Markov because the models allow the duration of a

state to vary according to a density; Rabiner, 1989; Yu, 2010). Hutch-

inson, Niculescu, Keller, Rustandi, and Mitchell (2009) describe an

application of similar Hidden Process models to parsing the temporal

structure of fMRI data. Hidden Markov models (HMMs) have been

used to identify distinct states in resting state data (e.g., Eavani,

Satterthwaite, Gur, Gur, & Davatzikos, 2013; Suk, Wee, Lee, & Shen,

2016; Vidaurre, Smith, & Woolrich, 2017; Warnick et al., 2018).

Shappell, Caffo, Pekar, and Lindquist (2019) compare HMMs with

HSMMs and show that the HSMM approach, which is ours, is better

capable of estimating state sojourn time.

The HSMM-MVPA method is able to take the brain activity over

the course of individual experimental trials and parse it into a sequence

of unique brain states and corresponding sojourn times. Each state, or

brain signature, is simply a brain activation pattern that is roughly con-

stant during the sojourn time. Figure 1 illustrates a recent application of

this method to a novel mathematical task (Anderson, Pyke, & Fincham,

2016; Anderson, Zhang, et al., 2016). Each trial corresponded to solving

a particular problem, beginning with the problem presentation and end-

ing with the keying of a response. The method found evidence that

when solving these problems, subjects traversed four sequential states,

each corresponding to a unique brain signature (labeled here as

Encoding, Planning, Solving, and Responding). In addition to estimating

the brain signatures, the HSMM-MVPA estimates the corresponding

sojourn times for these states on each problem. The figure shows the

parses of four problems that differed from one another in their cogni-

tive demands, but that happened to all take 14 s (trial times ranged

from 9 to 30 s). The different sojourn times for states across these

problems reflect the different cognitive demands of each. Aggregating

these trial-by-trial parses allowed us to understand how subjects were

solving these problems in a way that we would not have been able to

had we limited our analyses to total time spent solving the problems or

aggregate brain activity over trials. For instance, Anderson, Pyke, & Fin-

cham (2016) and Anderson, Zhang, et al. (2016) showed that duration

of the Solving stage varied with the number of additions that partici-

pants had to perform.

That study and other related work have demonstrated the useful-

ness of the technique in analyzing imaging data. However, there are

methodological issues that need to be addressed so that this method

can be appropriately and successfully applied to imaging data. Con-

sider again the data in Figure 1. How do we judge how well this

method has actually captured the true state of affairs in these data?

Would some number other than four states better represent the data?

How do we define “better” and how do we evaluate such a claim? In

F IGURE 1 An illustration of the state sojourn times for four trials where different problems were solved. The four problems are given to the
left where the arrows denote new mathematical operators that students had learned. Each problem has different cognitive demands, and all
happened to take 14 s to solve. In each state, the axial slice (z = 28 mm at x = 0, y = 0 in Talairach space) highlights brain regions whose activation
in that state is significantly greater than the average activation during the entire problem. Note brain images are displayed in radiological
convention with left brain on the right
Source: Anderson et al. (2015)
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that experiment (and similarly with other experiments in which we have

applied the HSMM-MVPA method), individual trials may take up to

30 s (on the order of 1 min in other tasks) to complete. Further, there

typically is no clearly defined ground truth from which to begin evaluat-

ing the goodness of a particular N-state model. The only verifiable trial

markers are stimulus onset and the keying of a response: there are nei-

ther experimental task markers nor external cues that indicate when

“planning” stops and “solving” begins for example. If there were such

task markers, it would be a straightforward matter to measure the

goodness of fit between predicted and actual state boundaries (and of

course less need to apply the method in the first place, as we could

directly analyze brain activity during such well-defined periods).

The purpose of this article is to assess the veridicality of the state

divisions that the HSMM-MVPA method produces and to understand

the factors that influence the accuracy of the method and usefulness of

results. In the first part of this article, we apply the method to an fMRI

experiment (Lee, Fincham, & Anderson, 2015) that, unlike the experi-

ment shown in Figure 1, has well-defined task markers that will provide

a ground truth from which we can evaluate the goodness of model fits.

In that context we describe the methodology, the notion of informed

and uninformed models, and assessing model goodness using several

metrics. This will serve to frame the issues important for using the tech-

nique to infer useful models.

In the remainder of the article, we extend the experimental results

by applying the method to synthetic datasets that have been generated

by differing ground truth state structures. We will consider a number of

factors that influence how well the method performs, including signal-

to-noise, numbers of states, state sojourn times, and numbers of condi-

tions. The results will define a “sweet range” for various parameters of

experimental tasks where applications of the HSMM-MVPA method

are likely to yield both accurate and insightful results.

2 | HSMM-MVPA APPLIED TO
EXPERIMENTAL DATA: LEE ET AL. (2015)

2.1 | Study description

Figure 2 illustrates the two experimental conditions and experimental

sequence used by Lee et al. (2015). In an fMRI scanner subjects alternated

between studying a new arithmetic rule to fill in cell of a diagram and solv-

ing a problem where they had to apply the new rule (each rule was just

applied once). While the textual and graphical complexity was constant, in

some cases the critical information was in a graphical example (Figure 2a)

of the rule and in others it was in a verbal instruction (Figure 2b) on how

to apply the rule. After studying the instruction, participants had to apply

it to a problem presented identically for either study condition (Figure 2c).

This defined the two conditions of the experiment—Example and Verbal.

Figure 2d illustrates the detailed structure of the experiment which we

broke into five phases, for which we have recorded onset and offset:

1. Study: Self-paced study ended by clicking a done button.

2. Delay: A fixed 5-s duration repetition-detection task and a half-

second fixation. In the repetition-detection task, letters appeared

on the screen at a rate of 1 every 1.25 s. Participants were told to

click a match button whenever the same letter appeared twice

consecutively. This was intended to discourage participants from

extending their encoding of the instructions and to separate study

and solution periods.

3. Solve: Self-paced problem solution ended by clicking a done

button.

4. Respond: A self-paced response period that subjects had to enter

their answer on a keypad followed by a 1 s feedback. Subjects

were encouraged to have the answer ready to key quickly.

5. Detect: A 6–12 s repetition-detection phase followed by the fixa-

tion that preceded the next problem. As with the repetition-

detection task in the delay period, letters appeared on the screen

at a rate of 1 every 1.25 s. Participants were told to click a match

button whenever the same letter appeared twice consecutively.

This was intended to provide a baseline period of activity with

minimal cognitive demand.

Adjacent behavioral phases within each experimental trial are dis-

tinct from one another in terms of cognitive demands. While a phase

may be made up of just one or potentially more successive brain

states, each transition from one behavioral phase to another should in

F IGURE 2 The Lee et al. (2015) experiment. (a) and (b) Examples
of what subjects studied in the two conditions; (c) The common
presentation of problems to solve; (d) The sequence of events in a
trial

668 FINCHAM ET AL.



theory be accompanied by a corresponding transition in brain state.

The first question of interest is how well the HSMM-MVPA method

can do in discovering these behavioral phase boundaries.1

2.2 | Behavioral data

The experiment is described in detail in the original study. Here we

will focus on describing the resulting data and its processing. Twenty

subjects solved three blocks of 24 problems, equally divided into the

two conditions. Looking at correct problems (96.8% in the Verbal con-

dition and 93.5% in the Example) and excluding trials with problematic

features,2 there were 654 Verbal problems and 632 Example prob-

lems. Individual trials varied from 18 to 56 s with a mean of 28.3 s

and a SD of 4.8 s. Figure 3 shows the mean time (bars) subjects spent

in the five phases of the two conditions and the trial-to-trial variability

(SD error bars) in this time. The mean times for the two conditions are

nearly identical except for the Study phase where subjects needed

more time to process the example. There is low variability in the dura-

tion of the Delay phase or the Respond Phase. In the case of the

Delay Phase the low variability reflects the fixed timing of the experi-

mental procedure; in the case of Respond Phase this is because the

demands of keying in a two-digit number are fairly constant. The high

variability in the case of the Study and Solve phases reflects variability

in how long subjects took to understand the instructions and solve

the problem. The high variability in the Detect phase reflects the

experimental procedure (Figure 2d), which involved variability

(jittering) in the duration of this phase.

2.3 | Imaging data processing

2.3.1 | Overview

The data processing stream first passes whole brain fMRI activity

through standard fMRI processing steps and then converts this into a

form appropriate for application of HSMM-MVPA: a small number of

orthogonal dimensions of activity where the activity has been dec-

onvolved so that it represents processing at a point in time, which

generated the downstream BOLD response. Below we lay out the

steps in that processing.

2.3.2 | Imaging processing

Images were acquired using gradient-echo echo planar image (EPI)

acquisition on a Siemens 3T Verio Scanner using a 32 channel RF

head coil, with 2 s repetition time (TR), 30 ms echo time (TE), 79� flip

angle, and 20 cm field of view (FOV). The experiment acquired 34 axial

slices on each TR using a 3.2 mm thick, 64 × 64 matrix. This produces

voxels that are 3.2 mm high and 3.125 × 3.125 mm2. The anterior

commissure-posterior commissure (AC-PC) line was on the 11th slice

from the bottom scan slice. Acquired images were preprocessed using

AFNI (Cox, 1996; Cox & Hyde, 1997). Functional images were

motion-corrected using 6-parameter 3D registration. All images were

then slice-time centered at 1 s and co-registered to a common refer-

ence structural MRI by means of a 12-parameter 3D registration and

smoothed with a 6 mm full-width-half-maximum 3D Gaussian filter to

accommodate individual differences in anatomy. A functional mask

was created using the common reference brain. For each scanning run

(60 runs, 3 runs per subject × 20 subjects), in-mask voxels were

selected (47,315 in all) for processing. Within each run, BOLD

response values were generated for each voxel time series by normal-

izing each to have mean value of 100. Lastly, signal drift was

regressed out of each time series using a fourth-degree polynomial.

2.3.3 | Deconvolution

The primary goal of deconvolution is to take the lagged and diffuse

BOLD signal and extract an inferred activity signal for each time

point, effectively temporally aligning signal and behavioral data. The

resultant time series for each run from the image-processing step was

deconvolved by applying a Weiner filter (Glover, 1999) with a hemo-

dynamic response function to produce the estimate of the underlying

activity signal for each 2-s time point of the run. The hemodynamic

function is the SPM difference of gammas (Friston, Ashburner, Kiebel,

Nichols, & Penny, 2011: gamma(6,1)-gamma(16,1)/6). The Weiner

filter also requires specification of a noise-to-signal parameter and we

used a value of .1, as we have in other applications. The Appendix

shows that a wide range of plausible noise-to-signal values yields simi-

lar results.

2.3.4 | Principle component analysis

Principle component analysis (PCA) captures correlated sources of vari-

ance and the systematic variance common across subjects. The

resulting components form an uncorrelated basis set with the first few

components capturing the majority of the variance across subjects. The

deconvolved data for the 60 runs were concatenated and yielded a

20,747 time-point × 47,315 voxel matrix. These data were then
F IGURE 3 Mean durations with SD error bars of phases in the
two conditions of Lee et al. (2015)
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l2-normalized, and a spatial PCA was performed. We typically work

with the first 20 components and in this experiment the first

20 accounted for 48.9% of the total variance of the deconvolved data.3

These 20 components were retained and z-scored to ensure all compo-

nents are of the same scale. Additionally, this transforms the data such

that it can be thought of as roughly distributed as multivariate standard

normal (though with heavier tails) for the purposes of likelihood compu-

tations used by the method. The result is a 20,747 × 20 matrix. Finally,

all time points associated with incorrect trials and trials containing

greater than 2 time points that had excessive outliers were removed.

The resulting 18,206 × 20 matrix was used in the HSMM-MVPA analy-

sis. This represented 1,286 trials (654 Verbal problems and 632 Example

problems) that varied in length from 9 to 26 time points (points 2 s

apart) with a mean length of 14.16 time points. This provides the input

to the HSMM-MVPA method (see Figure 4a).

2.4 | HSMM-MVPA

2.4.1 | Methodology

The family of models we consider are those that are purely sequential.

There is no branching between states: each state of an N-state model

has an associated brain signature and sojourn time distribution, and is

guaranteed to follow the previous state4 (though it is possible to skip

states in a sequence). Fitting an HSMM-MVPA model involves esti-

mating a set of parameters that maximize the likelihood of the z-

scored PCA data. The parameter estimation process uses an expecta-

tion maximization algorithm (Dempster, Laird, & Rubin, 1977), starting

with neutral parameters5 and iteratively re-estimating parameters

until convergence. There are two sets of parameters (see Figure 4b)—

one set to specify the distribution of state sojourn times and another

set to specify the brain signatures.

1. The distribution of sojourn time in each state. The state sojourn

time distributions specify the number of time points that a sub-

ject spends in a state. We discretize the continuous gamma dis-

tribution to obtain a distribution of times that have the skewed

property typical of latency distributions. The probability of

spending m 2-s time points (a time point accounts for the 2 s it

takes to acquire 1 functional brain volume) in state i is calcu-

lated as:

G mð j vi,aiÞ=
ð2m+1

2m−1

gamma tð j vi,aiÞdt

where vi and ai are the shape and scale parameters for the contin-

uous gamma distribution for the ith state.. Note that this means

that the probability of spending 0 time points in the state is the

probability in the continuous gamma of a duration less than 1 s. In

these cases, the state is skipped and the model moves on to a suc-

cessor of that state.

2. The probability of the fMRI activity in the state. The z-scored PCA

components are approximately normally distributed. Their z-

scoring allows us to treat them as independent normally distrib-

uted values around the mean values for the state with a SD of

1. The set Fj of observed component scores fjk at time j for compo-

nents k will have probability:

P F j Mij� �
=
Y20

k =1
Normal fjk ,μik ,1

� �

whereMi is the set of means μik estimated for state i.

While the underlying model treats each time point in a trial as in a

single state, the estimation process considers all possible ways of

F IGURE 4 An illustration of the
HSMM-MVPA method for a 4-state
solution: (a) The input is the brain activity
on each trial, whose dimensionality has
been reduced by a principal component
analysis; (b) two types of parameters are
estimated from these data: brain signatures
that characterize brain activity during a
state and durations (sojourn times) which
specify the probability that states will last
different numbers of time points. With

these parameters state occupancies can be
calculated, which are the probabilities that a
time point is in a state. Summing these state
occupancies yields estimates of the state
sojourn times for each trial
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partitioning a trial of M time points into N states.6 Let m1 + m2 + � � � +
mN = M be one such partitioning where mi is the number of time points

in state i, 1 is the start state, and N is the end state. The probability of

this interpretation is

p m1,m2,…,mNð Þ=
YN

i=1
G mijvi ,aið Þ

Ymi

j
PðF jjMiÞ

h i

The estimation process calculates the summed probability of all such

partitionings. This is the probability of the data in that trial. HMM

algorithms can efficiently calculate the summed probability using

dynamic programming techniques (see discussion of explicit duration

HMMs in Yu, 2010). The parameter estimation process seeks to mini-

mize the summed log-likelihood of all trials.

While each partitioning treats a time point as being occupied by a

single state, the probability of a state at a time point is the summed

probability of all partitionings that assign that state to that time point.

This yields the State Occupancies as illustrated in Figure 4c. Summing

these probabilities over all time points and multiplying by the 2-s

duration of a time point gives the mean duration of a state on a trial,

as illustrated in Figure 4d.

2.4.2 | Model selection and fitting

As noted above, the models we are considering are purely sequential.

Nonetheless, such models can be somewhat complex. There are two

main decisions that need to be made that impact model complexity

and accuracy of the resultant model: identification of the appropriate

number of states and whether to use an informed or uninformed

model specification.

Number of states

The search for good model fits is currently done using a leave-one-

out cross-validation (LOOCV) procedure. Assuming a model with

some number of states N, this approach estimates the maximum-

likelihood parameters for all but one of the subjects and then uses

these parameters to calculate the likelihood of the data from the last

subject. This likelihood measures the success of using these parame-

ters to predict the data of the left-out subject. The process is rotated

through all the subjects and so can calculate the predicted log-

likelihood of the data for each subject assuming the N states.

The data of the all-but-one subjects should be fit better with more

states because there are more parameters, but this is no guarantee that

more states will predict the data of the left-out subject better. If using

more states is just overfitting, the predicted likelihoods will not be bet-

ter. A simple sign test can be used to identify “better” models by noting

whether the number of subjects better predicted is more than would

be expected by chance. An N-state model is justified if it predicts better

significantly more subjects than models with fewer states. More gener-

ally, a model with more parameters is to be preferred over a model with

fewer parameters only if it fits significantly more subjects.

Model specification

While number of states is one salient feature determining model com-

plexity, equally important is the number and types of parameters being

fit. Given a particular experiment, we can impose various constraints on

brain signatures or latency distributions. In the current study, except

for the Study Phase, the two study treatments result in similar times

and variability (Figure 3) among the remaining behavioral phases of a

trial. Therefore, we chose an HSMM that is free to estimate different

timing parameters and brain signatures for the first state but con-

strained to fit the remaining states with a set of common parameters

between the two experimental conditions. To illustrate and assess the

consequence of this choice, we also fit two other HSMMs that started

with less knowledge of the experiment. The least informed model did

not know about the two study conditions and rather fit the same time

parameters and brain signatures to all trials. A more informed model

knew there were two conditions but did not know about where the

condition differences might lie and so estimated separate time parame-

ters and brain signatures for all states. These three models are referred

to as State-1-Separate, All-States-Shared, and All-States-Separate. The

All-States-Shared model had the fewest parameters, estimating just

one set for all states. The All-States-Separate model had the most

parameters, estimating two sets for all states. The State-1-Separate

model estimated two sets only for the first state.

2.4.3 | Evaluation of models

Figure 5 shows the improvement in mean log-likelihood of the data

for the left-out subjects during LOOCV as a function of number of

states estimated. This is represented as the improvement over just a

single state model. The largest effect is driven by number of states

rather than the difference among the model choices. Informed and

uninformed all converge to similar asymptotic performance around

F IGURE 5 Improvement in mean log-likelihood over 1-state
models for three types of HSMM-MVPA model specifications
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12 states. The 12-State State-1-Separate model is the best fitting of

all models in terms of fitting more subjects better.7

Focusing on the State-1-Separate models, the best fitting value of

12 states is many more than the five phases in the experiment. The

finding of additional states is not unexpected, as the each of the

behavioral phases of the experiment may involve multiple cognitive

demands. The question of interest is whether some state boundaries

align well with the behavioral task boundaries of the experiment.

Figure 6 compares the average durations of the five behavioral phases

with the average sojourn times for various numbers of states:

5 States: This is the fewest number of states that could match to the

behavioral phases. The boundary between the first two states

matches fairly closely the boundary between Study and Delay. How-

ever, it has only two states to cover the three phases of Delay, Solve,

and Respond and identified two states in the Repetition phase.

6 States: This is the smallest number of states that seems to capture

the boundaries between the phases. The extra state again is a division

of the repetition phase into two states. The root-mean-square devia-

tion (RMSD) between the four phase boundaries and the first four

state boundaries is 0.59 s.

7 States: Adding an additional state results in the further division of

the repetition-detection phase into three states. The RMSD between

the 4 phase boundaries and the first four state boundaries is .48 s.

12 States: This is the best model as indicated by likelihood improve-

ment in the LOOCV. Again, there are state boundaries near the

behavioral phase boundaries, but they have a RMSD of .56 s. Which

is not as good as the 7-state solution. As we will demonstrate with

synthetic data, sometimes the best-performing model in LOOCV can

have more states than actually generated the data.

Figure 7 shows the RMSD for the three models for different num-

bers of states and compares this to various measures of chance perfor-

mance. Chance at p = .01, p = .001 and p = .0001 levels were calculated

as follows: For an N-state model N − 1 boundaries were placed with

equal probability anywhere from the beginning to the end of condition.

Then for each of the actual N − 1 mean phase boundaries (Figure 6) we

calculated its distance from the closest of the randomly placed bound-

aries and an RMSD for these random boundaries. Repeating this pro-

cess 10,000,000 times provided a basis for determining how likely a

random placement of N − 1 boundaries would achieve various mea-

sures of RMSD. As another baseline for comparison, the Equal Spaced

F IGURE 6 Comparison of mean state
sojourn times and mean phase durations
for each condition of the experiment.
Results are shown for State 1 Separate
models of differing numbers of states.
Dotted vertical lines denote behavioral
phase boundaries

F IGURE 7 Deviation between behavioral phase boundaries and
estimated boundaries from different models shown with several
measures of chance performance
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series in Figure 7 shows chance performance as a function of number

of states where the state boundaries are simply chosen to be tempo-

rally equally spaced. From 5 to 12 states, the State-1-Separate models

are doing best at capturing behavioral phase boundaries. The 5–13

state models are doing better than the .001 chance measure and the

6, 7, 8, and 11 state models are doing better than even the .0001

threshold. The 7-state State-1-Separate model is performing best at

identifying the behavioral phase boundaries, achieving the same level

of fit as the 8-state model with one fewer state.

Given that the focus is on behavioral phase boundaries and not

within-phase states, we chose to focus on the 6-state State-

1-Separate solution because it is the fewest state solution where

predicted boundaries and the five behavioral phase boundaries appear

to align. While its average state boundaries are close to the average

phase boundaries, it is another question how well it can capture the

trial-by-trial variation in phase duration. Figure 8a–c shows the corre-

spondence for the three high-variance phases and the corresponding

states (combining States 5 and 6). There is a striking clustering along

the main diagonal (in each case the best fitting line has a slope of

about 1). Figure 8d gives all intercorrelations between pairs of phases

and states with the high variance pairs highlighted. The high correla-

tions are those illustrated in Figure 8a–c. In total, Figure 8 shows that

the HSMM-MVPA method is able to capture with a fair degree of

accuracy the duration of individual phases on individual trials.

The analyses so far have been based on the 20 PCA values con-

structed from 47,315 voxels. Figure 9 goes back to the deconvolved

voxel patterns and displays the average activity in each state for each

condition.8 The activity patterns are quite similar between the two

conditions across all corresponding states with the exception of the

Study states (RMSD per voxel of .05% for corresponding states com-

pared to .22% for noncorresponding states). The two Study states are

slightly more similar than they are to other non-corresponding states

(.15% versus .22%). The Study states show high activity in visual areas

in both conditions. When studying an example, there is more prefron-

tal and parietal activity than when studying verbal instructions. The

two Solve states also both show increased parietal and prefrontal acti-

vation. The two Respond states show particularly high activity in the

motor areas. The Detect states show decreased activity in prefrontal

and motor areas. The activity pattern between Detect 1 and Detect

2 are quite similar but Detect 2 shows increased polar frontal activity

suggesting subjects are entering default mode.9 Thus, the HSMM-

MVPA method has not only found sensible temporal patterns but also

sensible spatial patterns in the brain.

Summarizing the results thus far, when considering data from an

actual experiment, the HSMM-MVPA method was able to identify

sensible states both in terms of their matchup to actual behavioral

phase patterns (Figures 6 and 8) and in terms of the brain activation

patterns in the identified states (Figure 9). While we have shown that

F IGURE 8 (a)–(c) Correspondence between true behavioral phase durations on a trial and estimates from the State 1 Separate 6-state model.
Best fitting linear equations: (a) Y = −0.62 + 1.04X; (b) Y = −0.17 + 0.94X; (c) Y = 1.82 + 0.92X; (d) correlation between all phase durations and
sojourn time estimates
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indeed the method recovers task boundaries accurately and yields

sensible activation-based results, there remain a few open issues that

can only be addressed using synthetic data. First, we will use synthetic

data that has properties similar to the experimental data to directly

assess the inferred model accuracy for both latency and activation

patterns. To paint a more general picture, we will examine results over

varying levels of signal-to-noise. Finally, the remainder of the article

examines application to a range of synthetic data generated from dif-

ferent ground-truth state structures. This will provide information

about the kinds of experiments where we might expect accurate and

useful models.

3 | HSMM-MVPA APPLIED TO
SYNTHETIC DATA

Results from the experimental data suggest two main issues that need

to be addressed: direct assessment of model derived sojourn times

and activity patterns, and determining the best number of states

suggested by the LOOCV procedure. With the experimental data,

evaluation of model goodness was assessed on how well task phase

boundaries aligned with model derived boundaries, and the reason-

ableness of the state activity patterns. In this section, we transition

from the 6-phase experimental data and focus on simulated data with

a 6-state ground-truth. Doing so allows us to directly assess the good-

ness of discovered models by measuring how well models can capture

the now known ground truth state sojourn times and activity patterns.

We then consider more general 6-state models, and finally the deter-

mination of numbers of states.

3.1 | Direct assessment 1: Synthetic
experimental data

Building on the experiment results, the next set of analyses uses the

6-state State-1-Separate model from Section 2 as the ground truth,

generating synthetic data sets using those activity patterns and

sojourn times as ground truth. Note in the case of the real experimen-

tal data, there was not ground truth as to the true number of states,

but only the knowledge that some of the state boundaries should

align with the behavioral phase boundaries. Here the goal is to

F IGURE 9 Mean activity during each state for each instruction condition. Darker regions reflect negative activity values and lighter regions
reflect positive activity values. The z-coordinates refer to the location of the midpoint of each slice in Talairach space. Note brain images are
displayed following the radiological convention with left brain shown on the right
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understand how well the HSMM-MVPA technique performs in recov-

ering known ground truth states, and how well it does so across vary-

ing amounts of noise.

The HSMM-MVPA method model assumes a distribution of activ-

ity patterns in a state and distributions of state sojourn times. This

first set of synthetic simulations used the state sojourn times that

were estimated for each of the 1,286 real trials. This provides tempo-

ral distributions of state sojourn times that reflect both within-subject

and between-subject variation. The synthetic data for each time point

of each trial were then generated as a weighted combination of noise

and signal appropriate to the states for those time points:

1. Signal: The signal was based the six brain signatures estimated in

the experiment. To incorporate individual differences in brain

activity, brain signatures were created for each subject that were

an equal weighting of that subject's mean activity during each

state and the grand average state signatures.10 The signal for a

time point t, S(t), was a combination of the brain signatures, Bi, of

the states i weighted by how much of the time point the states

occupied, wi(t)

S tð Þ=Σwi tð ÞBi

65% of time points were occupied by a single state, in which case

the signal was just the brain signature of that state.

2. Noise. There were two important properties of the data to capture

in the noise that is added to the signal. First, the z-scored PCA

scores have more extreme values than would be expected from a

standard normal distribution—0.39% of the scores are greater than

4 SDs from the mean, which is about 60 times more than would be

expected with a normal distribution. Second, there is a temporal

correlation between adjacent measures. The values in one time-

point have a correlation of .77 with the values in the next time

point, .34 with the values in time points that are 2 time points

downstream, and .08 with time points that are three time points

downstream. Data that approximate these properties can be cre-

ated by making the noise for the sample t, N(t), a running average of

four samples from a t-distributions with degrees of freedom 3, T3:

N tð Þ= T3 tð Þ+ T3 t+1ð Þ+ T3 t+ 2ð Þ+ T3 t+3ð Þ

The t-distribution provides the excess of extreme values. Tempo-

ral correlation is created because adjacent noise samples share some t

samples in their sum.

The synthetic data, F(t), is created as a weighted sum

F tð Þ= S tð Þ+ aSNR*N tð Þ, aSNR = sqrt σ2 Sð Þ= σ2 Nð Þ*SNR
� �� �

where SNR is the chosen signal-to-noise ratio. These values are then

z-scored and have extreme values truncated to the range −5 to 5 just

as the actual data was processed described earlier. This generates a

matrix of 18,206 time points × 20 dimensions for the synthetic data

like the original data with similar properties. Models can then be fit to

the resulting data.

We fit the 6-state model to synthetic data generated with differ-

ent signal-to-noise ratios from .001 to 1.0. Figure 10 shows the

effect of SNR on various properties of the resultant model estimates.

Figure 10a,b provide measures that point to a value of SNR that

characterizes our experiment. Figure 10a shows how the trial-to-trial

variability in estimated state sojourn times decreases with increasing

SNR. It drops off sharply from a SNR of .01 to .1, reaching an asymp-

totic value close to the 1.52 trial-to-trial variability in state sojourn

time that we estimate, Figure 10b shows how the computed root-

mean-square (RMS) of the estimated brain signatures11 increases

with signal-to-noise ratio. The RMS of the brain signatures increases

sharply after a SNR of .1, reflecting how the signal becomes domi-

nated by the brain signatures. The RMS value we obtained for our

brain signatures was .265. The circles in Figure 10a,b show the

values for the experiment (the SD in sojourn times was 1.52 and

RMS of the brain signatures was .265). The correspondence between

these measures for synthetic and experiment data suggest that 0.1 is

a reasonable estimate of SNR of the experiment data. The synthetic

data at this setting has similar properties to the real data: proportion

of values greater than 4 SDs from the mean (.34%) and correlations

of brain signatures at various lags (.75, .28, and .22 for lags 1, 2, and

3, respectively).

Parts (c) and (d) of Figure 10 show measures of how well the

HSMM-MVPA method can recover the ground truth (these are mea-

sures that will be reported for other synthetic data sets as well).

Figure 10c shows how well the estimated brain signatures correlate

with the generating brain signatures as a function of SNR. Figure 10d

shows the accuracy in estimating the ground truth state sojourn times,

calculated as error in estimate divided by true sojourn time. In both,

there is a fairly large loss as SNR drops from .1 to .01. There is good

success at recovering ground truth for a SNR of 0.1, which matches

properties of the fit to the original data (Figure 10a,b).

3.2 | Direct assessment 2: General 6-state model
applied to 6-state ground truth

The synthetic data used in Section 3.1 were a rather special case of

ground truth, both because they were based on the solution of an

HSMM-MVPA and because they reflected the peculiarities of a partic-

ular experiment. To get a sense of more general performance, we gen-

erated 100 ground truths that were single-condition12 experiments

with 6 states. The sojourn times and brain signatures for these states

were loosely in the same range as the experiment and reflected the

potential of individual differences:

State sojourn times: Each state had a mean sojourn time, Mi, selected

from a uniform distribution between 2 and 8 s:
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Mi �U 2,8ð Þ

Six such state sojourn times sum on average to 30 s, which is about

the duration of trials in our experiment. However, various ground

truth models varied from 20 to 40 s in the summed mean sojourn

times of their 6 states. The individual trials were generated from

gamma distributions with a shape parameter, ai, selected uniformly

from 2 to 5 (the range in the fits for the experiment)

ai �Uniform 2,5ð Þ

The scale parameter of the gamma would then be

bi =Mi=ai

This produced state sojourn time parameters like those estimated for

the experiment. To reflect individual differences, the scale parameter

for an individual subject j was itself distributed around the mean scale

according to a gamma:

bij �Gamma 15,bi=15ð Þ

As a consequence, subject mean state sojourn times varied around

population mean state sojourn times with a SD of .25 of the popula-

tion mean sojourn time. The times for state i and subject j would then

be gamma distributed on individual trials:

tij �Gamma ai,bij
� �

Brain signatures: Brain signatures were generated as 6 states of

20 values randomly selected from standard normal.

Bki �Normal 0,1ð Þ

which gives the kth value for the ith state. Subject j's brain signatures

were generated by adding to the group signatures values another set

of standard normal weighted .5.

Bkij �Bki + :5*Normal 0,1ð Þ

As before, the signal values for individual time points were generated

according to the state occupancy of that time point. This was mixed with

normal noise according to different SNRs. We considered a reduced

range of SNRs—from .009 to .23, which was where the major changes

were in Figure 10. To have a similar power experiment as the actual

experiment, the synthetic data involved 20 subjects each with 100 trials.

Averaging over the 100 experiments at each SNR, Figure 11a

shows the correlations of the generating brain signatures with the

estimated brain signatures. Figure 11b shows the error in estimating

the state sojourn times calculated as absolute error divided by true

sojourn time of that state. While performance is not as good as the

special case in Figure 10, Figure 11 shows relatively good

F IGURE 10 (a) Measure of the
variability in state sojourn times;
(b) measure of the magnitude of the
brain signature; (c) correlation
between estimated and true brain
signatures; (d) accuracy in
estimated state sojourn times.
Circles highlight values at SNR of .1
that characterize the Lee et al.
experiment
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performance with SNRs greater than .05. At a SNR of .1, which

seemed to characterize our experiment, the average correlation of the

estimated brain signatures with the ground truth signatures is about

.98 and the average error in estimating state sojourn time is about 8%

of the true sojourn time.

3.3 | Assessing number of states found by LOOCV

Figure 11 illustrates fits of 6-state models to data where the ground

truth is 6 states. Recall, however, that in the experimental data

(Section 2), models with greater than 6 states were discovered, with

the maximal-likelihood model having 12-states. While the 12-state

model did well capturing experiment phase boundaries, it did not do

quite as well as fewer-state models. Here, we consider the issue of

models that LOOCV has identified as best in terms of maximal likeli-

hood, yet that have greater than the six ground-truth states. In order

to understand how such models are to be interpreted and the condi-

tions of the data that can result in solutions with greater than ground

truth numbers of states, we simulated 4 sets of 50 datasets, each

under different constraints. All datasets were generated similarly to

those of the prior section and reported in Figure 11 but with the

signal-to-noise ratio fixed at 0.1. The two factors we varied were fea-

tures that we thought might produce more states than are in the gro-

und truth. First, the temporal correlation in the noise might mean the

procedure over-estimates the likelihood of excess states. Second,

each partitioning assumes a whole scan is occupied by a state, even

though averaging over partitions produces the fractional state occu-

pancy (Figure 4d). Extra states might be created to handle scans that

are mixes of adjacent states. Therefore, the two factors we varied

were whether the added noise was temporally correlated or not, and

whether the 6 ground-truth states partially or wholly occupied the 2-s

time-points that make up individual trials.

Figure 12a summarizes the maximal-likelihood number of states

gotten from LOOCV for each of the 50 datasets generated with tem-

porally correlated noise where ground-truth states were allowed to

partially occupy 2-s time-points. The simulated data in this cell reflect

the same construction as that described for simulation results shown

in Figure 11. Using a threshold of 16 subjects predicted better

(p < .01 under a sign test), each of the 50 synthetic data sets were

better fit by models with 7–13 states, the mode being an 8-state solu-

tion (32% of the cases).

Examining the brain signatures estimated for the best state solu-

tions selected by the LOOCV method, each of the six generating brain

signatures was correlated with one or more of the estimated brain sig-

natures. Extra states had brain signatures related to the original 6 in

two ways:

Splits: In some cases, the better fitting model had two states

corresponding to one of the generating states. The brain signature for

the first state was also correlated somewhat with the brain signature

for the preceding state while the brain signature for the second state

was correlated somewhat with the subsequent state.

Bridges: In some cases, a state typically 1 time point in length, was

placed in between two generating states. This state correlated rela-

tively strongly with both of the adjacent states. This state also cap-

tured the transition between the two states.

The HSMM-MVPA method assumes that whole states occupy

time points even as it considers all ways of partitioning states into

sequences of time points. Some time-points will have a mixture of

two states and better fits can sometimes be obtained if a state is gen-

erated that is a blend of two states. Further, adjacent states include

temporally correlated noise as well, also contributing to the need for

bridge states. The remainder of Figure 12 shows results from the rest

of the simulated data, illustrating the relative contributions of tempo-

rally correlated noise and partial occupancy of time-points to discov-

ery of solutions with more states than ground truth.

Figure 12b shows results for each of the 50 datasets generated

where the noise was not temporally correlated, but where ground-

truth states were still allowed to partially occupy 2-s time-points.

When correlated noise is not present, we are less likely to find better

higher-state solutions with the mode at 42% 6-state solutions

matching ground truth. Figure 12c shows results for the 50 simulated

datasets with temporally correlated noise, but where 2-s time points

were wholly occupied. Similar to the partial occupancy results in

Figure 12a, 98% of the solutions were greater than six states, with a

mode of 40% 8-state solutions being best. Finally, Figure 12d shows

results for 50 simulated datasets generated with uncorrelated noise

and whole time-point state occupancy. For these datasets, one can

F IGURE 11 Accuracy in
recovering the parameters of an
arbitrary 6-state ground truth
generating model for different
SNRs. Circles highlight values at
SNR of .1 that characterize the Lee
et al. experiment
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see that there is little need of bridge states. This is reflected in the

results: 98% of the best solutions are in fact 6-state solutions.

In almost all cases, the 6 state solutions were better than fewer

states and corresponded closely to the ground truth. However,

because of the fact that there is temporally correlated noise and

states partially occupy time points, the LOOCV may well select a

higher-state solution as better. When this happens, adjacent states in

the higher-state solution will be correlated. This indicates that one

should be cautious about selecting high state solutions where adja-

cent states are correlated. In past research we have chosen not to use

a higher-state solution when there were correlated states. For

instance, Anderson, Pyke, & Fincham (2016) and Anderson, Zhang,

et al. (2016) used a 4-state solution even though LOOCV preferred

5 states with 2 correlated states.

3.4 | Exploration of more general ground truth state
structures

3.4.1 | State recovery as a function of number
and sojourn times of ground truth states

Results thus far show fairly successful recovery of 6-state structures

with a SNR of .1. To explore success with different numbers of states,

we generated cases where the ground truth varied from 2 to 18 states,

looking only at the cases of an even number of states. The brain

signatures and sojourn times for the states were randomly generated as

in the previous simulations using again 20 subjects with 100 trials each.

For each choice of states, 100 data sets were generated with a SNR of

.1. Figure 13a shows the ability to recover the generating brain signa-

tures and Figure 13b shows the accuracy in recovering state sojourn

times. Basically, the accuracy at recovery is high for the beginning and

end states and decreases as the states are further from these end

points. The brain signature correlation for the middle states of the large

number of states is about .85 and proportion error is about .18 of true

means. These are fairly good but Figure 13c adds a cautionary note. It

shows how often local minima fits were obtained when starting from

neutral parameters. While this is infrequent with small numbers of

states, it rises to about 20% as the number of states increases.13 The

local minima fits typically do a very poor job of recovering the state

structure of the experiment. The results shown in Parts (a) and

(b) would be considerably worse for high numbers of states had the

local minima fits been used.

Figure 13 identifies limitations that arise with more states. What

about effects of the brevity of states? So far, we have considered

cases where states averaged between 2 and 8 s. To explore success in

recovering short states, we varied the base sojourn time of a state

from .5 to 5 s keeping the number of states at 6. Mean sojourn times

of individual states in a synthetic state structure could vary from .4 to

1.6 the base sojourn time.14 As in the previous cases, 100 data sets

F IGURE 12 Number of 50 data sets (generated from a ground truth of 6 states and SNR of .1) best fit by models of differing numbers of
states. The four panels reflect whether there was correlated noise in the data sets and whether ground truth states could occupy a fraction of
a time point

678 FINCHAM ET AL.



were generated for each duration with a SNR of .1 (20 subjects,

100 observations per subject). Figure 14a shows the ability to recover

the generating brain signatures and Figure 14b shows the accuracy in

recovering state sojourn times. Accuracy at recovery of state struc-

ture for the shortest base sojourn time of .5 s is particularly bad and

accuracy increases close to an asymptote at about 3.5 s. Part of the

limitation at short sojourn times may reflect the use of 2 s time points

but the slow temporal properties of the BOLD response and the auto-

correlation in the signal are likely also important in limiting accuracy

for brief states.

3.4.2 | State recovery with multiple conditions

Except for the simulations of the data from the real experiment, both

data and models have just had a single condition. We simulated two

experiments where the sojourn times of some states varied as a func-

tion of 4 conditions. Past experiments (e.g., Anderson & Fincham,

2014; Anderson et al., 2015; Anderson, Pyke, & Fincham, 2016; Ander-

son, Zhang, et al., 2016), where we have used HSMM-MVPA, have had

multiple conditions and we were interested in what states these condi-

tions affect. Again, 100 data sets were generated with a SNR of .1 and

the results for these two models are shown in Figure 15:

Top panels: There were 4 states and the mean sojourn times of states 1, 3,

and 4 did not vary with conditions and were 3, 4, and 5 s, respectively.

State 2 lasted an average of .5, 2.5, 4.5, and 6.5 in the four conditions.

Bottom panels: There were 5 states and the mean sojourn times of

states 2, 3, and 4 did not vary with conditions and were 3, 4, and 5 s,

respectively. States 1 and 5 either were 1 or 4 s. Crossing these possi-

bilities yielded the four conditions.

F IGURE 13 Recovery of
ground truth generating models
with different numbers of states:
(a) Correlations of recovered brain
signatures with generating brain
signatures; (b) mean proportion
error in estimating state sojourn
times; (c) proportion (out of
100 synthetic data sets) of
convergence to local minima from
neutral parameters. SNR = 0.1

F IGURE 14 Accuracy in

recovering the parameters of
6-state ground truth generating
models with different mean state
sojourn times: (a) Correlations of
recovered brain signatures with
generating brain signatures;
(b) mean proportion error in
estimating state sojourn times.
SNR = 0.1
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Figure 15 illustrates the fit of two types of models to each experi-

ment. The less informed models (Figure 15a,c) fit a single model with

the correct number of states to all the data and then calculated the

mean sojourn time of the states for the trials in each condition. This

reflects one approach to discovering what states are affected by con-

dition. The more informed models (Figure 15b,d) fit a model that esti-

mated separate sojourn times for the states that varied with

condition15 while estimating the same sojourn times for other states.

This reflects a situation where one knows what state is affected and

wants to estimate this effect. The panels in Figure 15 show the mean

sojourn times of the states for the trials for each condition. The

HSMM-MVPA does a good job in all cases of identifying the sojourn

times of the states. The error bars reflect 1 SD of the means over

100 simulated data sets. The less informed models tended to underes-

timate the effect of condition and assign a little of the effect of condi-

tions to other states. The more informed models performed a bit

better.

4 | CONCLUSIONS

We have developed the HSMM-MVPA methodology on the assump-

tion that the resultant models will accurately identify brain states and

their sojourn times, allowing for meaningful mappings between brain

activity and corresponding cognitive processes. The critical output of

the process is a parsing of a long trial into a sequence of periods of rela-

tive constant mental activity. One can then examine the patterns of

brain activity during these periods as well as determine how the sojourn

times of these states vary with experimental conditions. This article has

been concerned with assessing how well the method does at identify-

ing the states that are driving systematic brain activity over the course

of a trial and the factors that affect these results. While much of the

presentation was concerned with using synthetic data to identify where

the HSMM-MVPA method gave good results, we started out by apply-

ing the approach to an experiment that had ground truth about where

some of the state boundaries should lie. That ground truth was pro-

vided by the five phases of the experiment. The boundaries between

these phases were identified fairly well by any HSMM-MVPA that had

6 or more states. Using a LOOCV criterion, there was evidence for up

to 12 states (Figure 5). However, models with fewer than 12 states

resulted in better identification of state boundaries (Figure 7).

The best-performing model in terms of the results of an LOOCV

can sometimes have more states than actually generated the data, as

shown with synthetic data (Figure 12). This happens in part because

actual states do not start and end at the boundaries of the 2-s time

points and because of temporally correlated noise. Fit, measured as

the likelihood of the observed time point values, can be improved by

creating extra states that are merges of adjacent states. A sign that a

model has more states than the state structure that generated the

data is high correlation between adjacent states. The choice about

F IGURE 15 Recovered state sojourn times for ground truth generating models where some state sojourn times vary with condition: (a) and
(b) 4 states where state 2 varies; (c) and (d) 5 states where states 1 and 5 vary. SNR = .1
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number of states should be motivated by theoretical conditions as

well as the results of the LOOCV. Certainly, one wants the chosen

model to result in better prediction of the imaging data than a model

with fewer states. But if a theoretically motivated model satisfies this

necessary condition and if states in more complex models are corre-

lated with the states of that model, one should consider working with

the theoretically motivated number of states.

If one has a firm idea of the number of states that should be present,

the question of interest is whether one can accurately identify them in

the imaging data. While there is never a guarantee that the peculiarities

of one's imaging experiment will not lead to failure, the results were

fairly good for SNRs greater than .05. The noise contributing to the SNR

will be determined by quality of scanning and factors of experimental

control. The signal contributing to the SNR will be determined by how

strongly the individual states differ in their brain signatures.

State recovery decreases somewhat as one seeks to identify more

states (Figure 13) and falls of quite sharply for states briefer than 2 s

(Figure 14). There was success (Figure 15) at identifying states that

were brief as half a second in one condition as long as there were

other conditions where the states were longer, enabling a good esti-

mate of the state brain signature.

Many cognitive tasks studied by fMRI average less than 2 s and this

methodology is not appropriate for these. We have developed comple-

mentary HSMM-MVPA methods with EEG, MEG and ECoG that have

shown success in parsing such brief tasks into states (e.g., Anderson,

Pyke, & Fincham, 2016; Anderson, Zhang, et al., 2016; Anderson et al.,

2018; Zhang, Walsh, & Anderson, 2017, Zhang, van Vugt, Borst, &

Anderson, 2018). On the other hand, the current results indicate that

one can be fairly optimistic analyzing fMRI data from tasks in the 5 s to

1-min range, provided one is not trying to identify a great many brief

states. This is where we have had success applying the method to study

mathematical problem solving (e.g., Anderson et al., 2014; Anderson,

Pyke, & Fincham, 2016; Anderson, Zhang, et al., 2016). More generally,

one might expect success in problem solving and reasoning tasks that

typically fall within that time range. These are important tasks in under-

standing complex human cognition and have been relatively neglected

in neural imaging. We hope researchers interested in such tasks will find

these methods of use. In using these methods, researchers should keep

in mind that the method may split single cognitive states into multiple

states (Figure 12) and theoretical considerations might motivate choos-

ing a smaller number of states.

4.1 | Analyses and models

The analyses and models in this article can be obtained at http://actr.

psy.cmu.edu/?post_type=publications&p=31445.
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ENDNOTES

1 The Study and Solving phases by themselves were too brief for useful

HSMM-MVPA results (as we will show). However, the full experimental

trial is of the length where a HSMM-MVPA is appropriate.
2 The last trial of each scanning run is excluded as the deconvolution pro-

cess to be described results in the tail end of that trial being truncated.

Trials having excessive outliers, defined as containing two of more

scans where greater than 5% of the voxels were marked as outliers dur-

ing initial image processing described below.
3 The next 20 accounted for 6.5%. So by 20 dimensions we have reached

the point of very diminishing returns in accounting for variance.
4 Note a strict transition order does not necessarily imply that every

inferred state will have a unique brain signature. It is possible that a

brain signature associated with state k in a sequence of states repeats

in one (or more) of states k + 2 or later (it likely would not repeat in

state k + 1 as that case would typically result in the state getting

absorbed into state k with a longer sojourn time).
5 The neutral starting parameters for a brain signature are 0's for each

dimension, the average value over all scans. The neutral starting gamma

distribution has a shape of 1 (making it an exponential distribution) and

a scale equal to the maximum length of a trial divided by the number of

states.
6 The number of such partitionings is (M + N-1)!/[M! * (N − 1)!].
7 Of the other State-1-Separate models, it fits 17 or more of the 20 sub-

jects better except for 13 states (14 subjects better) and 14 states

(12 subjects better). It fits 17 or more subjects better than the All-

States-Shared models up to 12 states and 13, 16, and 13 subjects bet-

ter than All-States-Shared models with 13–15 states. It fits 15 or more

subjects better than the All-States-Separate models up to 9 states and

12, 11, 11, 13, 13, and 13 subjects better than All-States-Separate

models with 10–15 states.
8 We could use the estimated means for each condition and state to simply

reconstruct estimated activity patterns. The result would be identical

maps between both conditions for every state except the first. These

need not be the case using the procedure that generates Figure 9.
9 Detect 1 has low temporal variability (SD across trials is .17 s) while the

Detect 2 has relatively high variability (1.88 s). It appears that subjects

spend a relatively constant initial period on every trial in the Detect

1 and then move into a more Default-like mode of processing for the

rest of variable phase (which varies in length from 6 to 12 s, Figure 1d).
10 Subjects' brain signatures will deviate from the grand average because

of both individual differences and noise. Thus, a representative reflec-

tion of true subject is approximately captured by an equal weighting of

subject state means and the overall state means.
11 This is derived from the variability of 20 (values) × 6 (states) × 2 (condi-

tions) PCA values that define the brain signatures. The average scan-to-

scan variability of the PCA scores is normalized to be 1. Thus, if there

were no noise the root mean square of the brain signatures would be

approximately 1.
12 Later we will examine random multicondition experiments.
13 We discovered that these were local minima by comparing the neutral

starting parameter fits with what fits using starting parameters based

on the ground truth generation. Without that ground truth generation

we would have had to explore a range of alternative starting points.
14 Thus, if the base duration was .5 s individual states could have means

from .2 to .8 s. This is the same factor of 4 range as used for the previ-

ous synthetic data sets.
15 Unlike the fit to the real data, this model estimated a single brain signa-

ture for all states. This is a more common assumption (e.g., Anderson &

Fincham, 2014; Anderson, Pyke, & Fincham, 2016; Anderson, Zhang,
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et al., 2016) where we assume the processing in a state involves the same

brain regions in all conditions but might vary in duration with condition.
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APPENDIX

As discussed in the main body of the article, through a series of

processing steps, voxel time series data are transformed into a form

suitable for HSMM-MVPA processing. One critical step in this

processing stream is to generate an estimate of the underlying “activ-

ity signal” the drives the measured BOLD response. Time series data

from each scanning run are deconvolved using a Weiner filter (Glover,

1999) with a hemodynamic response point-spread function to accom-

plish this goal. The hemodynamic response function is the SPM differ-

ence of gammas (Friston et al., 2011: gamma(6,1)-gamma(16,1)/6).

The Weiner filter requires an additional parameter that reflects an

estimate of the noise-power-to-signal (NSR) ratio in the data. In this

article and in other application we have used an NSR parameter of

0.1. Here we analyze the consequences of different choices.

The NSR parameter reflects noise introduced by the measurement

of the BOLD signal (the scanner) and subsequent processing steps, and

not noise associated with the underlying activity process that yields the

BOLD response. There can be a number of possibilities for estimating

what might be a reasonable starting point for NSR (e.g., Welvaert &

Rosseel, 2013). One possibility is the ratio of variances between a white

matter region and a highly responsive brain region. For example, in the

current dataset, the ratio of variance of the BOLD signal in a predefined

PSPL region to the variance of a predefined white matter region is

0.05. However, it is not clear what the best estimate might be. Here we

show that results gotten from an HSMM-MVPA analysis are quite

robust over a fairly wide range of values for the NSR parameter that

includes an NSR of .1, used in the article.

Parameter exploration

We explored a range of NSR for the Weiner filter from .0001 to

1. For each value of NSR, we recomputed Step 2 of the data

processing stream described in the main text, followed by the PCA

processing in Step 3. The HSMM-MVPA procedure was applied to

each resultant dataset. The measure of performance reported here

aligns with evaluation metrics described in the main text: how well we

could predict behavioral task boundaries on a trial-by-trial basis. For

each NSR, we computed the mean absolute deviations (MADs)

between predicted and actual behavioral task boundaries.

Figure A1 shows these results for three numbers of states: the

6-state solution which was minimal state solution that performed well at

predicting task boundaries, the 7-state solution which was best in terms

of prediction error, and the 12-state solution which was best in terms of

LOOCV. The behavioral reference line shows how well one could do

using information in the behavioral data. It was calculated using the

mean position of the behavioral phase boundaries for each set of trials

of a particular number of time points (varying from 9 to 26 time points).

It represents the smallest possible prediction error we could achieve

using the behavioral data alone. The HSMM-MVPA analysis does not

have this information but must discover what constitutes task bound-

aries and where they are.

The results show relatively good performance in a range from

about .005 to .15 with best performance at roughly .05, which corre-

sponds to the variance ratios between a white matter region and

highly responsive brain regions. Performance at our chosen value of .1

is only marginally worse. All of these values yield performance well

below the behavioral reference value.

F IGURE A1 Experiment phase boundary estimate error for 6, 7,
and 12 state solutions as a function of NSR used in Weiner filtering
during the preprocessing of imaging data. The dashed line Reference
shows the smallest possible prediction error when using behavioral
data only
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