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Abstract

We present a mixed-integer optimization (MIO) approach to sparse Poisson regression.

The MIO approach to sparse linear regression was first proposed in the 1970s, but has

recently received renewed attention due to advances in optimization algorithms and com-

puter hardware. In contrast to many sparse estimation algorithms, the MIO approach has

the advantage of finding the best subset of explanatory variables with respect to various cri-

terion functions. In this paper, we focus on a sparse Poisson regression that maximizes the

weighted sum of the log-likelihood function and the L2-regularization term. For this problem,

we derive a mixed-integer quadratic optimization (MIQO) formulation by applying a piece-

wise-linear approximation to the log-likelihood function. Optimization software can solve this

MIQO problem to optimality. Moreover, we propose two methods for selecting a limited

number of tangent lines effective for piecewise-linear approximations. We assess the effi-

cacy of our method through computational experiments using synthetic and real-world

datasets. Our methods provide better log-likelihood values than do conventional greedy

algorithms in selecting tangent lines. In addition, our MIQO formulation delivers better out-

of-sample prediction performance than do forward stepwise selection and L1-regularized

estimation, especially in low-noise situations.

Introduction

A count variable, which takes only on nonnegative integer values, reflects the number of

occurrences of an event during a fixed time period. Count regression models such as Poisson,

overdispersed Poisson, and negative binomial regression are standard methods for predicting

such count variables [1–3]. In particular, Poisson regression is most commonly used for count

regression. There are numerous applications of Poisson regression models for predicting

count variables, including manufacturing defects [4], disease incidence [5], crowd counting

[6], length of hospital stay [7], and vehicle crashes [8].

The aim of sparse estimation is to decrease the number of nonzero estimates of regression

coefficients. This method is often used for selecting a significant subset of explanatory variables

[9–12]. Subset selection provides the following benefits:

• data collection and storage costs can be reduced,

• computational load of estimating regression coefficients can be reduced,
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• interpretability of regression analysis can be increased, and

• generalization performance of a regression model can be improved.

A direct way of best sparse estimation involves evaluating all possible subset regression

models. However, the exhaustive search method [13–15] is often computationally infeasible

because the number of possible subsets grows exponentially with the number of candidate var-

iables. In contrast, stepwise selection [15, 16], which repeats addition and elimination of one

explanatory variable at a time, is a practical method for sparse estimation. Several metaheuris-

tic algorithms have been applied to subset selection for Poisson regression [17, 18], and various

regularization methods have been recently proposed for sparse Poisson regression [19–22].

Note, however, that these (non-exhaustive) sparse estimation methods are heuristic algo-

rithms, which cannot verify optimality of an obtained subset of explanatory variables (e.g., in

the maximum likelihood sense).

In this paper, we focus on the mixed-integer optimization (MIO) approach to sparse esti-

mation. This approach was first proposed for sparse linear regression in the 1970s [23], but has

recently received renewed attention due to advances in optimization algorithms and computer

hardware [24–29]. In contrast to many sparse estimation algorithms, the MIO approach has

the advantage of finding the best subset of explanatory variables with respect to various crite-

rion functions, including Mallows’ Cp [30], adjusted R2 [31], information criteria [31–33],

mRMR [34], and the cross-validation criterion [35]. MIO-based sparse estimation methods

can be extended to binary or ordinal classification models [36–40] and to eliminating multicol-

linearity [41–44].

The log-likelihood to be maximized is a concave but nonlinear function, making it hard to

apply an MIO approach to sparse Poisson regression. To remedy such nonlinearity, prior stud-

ies made effective use of piecewise-linear approximations of the log-likelihood functions,

thereby yielding mixed-integer linear optimization (MILO) formulations for binary or ordinal

classification [38–40]. Optimization software can solve the resultant MILO problems to opti-

mality. Greedy algorithms for selecting a limited number of linear functions for piecewise-lin-

ear approximations have also been developed [38, 40].

This paper aims at establishing an effective MIO approach to sparse Poisson regression

based on piecewise-linear approximations. Specifically, we consider a sparse Poisson regres-

sion that maximizes the weighted sum of the log-likelihood function and the L2-regularization

term. To that end, we derive a mixed-integer quadratic optimization (MIQO) formulation by

applying a piecewise-linear approximation to the log-likelihood function. We also propose two

methods for selecting a limited number of tangent lines to improve the quality of piecewise-

linear approximations.

We assess the efficacy of our method through computational experiments using synthetic and

real-world datasets. Our methods for selecting tangent lines produce better log-likelihood values

than do conventional greedy algorithms. For synthetic datasets, our MIQO formulation realizes

better out-of-sample prediction performance than do forward stepwise selection and L1-regular-

ized estimation, especially in low-noise situations. For real-world datasets, our MIQO formula-

tion compares favorably with the other methods in out-of-sample prediction performance.

Notation

Throughout this paper, sets of consecutive integers ranging from 1 to n are denoted as

½n� :¼

(
f1; 2; . . . ; ng if n � 1;

; otherwise:
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Methods

This section starts with a brief review of Poisson regression, and then presents our MIO for-

mulations for sparse Poisson regression based on piecewise-linear approximations. We then

describe our methods for selecting tangent lines suitable for piecewise-linear approximations.

Poisson regression model

Suppose we are given a sample of n data instances (xi, yi) for i 2 [n], where xi≔ (xi1, xi2, . . .,

xip)> is a vector composed of p explanatory variables, and yi 2 {0}[[m] is a count variable to be

predicted for each instance i 2 [n]. We define binary labels as

dik :¼

(
1 if yi ¼ k;

0 otherwise
ði 2 ½n�; k 2 f0g [ ½m�Þ: ð1Þ

The random count variable Y is assumed to follow the Poisson distribution

PrðY ¼ k j lÞ ¼
l

k exp ð� lÞ
k!

ðk ¼ 0; 1; 2; . . .Þ; ð2Þ

where l 2 Rþ is a parameter representing both the mean and variance of the Poisson distribu-

tion. The distribution parameter li 2 Rþ is explained by the linear regression model

logli ¼ w>xi þ b ¼ w1xi1 þ w2xi2 þ � � � þ wpxip þ b ði 2 ½n�Þ; ð3Þ

where w≔ (w1, w2, . . ., wp)
> is a vector of regression coefficients, and b is an intercept term.

Then, the occurrence probability of the given sample is expressed as

Yn

i¼1

PrðY ¼ yi j liÞ ¼
Yn

i¼1

Ym

k¼0

PrðY ¼ k j liÞ
dik : ∵Eq: ð1Þ

The regression parameters (b, w) are estimated by maximizing the log-likelihood function

Lðb;wÞ ≔ log
Yn

i¼1

Ym

k¼0

PrðY ¼ k j liÞ
dik

 !

¼
Xn

i¼1

Xm

k¼0

dikðk logli � li � logk!Þ ∵Eq: ð2Þ

¼
Xn

i¼1

Xm

k¼0

dikfkðw
>xi þ bÞ; ∵Eq: ð3Þ

ð4Þ

where fk(u) is a nonlinear function defined as

fkðuÞ ¼ ku � exp ðuÞ � log k! ðk 2 f0g [ ½m�Þ: ð5Þ

Fig 1 shows graphs of fk(u) for k 2 {0, 5, 10, 15, 20}. Since its second derivative

f 00k ðuÞ ¼ � exp ðuÞ is always negative, fk(u) is a nonlinear concave function.

The following theorem gives an asymptote of fk(u).

Theorem 1. When u goes to −1, fk(u) has the asymptote

�kðuÞ ¼ ku � log k! ðk 2 f0g [ ½m�Þ: ð6Þ
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Proof. We have

lim
u!� 1

fkðuÞ
u
¼ lim

u!� 1
k �

exp ðuÞ
u

�
log k!

u

� �

¼ k;

lim
u!� 1
ðfkðuÞ � kuÞ ¼ lim

u!� 1
ð� exp ðuÞ � log k!Þ ¼ � log k!;

which completes the proof.

Mixed-integer nonlinear optimization formulation

Before deriving our desired formulation, we introduce a mixed-integer nonlinear optimization

(MINLO) formulation for sparse Poisson regression. Let z≔ (z1, z2, . . ., zp)> be a vector com-

posed of binary decision variables for subset selection, namely,

zj ¼

(
1 if the jth explanatory variable is selected;

0 otherwise ði:e:; wj ¼ 0Þ
ðj 2 ½p�Þ:

To improve the generalization performance of a resultant regression model, we also intro-

duce the L2-regularization term αw>w to be minimized, where a 2 Rþ is a user-defined regu-

larization parameter [45]. We therefore address maximizing the weighted sum of the log-

likelihood function of Eq (4) and the L2-regularization term. This sparse Poisson regression

can be formulated as the MINLO problem

maximize
Xn

i¼1

Xm

k¼0

dikfkðw
>xi þ bÞ � aw>w ð7Þ

subject to zj ¼ 0 ) wj ¼ 0 ðj 2 ½p�Þ; ð8Þ

Fig 1. Graphs of fk(u) for k 2 {0, 5, 10, 15, 20}.

https://doi.org/10.1371/journal.pone.0249916.g001

PLOS ONE Sparse Poisson regression via mixed-integer optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0249916 April 22, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0249916.g001
https://doi.org/10.1371/journal.pone.0249916


Xp

j¼1

zj ¼ y; ð9Þ

b 2 R; w 2 Rp; z 2 f0; 1gp; ð10Þ

where θ 2 [p] is a user-defined parameter of the subset size. If zj = 0, then the jth coefficient

must be zero by logical implication of Eq (8). Eq (9) specifies the number of nonzero regres-

sion coefficients, and Eq (10) lists all decision variables.

The logical implication of Eq (8) can be imposed by using indicator constraints imple-

mented in modern optimization software. Eq (8) can also be represented as

� Mzj � wj � Mzj ðj 2 ½p�Þ;

where M 2 Rþ is a sufficiently large positive constant.

Piecewise-linear approximation

It is very difficult to handle the MINLO problem by Eqs (7)–(10) using MIO software, because

Eq (7) to be maximized is a concave but nonlinear function. Following prior studies [38–40],

we apply piecewise-linear approximation techniques to the nonlinear function of Eq (5).

Letting {(ukℓ, fk(ukℓ))jℓ 2 [h]} be a set of h tangent points for the function fk(u), the corre-

sponding tangent lines are

gkðu j uk‘Þ≔ f 0kðuk‘Þðu � uk‘Þ þ fkðuk‘Þ ð‘ 2 ½h�Þ; ð11Þ

where f 0kðuÞ ¼ k � exp ðuÞ is the derivative of fk(u).

As Fig 2 shows, the graph of a concave function lies below its tangent lines, so fk(u) can be

approximated by the pointwise minimum of a set of h tangent lines. For each u, we approxi-

mate fk(u) by

GkhðuÞ ≔ minfgkðu j uk‘Þ j ‘ 2 ½h�g

¼ maxft j t � gkðu j uk‘Þ ð‘ 2 ½h�Þg;
ð12Þ

where t 2 R is an auxiliary decision variable.

We next focus on the approximation gap gkðu j �uÞ � fkðuÞ arising from a tangent point

ð�u; fkð�uÞÞ. By the following theorem, this gap does not depend on k; therefore, we can employ

the same set {uℓjℓ 2 [h]} for all k 2 {0}[[m] when selecting tangent points for piecewise-linear

approximations.

Theorem 2. gkðu j �uÞ � fkðuÞ is independent of k 2 {0}[[m].

Proof. We have

gkðu j �uÞ � fkðuÞ

¼ ðk � exp ð�uÞÞðu � �uÞ þ k�u � exp ð�uÞ � log k! � ðku � exp ðuÞ � logk!Þ

¼ � exp ð�uÞðu � �uÞ � exp ð�uÞ þ exp ðuÞ;

which completes the proof.

Mixed-integer quadratic optimization formulation

We are now ready to present our desired formulation for sparse Poisson regression. Let T≔
(tik)(i, k)2[n] × ({0}[[m]) be a matrix composed of auxiliary decision variables for piecewise-linear
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approximations. We substitute Eq (11) and u = w>xi + b into Eq (12) to make a piecewise-lin-

ear approximation of the objective function of Eq (7). By Theorem 2, we use {(uℓ, fk(uℓ))jℓ 2
[h]} as a set of h tangent points for the function fk(u). Consequently, the MINLO problem by

Eqs (7)–(10) can be reduced to the MIQO problem

maximize
Xn

i¼1

Xm

k¼0

diktik � aw
>w ð13Þ

subject to tik � f 0kðu‘Þðw
>xi þ b � u‘Þ þ fkðu‘Þ

ði 2 ½n�; k 2 f0g [ ½m�; ‘ 2 ½h�Þ;
ð14Þ

zj ¼ 0 ) wj ¼ 0 ðj 2 ½p�Þ; ð15Þ

Xp

j¼1

zj ¼ y; ð16Þ

b 2 R; w 2 Rp
; T 2 Rn�ðmþ1Þ

; z 2 f0; 1gp; ð17Þ

where Eq (17) lists all of the decision variables. Note that optimization software can solve this

MIQO problem to optimality.

Previous algorithms for selecting tangent lines

The accuracy of piecewise-linear approximations depends on the associated set of tangent

lines. It is clear that with increasingly many appropriate tangent lines, the MIQO problem by

Eqs (13)–(17) approaches the original MINLO problem by Eqs (7)–(10). In this case, however,

Fig 2. Piecewise-linear approximation of fk(u) for k = 10.

https://doi.org/10.1371/journal.pone.0249916.g002
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solving the MIQO problem becomes computationally expensive because the problem size

grows larger. It is therefore crucial to limit the number of tangent lines for effective

approximations.

Sato et al. [40] developed a greedy algorithm for selecting tangent lines to approximate the

logistic loss function. This algorithm adds tangent lines one by one so that the total approxima-

tion gap (the area of the shaded portion in Fig 2) will be minimized. Naganuma et al. [38]

employed a greedy algorithm that selects tangent planes to approximate the bivariate nonlinear

function for ordinal classification. This algorithm iteratively selects tangent points where the

approximation gap is largest.

These previous algorithms have two limitations addressed in this paper. First, they totally

ignore the properties of the sample distribution. Second, tangent lines are determined one at a

time, so the resultant set of tangent lines is not necessarily optimal. In the following sections,

we propose two methods, namely the adaptive greedy algorithm and the simultaneous optimi-

zation method, to resolve the first and second limitations, respectively.

Adaptive greedy algorithm

Our first method, the adaptive greedy algorithm, selects tangent lines depending on the sample

distribution.

Suppose we are given ð�b; �wÞ as regression parameter values. These values can be obtained,

for example, through maximum likelihood estimation of the full model of Eq (3). We then

have an empirical distribution of input values for the nonlinear function of Eq (5) as

�ui ≔ �w>xi þ
�b for i 2 [n]. Our algorithm aims to minimize the sum of squared approximation

gaps in response to this empirical distribution. Although the previous algorithms compute a

set of tangent lines independent of datasets, our algorithm can adapt a set of tangent lines to

each dataset.

We select h tangent points u�
1
; u�

2
; . . . ; u�h sequentially, where the sth tangent point u�s is

determined on the condition that previous tangent points u�
1
; u�

2
; . . . ; u�s� 1

are fixed. This step-

wise greedy procedure is formulated as

u�s 2 argmin
us2R

Xn

i¼1

ðGksð�uiÞ � fkð�uiÞÞ
2

�
�
�
�
�

u‘ ¼ u�
‘
ð‘ 2 ½s � 1�Þ

L � us � U

( )

ðs 2 ½h�Þ; ð18Þ

where Gks(u) = min{gk(ujuℓ)jℓ2[s]}, and [L, U] is an input interval of the nonlinear func-

tion of Eq (5). Notably, by Theorem 2 this algorithm yields the same set of tangent lines

for all k 2 {0}[[m].

Simultaneous optimization method

Our second method, the simultaneous optimization method, selects a set of h tangent lines

simultaneously, not sequentially.

Suppose the intersection between the ℓth and (ℓ + 1)th tangent lines is specified by ck(uℓ,
uℓ+1), meaning gk(ujuℓ) = gk(ujuℓ+1) holds when u = ck(uℓ, uℓ+1). It follows from Eq (11) that

ckðu‘; u‘þ1Þ ¼
f 0kðu‘Þu‘ � f 0kðu‘þ1Þu‘þ1 þ fkðu‘þ1Þ � fkðu‘Þ

f 0kðu‘Þ � f 0kðu‘þ1Þ
ð‘ 2 ½h � 1�Þ: ð19Þ

We then simultaneously determine a set of h tangent points minimizing the total approxi-

mation gap (the area of the shaded portion in Fig 2). This procedure can be posed as the
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nonlinear optimization (NLO) problem

minimize
Xh

‘¼1

Z ckðu‘;u‘þ1Þ

ckðu‘� 1 ;u‘Þ
ðgkðu j u‘Þ � fkðuÞÞ du ð20Þ

subject to L � u1 � u2 � � � � � uh � U; ð21Þ

ðu1; u2; . . . ; uhÞ 2 R
h; ð22Þ

where ck(u0, u1) = L and ck(uh, uh+1) = U are fixed, and ck(uℓ, uℓ+1) is defined by Eq (19) for ℓ 2
[h − 1]. NLO software can handle this problem, yielding a locally optimal set of tangent points.

This method also provides the same set of tangent lines for all k 2 {0}[[m].

Experimental results and discussion

This section describes computational experiments for evaluating the effectiveness of our

method for sparse Poisson regression.

Methods for comparison

We investigate the performance of our MIQO formulation by Eqs (13)–(17) using tangent

lines selected by each of the following methods, where h is the number of tangent lines to be

selected.

EqlSpc(h): setting equally spaced tangent points

AreaGrd(h): the greedy algorithm developed by Sato et al. [40]

GapGrd(h): the greedy algorithm developed by Naganuma et al. [38]

AdpGrd(h): our adaptive greedy algorithm by Eq (18)

SmlOpt(h): our simultaneous optimization method by Eqs (20)–(22)

We implemented these algorithms in the Python programming language. We set the input

interval [L, U] = [−5, 5] and use the asymptote of Eq (6) as the initial tangent line. We use the

Python statsmodels module to perform maximum likelihood estimation of the full model

of Eq (3), then select tangent points of Eq (18) by evaluating each point us 2 {−5.00, −4.99,

−4.98, . . ., 4.99, 5.00} for s 2 [h]. We use the Python scipy.optimize module (meth-
od=’SLSQP’) to solve the NLO problem by Eqs (20)–(22). We use Gurobi Optimizer 8.1.1

(https://www.gurobi.com/) to solve the MIQO problem by Eqs (13)–(17), and the indicator

constraint to impose the logical implication of Eq (15). We fix the L2-regularization parameter

to α = 0 in Tables 1, 2 and 6, whereas we tune it through hold-out validation using the training

instances in Tables 3, 4 and 7.

We compare the performance of our method with the following sparse estimation

algorithms:

FwdStep: forward stepwise Poisson regression [15, 16]

L1-Rgl: L1-regularized Poisson regression [46]

We implemented these algorithms using the step function and the glmnet package [46]

in the R programming language. We tune the L1-regularization parameter such that the num-

ber of nonzero regression coefficients equals θ, then select the corresponding subset of
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explanatory variables. All computations occurred on a Windows computer with an Intel Core

i3-8100 CPU (3.50 GHz) and 8 GB of memory.

We use the following evaluation metrics to compare the performance of sparse estimation

methods. Let l̂i be a predicted value based on Eq (3) for i 2 N, where N is the index set of test

instances. We then set k̂i ¼ bl̂ic 2 argmaxk¼0;1;2;...PrðY ¼ k j l̂ iÞ based on Eq (2) for i 2 N.

The magnitude of out-of-sample prediction errors is

RMSE≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jNj

X

i2N

ðyi � l̂ iÞ
2

s

;

and the number of correct class labels is

Accuracy≔
jfi 2 N j yi ¼ k̂igj

jNj
:

Let S� and Ŝ respectively be true and selected subsets of explanatory variables. Note that the

true subset of Eq (23) is specified for only synthetic datasets. The accuracy of subset selection is

quantified as

Recall≔
jS� \ Ŝj
jS�j

:

Experimental design for synthetic datasets

Following prior studies [24, 26], we prepared synthetic datasets via the following steps. Here,

we set the number of candidate explanatory variables as p = 30 and the maximum value of the

count variable as m = 10.

First, we defined a vector of true regression coefficients as

w� ≔ ð1; 0; 0; 1; 0; 0; 1; 0; 0; . . . ; 1; 0; 0Þ
>
2 R30;

S� ≔ f1; 4; 7 . . . ; 28g ði:e:; jS�j ¼ 10Þ:
ð23Þ

We next sampled explanatory variables from a normal distribution as xi� N(0, S), where

Σ 2 R30�30 is the covariance matrix. The (i, j)th entry of S is ρ|i − j|, where ρ represents the cor-

relation strength between explanatory variables. We also sampled the error term from a nor-

mal distribution as εi� N(0, σ2), where σ is the standard deviation. We then generated the

count variable yi 2 {0}[[10] by rounding

exp
ðw�Þ>xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðw�Þ>Σw�
q þ εi

0

B
@

1

C
A

to the nearest integer. We tested ρ 2 {0.35, 0.70} and σ2 2 {0.01, 0.10, 1.00} in the experiments.

We trained sparse Poisson regression models with 100 training instances. We estimated

prediction performance by applying the trained regression model to sufficiently many test

instances. The tables show average values for 10 repetitions, with standard errors in

parentheses.
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Results for synthetic datasets

Tables 1 and 2 show the results of our MIQO formulation for the synthetic training instances

with subset sizes θ = 5 and 10, respectively. The column labeled “LogLkl” shows the log-likeli-

hood value of Eq (4), which was maximized using a selected subset of explanatory variables.

The largest log-likelihood values for each problem instance (σ2, ρ) are shown in bold. The col-

umns labeled “Time (s)” show computation times in seconds required for solving the MIQO

problem (MIQO) and for selecting tangent lines (TngLine).

Our adaptive greedy algorithm (AdpGrd) attained the largest log-likelihood values for most

problem instances but required long computation times to select tangent lines. This result

implies that effective sets of tangent lines are different depending on the dataset, so the adap-

tive greedy algorithm, which computes a different set of tangent lines suitable for each dataset,

can perform well. Our simultaneous optimization method (SmlOpt), on the other hand,

selected tangent lines very quickly and also provided the second-best log-likelihood values for

Table 1. Results of our MIQO formulation for synthetic training instances (θ = 5).

σ2 ρ Method LogLkl Time (s)

MIQO TngLine

0.01 0.35 EqlSpc(10) −119.01 (±1.57) 1.06 (±0.22) 0.00 (±0.00)

AreaGrd(10) −182.04 (±2.48) 0.04 (±0.00) 0.08 (±0.00)

GapGrd(10) −516.83 (±1.73) 0.04 (±0.00) 0.10 (±0.00)

AdpGrd(10) −107.10 (±1.60) 0.28 (±0.03) 7.98 (±0.02)

SmlOpt(10) −137.48 (±7.51) 0.25 (±0.07) 0.02 (±0.00)

0.70 EqlSpc(10) −129.63 (±1.69) 7.97 (±0.96) 0.00 (±0.00)

AreaGrd(10) −183.20 (±1.05) 0.04 (±0.00) 0.08 (±0.00)

GapGrd(10) −510.43 (±2.59) 0.04 (±0.00) 0.10 (±0.00)

AdpGrd(10) −118.08 (±3.11) 1.49 (±0.37) 8.00 (±0.03)

SmlOpt(10) −117.17 (±1.61) 3.99 (±1.25) 0.02 (±0.00)

0.10 0.35 EqlSpc(10) −130.52 (±1.92) 1.92 (±0.52) 0.00 (±0.00)

AreaGrd(10) −186.59 (±3.26) 0.04 (±0.00) 0.08 (±0.00)

GapGrd(10) −519.94 (±3.32) 0.04 (±0.00) 0.10 (±0.00)

AdpGrd(10) −112.95 (±1.99) 0.35 (±0.03) 7.94 (±0.02)

SmlOpt(10) −139.92 (±7.57) 0.60 (±0.26) 0.02 (±0.00)

0.70 EqlSpc(10) −127.65 (±2.75) 5.96 (±1.11) 0.00 (±0.00)

AreaGrd(10) −188.72 (±2.49) 0.04 (±0.00) 0.09 (±0.00)

GapGrd(10) −523.75 (±4.00) 0.04 (±0.00) 0.10 (±0.00)

AdpGrd(10) −124.06 (±4.85) 1.87 (±0.45) 7.96 (±0.03)

SmlOpt(10) −131.86 (±6.76) 2.84 (±0.85) 0.02 (±0.00)

1.00 0.35 EqlSpc(10) −173.40 (±5.81) 3.39 (±0.89) 0.00 (±0.00)

AreaGrd(10) −208.61 (±3.79) 0.04 (±0.00) 0.08 (±0.00)

GapGrd(10) −519.65 (±5.60) 0.04 (±0.00) 0.10 (±0.00)

AdpGrd(10) −148.60 (±3.35) 1.95 (±0.31) 8.01 (±0.01)

SmlOpt(10) −172.29 (±7.08) 1.26 (±0.47) 0.02 (±0.00)

0.70 EqlSpc(10) −194.70 (±19.21) 7.48 (±1.75) 0.00 (±0.00)

AreaGrd(10) −214.68 (±3.99) 0.04 (±0.00) 0.08 (±0.00)

GapGrd(10) −516.71 (±5.43) 0.04 (±0.00) 0.10 (±0.00)

AdpGrd(10) −159.21 (±5.81) 4.29 (±1.30) 8.05 (±0.05)

SmlOpt(10) −165.46 (±5.47) 2.95 (±0.79) 0.02 (±0.00)

https://doi.org/10.1371/journal.pone.0249916.t001
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a majority of problem instances. These results clearly show that our AdpGrd and SmlOpt

methods can find sparse regression models of better quality than do the conventional AreaGrd

and GapGrd methods.

Tables 3 and 4 show the prediction performance of sparse Poisson regression models for

synthetic test instances with subset sizes θ = 5 and 10, respectively. The best RMSE, accuracy,

and recall values for each problem instance (σ2, ρ) are shown in bold.

When σ2 2 {0.01, 0.10}, our AdpGrd and SmlOpt methods delivered better prediction per-

formance than did the FwdStep and L1-Rgl algorithms for all problem instances. In contrast,

L1-Rgl algorithm performed very well when (σ2, ρ) = (1.00, 0.70) in Table 4. These results sug-

gest that especially in low-noise situations, our MIO-based sparse estimation methods can

deliver superior prediction performance as compared with heuristic algorithms such as step-

wise selection and L1-regularized estimation. This observation is consistent with the simula-

tion results reported by Hastie et al. [26].

Table 2. Results of our MIQO formulation for synthetic training instances (θ = 10).

σ2 ρ Method LogLkl Time (s)

MIQO TngLine

0.01 0.35 EqlSpc(10) −105.00 (±0.62) 0.36 (±0.01) 0.00 (±0.00)

AreaGrd(10) −105.16 (±0.78) 0.48 (±0.06) 0.23 (±0.00)

GapGrd(10) −106.69 (±0.84) 0.54 (±0.07) 0.53 (±0.00)

AdpGrd(10) −102.25 (±0.53) 0.40 (±0.01) 18.46 (±0.03)

SmlOpt(10) −103.99 (±0.63) 0.39 (±0.02) 0.08 (±0.00)

0.70 EqlSpc(10) −107.37 (±0.96) 2.37 (±0.88) 0.00 (±0.00)

AreaGrd(10) −109.83 (±0.74) 5.03 (±1.26) 0.23 (±0.00)

GapGrd(10) −111.34 (±1.04) 3.98 (±0.79) 0.53 (±0.00)

AdpGrd(10) −105.22 (±0.86) 0.55 (±0.06) 18.48 (±0.03)

SmlOpt(10) −107.78 (±1.02) 3.44 (±1.09) 0.08 (±0.00)

0.10 0.35 EqlSpc(10) −109.65 (±1.19) 0.47 (±0.03) 0.00 (±0.00)

AreaGrd(10) −110.51 (±1.16) 0.65 (±0.06) 0.24 (±0.00)

GapGrd(10) −113.05 (±0.59) 1.06 (±0.17) 0.53 (±0.00)

AdpGrd(10) −107.30 (±1.26) 0.46 (±0.02) 18.46 (±0.03)

SmlOpt(10) −108.81 (±1.27) 0.55 (±0.05) 0.08 (±0.00)

0.70 EqlSpc(10) −108.93 (±1.37) 2.98 (±0.92) 0.00 (±0.00)

AreaGrd(10) −110.82 (±1.42) 6.33 (±1.00) 0.23 (±0.00)

GapGrd(10) −112.60 (±1.32) 5.28 (±1.12) 0.52 (±0.00)

AdpGrd(10) −106.20 (±1.17) 1.31 (±0.25) 18.44 (±0.04)

SmlOpt(10) −107.96 (±1.29) 3.55 (±0.69) 0.08 (±0.00)

1.00 0.35 EqlSpc(10) −148.55 (±4.03) 4.61 (±1.57) 0.00 (±0.00)

AreaGrd(10) −150.45 (±3.75) 5.88 (±1.99) 0.23 (±0.00)

GapGrd(10) −155.41 (±3.54) 2.98 (±0.86) 0.52 (±0.01)

AdpGrd(10) −146.51 (±3.84) 3.52 (±1.76) 18.50 (±0.03)

SmlOpt(10) −148.41 (±3.88) 4.35 (±1.52) 0.08 (±0.00)

0.70 EqlSpc(10) −151.37 (±3.67) 6.38 (±1.43) 0.00 (±0.00)

AreaGrd(10) −153.25 (±3.56) 8.58 (±1.41) 0.23 (±0.00)

GapGrd(10) −154.34 (±4.24) 4.21 (±0.90) 0.53 (±0.00)

AdpGrd(10) −149.30 (±3.55) 6.48 (±0.78) 18.47 (±0.04)

SmlOpt(10) −150.80 (±3.51) 6.37 (±1.04) 0.08 (±0.00)

https://doi.org/10.1371/journal.pone.0249916.t002
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Experimental design for real-world datasets

Table 5 lists real-world datasets downloaded from the UCI Machine Learning Repository [47],

where n and p are numbers of data instances and candidate explanatory variables, respectively.

In a preprocessing step, we divided the total number of rental bikes by d, rounding down to

the nearest integer to be an appropriate scale for the count variable to be predicted. We trans-

formed each categorical variable into a set of dummy variables. Note that variables “dteday,”

“casual,” and “registered” are not suitable for prediction purposes and thus were removed.

Data instances having outliers or missing values were eliminated.

Training instances were randomly sampled, with 500 training instances for the Bike-H

dataset and 365 for the Bike-D dataset. We used the remaining instances as test instances. The

tables show averaged values for 10 trials, with standard errors in parentheses.

Results for real-world datasets

Table 6 gives the results of our MIQO formulation for the real-world training instances with

subset size θ 2 {5, 10}. As with the synthetic training instances (Tables 1 and 2), our adaptive

greedy algorithm AdpGrd achieved the largest log-likelihood values, but with long computa-

tion times. Our simultaneous optimization method SmlOpt was much faster than AdpGrd and

provided good log-likelihood values for both the Bike-H and Bike-D datasets.

Table 7 shows the prediction performance of sparse Poisson regression models for the real-

world test instances with subset size θ 2 {5, 10}. Our AdpGrd and SmlOpt methods were

Table 3. Prediction performance for synthetic test instances (θ = 5).

σ2 ρ Method RMSE Accuracy Recall Time (s)

0.01 0.35 AdpGrd(30) 1.337 (±0.029) 0.430 (±0.004) 0.500 (±0.000) 494.80 (±8.10)

SmlOpt(30) 1.330 (±0.033) 0.435 (±0.005) 0.500 (±0.000) 53.63 (±4.12)

FwdStep 2.040 (±0.017) 0.366 (±0.002) 0.480 (±0.042) 0.68 (±0.02)

L1-Rgl 2.012 (±0.016) 0.367 (±0.002) 0.480 (±0.042) 0.87 (±0.01)

0.70 AdpGrd(30) 1.167 (±0.046) 0.463 (±0.011) 0.420 (±0.079) 732.13 (±26.12)

SmlOpt(30) 1.158 (±0.041) 0.463 (±0.011) 0.440 (±0.084) 227.06 (±18.01)

FwdStep 1.987 (±0.020) 0.388 (±0.001) 0.400 (±0.067) 0.65 (±0.01)

L1-Rgl 1.959 (±0.015) 0.384 (±0.004) 0.000 (±0.133) 0.89 (±0.02)

0.10 0.35 AdpGrd(30) 1.523 (±0.048) 0.413 (±0.005) 0.500 (±0.000) 500.26 (±9.34)

SmlOpt(30) 1.515 (±0.052) 0.416 (±0.005) 0.500 (±0.000) 55.73 (±5.70)

FwdStep 2.090 (±0.029) 0.361 (±0.004) 0.490 (±0.032) 0.65 (±0.02)

L1-Rgl 2.037 (±0.021) 0.363 (±0.004) 0.460 (±0.052) 0.92 (±0.01)

0.70 AdpGrd(30) 1.423 (±0.100) 0.433 (±0.008) 0.450 (±0.071) 681.68 (±31.72)

SmlOpt(30) 1.402 (±0.093) 0.438 (±0.009) 0.470 (±0.048) 202.56 (±19.11)

FwdStep 2.086 (±0.065) 0.384 (±0.003) 0.390 (±0.074) 0.71 (±0.02)

L1-Rgl 2.022 (±0.021) 0.378 (±0.002) 0.300 (±0.105) 1.02 (±0.03)

1.00 0.35 AdpGrd(30) 2.201 (±0.076) 0.334 (±0.009) 0.400 (±0.094) 500.35 (±7.52)

SmlOpt(30) 2.209 (±0.075) 0.330 (±0.010) 0.390 (±0.099) 56.51 (±4.62)

FwdStep 2.218 (±0.074) 0.333 (±0.009) 0.390 (±0.099) 0.93 (±0.05)

L1-Rgl 2.133 (±0.045) 0.329 (±0.009) 0.340 (±0.097) 1.03 (±0.02)

0.70 AdpGrd(30) 2.188 (±0.083) 0.361 (±0.004) 0.310 (±0.099) 587.62 (±29.25)

SmlOpt(30) 2.198 (±0.094) 0.361 (±0.006) 0.310 (±0.074) 121.24 (±17.89)

FwdStep 2.173 (±0.052) 0.360 (±0.005) 0.290 (±0.088) 0.83 (±0.05)

L1-Rgl 2.057 (±0.032) 0.357 (±0.006) 0.250 (±0.071) 1.06 (±0.03)

https://doi.org/10.1371/journal.pone.0249916.t003
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superior to the FwdStep and L1-Rgl algorithms in terms of RMSE values for the Bike-H dataset

and accuracy values for the Bike-D dataset. FwdStep gave the best accuracy values for the Bike-

H dataset, whereas there was no clear best or worst method regarding RMSE values for the

Bike-D dataset.

Conclusion

This paper presented an MIO approach to sparse Poisson regression, which we formulated as an

MIQO problem by applying piecewise-linear approximation to the nonlinear objective function.

We also developed the adaptive greedy algorithm and the simultaneous optimization method to

select a limited number of tangent lines that work well for piecewise-linear approximations.

We conducted computational experiments using synthetic and real-world datasets. Our

methods for selecting tangent lines clearly outperformed conventional methods in terms of the

quality of piecewise-linear approximations. For the synthetic datasets, our MIQO formulation

delivered better prediction performance than did stepwise selection and L1-regularized

Table 4. Prediction performance for synthetic test instances (θ = 10).

σ2 ρ Method RMSE Accuracy Recall Time (s)

0.01 0.35 AdpGrd(30) 0.524 (±0.042) 0.502 (±0.019) 1.000 (±0.000) 455.61 (±2.96)

SmlOpt(30) 0.566 (±0.055) 0.492 (±0.018) 1.000 (±0.000) 38.42 (±2.97)

FwdStep 0.644 (±0.059) 0.490 (±0.018) 0.980 (±0.013) 0.67 (±0.02)

L1-Rgl 0.908 (±0.043) 0.474 (±0.010) 0.910 (±0.028) 0.08 (±0.00)

0.70 AdpGrd(30) 0.497 (±0.032) 0.520 (±0.029) 1.000 (±0.000) 1664.84 (±225.86)

SmlOpt(30) 0.490 (±0.024) 0.526 (±0.032) 1.000 (±0.000) 1166.14 (±184.21)

FwdStep 0.733 (±0.053) 0.497 (±0.020) 0.870 (±0.021) 0.73 (±0.02)

L1-Rgl 0.885 (±0.040) 0.479 (±0.015) 0.620 (±0.055) 0.07 (±0.00)

0.10 0.35 AdpGrd(30) 0.888 (±0.021) 0.492 (±0.022) 1.000 (±0.000) 468.09 (±6.20)

SmlOpt(30) 0.911 (±0.022) 0.487 (±0.017) 1.000 (±0.000) 40.94 (±4.13)

FwdStep 1.147 (±0.157) 0.461 (±0.016) 0.990 (±0.010) 0.70 (±0.04)

L1-Rgl 1.169 (±0.103) 0.444 (±0.011) 0.890 (±0.028) 0.07 (±0.00)

0.70 AdpGrd(30) 1.087 (±0.137) 0.479 (±0.013) 0.940 (±0.031) 1742.37 (±354.82)

SmlOpt(30) 1.144 (±0.142) 0.467 (±0.011) 0.930 (±0.033) 959.33 (±230.95)

FwdStep 1.312 (±0.158) 0.446 (±0.007) 0.820 (±0.025) 0.71 (±0.02)

L1-Rgl 1.169 (±0.039) 0.455 (±0.008) 0.610 (±0.043) 0.07 (±0.00)

1.00 0.35 AdpGrd(30) 2.342 (±0.145) 0.356 (±0.006) 0.700 (±0.030) 584.74 (±35.61)

SmlOpt(30) 2.378 (±0.153) 0.352 (±0.006) 0.690 (±0.031) 100.76 (±19.78)

FwdStep 2.293 (±0.096) 0.356 (±0.006) 0.690 (±0.041) 0.86 (±0.04)

L1-Rgl 2.133 (±0.055) 0.352 (±0.008) 0.610 (±0.043) 0.07 (±0.00)

0.70 AdpGrd(30) 2.530 (±0.096) 0.354 (±0.005) 0.460 (±0.022) 804.62 (±72.09)

SmlOpt(30) 2.457 (±0.086) 0.356 (±0.004) 0.470 (±0.026) 296.92 (±52.32)

FwdStep 2.307 (±0.067) 0.363 (±0.004) 0.540 (±0.027) 0.84 (±0.05)

L1-Rgl 2.097 (±0.040) 0.375 (±0.003) 0.550 (±0.027) 0.07 (±0.00)

https://doi.org/10.1371/journal.pone.0249916.t004

Table 5. Real-world datasets.

Abbr. n p d Original dataset [47]

Bike-H 17,379 33 100 Bike Sharing Dataset (hour)

Bike-D 731 33 1000 Bike Sharing Dataset (day)

https://doi.org/10.1371/journal.pone.0249916.t005
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estimation, especially in low-noise situations. Our MIQO formulation also compared favor-

ably in terms of prediction performance with the other algorithms for real-world datasets.

Although our method can potentially find good-quality sparse regression models, applying

it to large datasets is computationally expensive. It is more practical to choose between our

Table 6. Results of our MIQO formulation for real-world training instances.

Dataset θ Method LogLkl Time (s)

MIQO TngLine

Bike-H 5 EqlSpc(10) −744.91 (±7.70) 5.87 (±0.72) 0.00 (±0.00)

AreaGrd(10) −785.15 (±28.70) 6.27 (±0.75) 0.23 (±0.00)

GapGrd(10) −938.96 (±22.97) 1.61 (±0.59) 0.53 (±0.00)

AdpGrd(10) −742.98 (±7.58) 8.23 (±0.87) 94.13 (±1.11)

SmlOpt(10) −745.66 (±7.70) 5.54 (±0.49) 0.08 (±0.00)

10 EqlSpc(10) −730.67 (±7.97) 69.47 (±23.99) 0.00 (±0.00)

AreaGrd(10) −739.34 (±7.82) 116.71 (±30.54) 0.23 (±0.00)

GapGrd(10) −896.40 (±29.85) 10.42 (±4.22) 0.53 (±0.00)

AdpGrd(10) −728.35 (±7.77) 67.75 (±15.86) 93.40 (±0.86)

SmlOpt(10) −731.52 (±7.90) 54.56 (±13.63) 0.08 (±0.00)

Bike-D 5 EqlSpc(10) −784.89 (±3.18) 1.55 (±0.31) 0.00 (±0.00)

AreaGrd(10) −795.69 (±15.86) 0.74 (±0.28) 0.23 (±0.00)

GapGrd(10) −755.64 (±28.97) 0.96 (±0.11) 0.54 (±0.01)

AdpGrd(10) −634.00 (±17.10) 6.84 (±0.62) 71.24 (±2.39)

SmlOpt(10) −720.46 (±7.90) 2.32 (±0.46) 0.08 (±0.00)

10 EqlSpc(10) −783.87 (±3.19) 2.98 (±1.79) 0.00 (±0.00)

AreaGrd(10) −780.44 (±2.53) 4.35 (±4.01) 0.23 (±0.00)

GapGrd(10) −754.38 (±29.08) 0.50 (±0.13) 0.54 (±0.01)

AdpGrd(10) −626.22 (±16.72) 123.06 (±23.66) 70.77 (±2.39)

SmlOpt(10) −698.47 (±14.19) 9.69 (±4.42) 0.08 (±0.00)

https://doi.org/10.1371/journal.pone.0249916.t006

Table 7. Prediction performance for real-world test instances.

Dataset θ Method RMSE Accuracy Time (s)

Bike-H 5 AdpGrd(30) 1.491 (±0.004) 0.408 (±0.004) 2530.03 (±64.29)

SmlOpt(30) 1.491 (±0.004) 0.407 (±0.004) 240.69 (±31.57)

FwdStep 1.494 (±0.005) 0.414 (±0.002) 1.61 (±0.07)

L1-Rgl 1.495 (±0.004) 0.405 (±0.003) 0.08 (±0.00)

10 AdpGrd(30) 1.488 (±0.007) 0.410 (±0.003) 8504.38 (±951.32)

SmlOpt(30) 1.489 (±0.007) 0.410 (±0.003) 2189.76 (±478.19)

FwdStep 1.509 (±0.007) 0.416 (±0.003) 1.61 (±0.07)

L1-Rgl 1.491 (±0.005) 0.415 (±0.002) 0.05 (±0.00)

Bike-D 5 AdpGrd(30) 0.996 (±0.011) 0.334 (±0.009) 1806.09 (±13.37)

SmlOpt(30) 0.991 (±0.011) 0.338 (±0.007) 146.13 (±6.46)

FwdStep 0.989 (±0.009) 0.335 (±0.008) 1.13 (±0.03)

L1-Rgl 1.011 (±0.008) 0.319 (±0.008) 0.08 (±0.00)

10 AdpGrd(30) 0.963 (±0.011) 0.353 (±0.004) 6451.01 (±438.40)

SmlOpt(30) 0.958 (±0.010) 0.353 (±0.005) 1758.75 (±284.93)

FwdStep 0.964 (±0.010) 0.349 (±0.006) 1.13 (±0.03)

L1-Rgl 0.956 (±0.011) 0.349 (±0.005) 0.05 (±0.00)

https://doi.org/10.1371/journal.pone.0249916.t007

PLOS ONE Sparse Poisson regression via mixed-integer optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0249916 April 22, 2021 14 / 17

https://doi.org/10.1371/journal.pone.0249916.t006
https://doi.org/10.1371/journal.pone.0249916.t007
https://doi.org/10.1371/journal.pone.0249916


method and heuristic algorithms according to the task at hand. We also expect our framework

for piecewise-linear approximations to work well for various decision-making problems

involving univariate nonlinear functions.

A future direction of study will be to develop an efficient algorithm specialized for solving

our MIQO problem. We are now working on extending several MIO-based high-performance

algorithms [24, 48, 49] to sparse Poisson regression. Another direction of future research is to

improve the performance of our methods for selecting tangent lines. For example, although we

selected tangent points of Eq (18) by evaluating each point us 2 {−5.00, −4.99, −4.98, . . ., 4.99,

5.00} for s 2 [h], tuning tangent points more finely will probably make marginal improvements

in the prediction performance. In addition, to upgrade the prediction performance in high-

noise situations, we should adopt the Lp-regularization term αkwkp with finely tuned parame-

ters α and p in our MIQO formulation [50].
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