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This report synthesizes and evaluates published scientific literature on the environmental occurrence and biomagnification
of mercury with emphasis on the San Francisco Bay Area (SFBA), California. Mercury forms various compounds, well
known for their toxicity in humans and environmental ecosystems. Elemental mercury is transported and distributed by air,
water, and sediments. Through the metabolic processes of algae and bacteria, mercury is converted into organic compounds,
such as methylmercury (MeHg), which then bioaccumulates up through trophic levels. In fish, it is found primarily in
skeletal muscle, while in humans, the primary target organs are the brain and kidneys. Health concerns exist regarding
bioaccumulation of mercury in humans. This paper reviews the known anthropogenic sources of mercury contamination,
including atmospheric deposition through aerial transport from coal burning power plants, cement production, and
residual contaminants of mercury from gold mining, as well as mercury-containing waste from silver amalgams emitted
from dental offices into waterways. Although tools exist for measuring mercury levels in hair, breast milk, urine, blood, and
feces in humans, current diagnostic tools are inadequate in measuring total mercury load, including deposited mercury in
tissues. Additionally, insufficient attention is being paid to potential synergistic impacts of mercury interaction with
multipliers such as lead, cadmium, and aluminum. We provide specific data on methylmercury concentrations at different
trophic levels, followed by recommendations for reducing the level of mercury in the SFBA in order to protect the health of
humans and other species.

1. Introduction

Mercury, atomic symbol, Hg (Latin, Hydrargyrium), is one
of the most highly toxic, nonradioactive elements [1]. The
three primary forms of mercury are elemental mercury
(Hg"), inorganic mercury (Hg>*), and organic mercury
compounds (MeHg and EtHg), all of which are deleterious
to humans and other taxa. Mercury exposure at toxic levels
most commonly affects neurologic, renal, and gastrointes-
tinal systems producing a wide range of symptoms [2, 3].
These symptoms include, but are not limited to, cognitive
impairment, tremors, ataxia (loss of coordination and
muscle movement), hearing loss, pneumonitis, paralysis,

shyness and irritability, insomnia, hallucinations, sup-
pressed immunity, renal damage, and other systemic/severe
symptoms, including death at lethal doses.

The total amount of mercury released in California
spanning the years from 1850-1981 was over 220 million
pounds [4]. One gram of mercury, the approximate amount
present in old mercury thermometers, is equivalent to an
annual atmospheric particulate deposition of mercury in a
20-acre lake and is sufficient to contaminate a lake of that
size [5]. In species that have been evaluated, methylmercury
(MeHg) has been reported to reduce reproductive success,
impair growth and development, alter behavior, and de-
crease survival.
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Teratogens (Greek, “monster-forming”) are environ-
mental agents that cause nonheritable birth defects. Mercury
and other heavy metals in the environment act as significant
human teratogens; the first large-scale disaster that called
public attention to the danger of mercury occurred in
Minamata, Japan, in the years after World War II.

In the population surrounding Minamata Bay, a range of
severe neurological pathologies that later came to be known
as Minamata disease reportedly caused numerous deaths.
Methylmercury was found to cause neurological abnor-
malities observed in nearly 10% of children born near the
bay. Symptoms of toxicity, which include staggering,
fainting, and loss of muscle control, were found in cats, fish,
and birds as well as humans. The cause of these symptoms
was traced to mercury contamination of seafood, a dietary
food staple for the local population. Methylmercury entering
the bay was a by-product of more than 6,000 tons of ac-
etaldehyde produced each year by the Chisso Corporation
[6]. This untreated mercury was dumped into the bay, where
it contaminated the water and through bioaccumulation
entered the food chain to reach the Minamata human
population. This tragic example of mercury’s harmful effects
is directly related to the main focus of this paper, which
analyzes sources and effects of mercury bioaccumulation in
SFBA and other California ecosystems with their plants,
wildlife, and humans.

While we focus in this paper on the SFBA and other lo-
cations in California, it is important to note that since the initial
studies of Minamata disease, mercury contamination of marine
environments has emerged as a problem of global concern.
Harmful effects of mercury contamination have been measured
in many places around the world. These include the Faroe
Islands [7], New Zealand [8], Amazonia [9], Italy [10], Florida
[11], Morocco [12], and 17 EU countries [13].

In the Faroe Islands, an initial study showed cognitive
deficits in seven-year old children with prenatal exposure to
methylmercury [14], a finding supported by follow-up
studies carried out 14 years later [15, 16]. Faroe Island
marine food constitutes a considerable part of the food
source; fish, meat, and blubber from pilot whales are
common elements in the diet. The muscle tissue of pilot
whales contains both methylmercury and PCBs; pilot whale
blubber is especially high in PCBs [17]. Mercury concen-
trations measured both in maternal hair and in umbilical
cord blood exceeded safe levels recommended by WHO [18].
A subsequent study found “Mercury from pilot whale meat
adversely affects the fetal development of the nervous sys-
tem. Decrements in attention, language, verbal memory,
and, to a lesser extent, in motor speed and visuospatial
function were associated with the mercury exposure. This
association was still evident after the exclusion of high ex-
posure subjects” [19].

As with the Minamata case, the highest levels of mercury
concentration occur most frequently in coastal or island
populations, which often have the greatest access to inter-
tidal and coastal organisms; these residents consume larger
amounts of them in their diet. It is important to point out
that the effects of mercury toxicity are not limited to coastal
or island populations but represent a truly global problem.
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2. Mercury Speciation and Toxicity

Mercury exists in many forms and oxidation states, both of
which play a role in mercury toxicity. The different forms of
mercury are highly toxic at relatively low dosages and can
produce varying health effects [3, 20]. Toxicity of mercury
substances arises mainly from destructive bonding to thiol
(-SH), contained in sulthydryl and selenohydryl groups [21].
In addition, mercury bonds to phosphoryl, carboxyl, amide,
and amine groups. Proteins and enzymes with such groups
are rendered inactive or inhibited in these reactions with
mercury [20], and proper cell functions are inhibited by
alteration of protein structure, conformation, and functions
[20-22].

The varying forms of mercury can differ in their method
of formation, ingestion, and absorption, as well as in their
primary targets and level of toxicity. Both in the environ-
ment and in vivo, mercury interconverts among elemental,
inorganic, and organic mercury compounds [1, 20-22].

Mercury crosses the placenta and is considerably more
toxic to the fetal brain at approximately one-tenth of the
concentration that is toxic to adults. Babies exposed in utero
and developing children are the most vulnerable and most
severely harmed, when exposed to mercury, suffering from
possible long-term cognitive impairment, physical maladies,
and developmental delays [2, 3, 23]. Commonly used di-
agnostic modalities to detect mercury levels in humans, such
as blood, urine, hair, and fecal analysis, are limited, reflecting
only current or recent exposure without assessing total body
burden [22].

The three primary forms are elemental mercury (Hg”),
inorganic mercury (Hg”"), and organic mercury compounds
(MeHg and EtHg), which are discussed below.

2.1. Elemental/Metallic (Hgo) Mercury (Zero Oxidation State).
Elemental, or metallic mercury, is unique in being the only
metal element that is liquid at room temperature and highly
volatile at relatively low temperatures. The main sources of
metallic mercury for humans are dental amalgams and
workplace exposures [1, 2, 21, 22].

Amalgams are comprised of 50% mercury by weight with
the other 50% comprised of other metal alloys. According to
the World Health Organization (WHO), human exposure to
mercury vapor from amalgam fillings occurs at a rate of 2 to
28 micrograms per filling, per day [22].

Elemental mercury from dental amalgams and other
environmental and workplace sources readily vaporizes and
is inhaled into the lungs, where up to 80% is absorbed
[1,20-22]. Due to its neutral, monoatomic charge, elemental
mercury is lipid soluble and easily diffuses through the
alveoli in the lungs and into the bloodstream, where it can be
absorbed by numerous tissues. Elemental mercury easily
crosses the blood-brain barrier [1, 21, 22] and cell mem-
branes. While the brain and central nervous system are the
primary targets of elemental mercury, depositions can also
be found in the kidneys, myocardium, skeletal muscles,
adrenals, liver, testes, pancreas, and other organs, which
contributes to local and systemic dysfunction [1, 21, 22].
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2.2. Inorganic Mercury (Hg**): Mercuric Ton (2+ Oxidation
State). Once inside cells, elemental mercury (Hgo) is oxi-
dized to form the highly reactive, mercuric ion (Hg*). The
mercuric ion inhibits or interferes with a host of enzymes
and with a number of metabolic processes necessary for
homeostatic cellular function [1, 2, 21]. The mercuric ion is
less mobile, and because charged particles do not cross
membranes easily, it is less able to exit the cell due to its
positive charge [1, 2]. Because of this, once oxidized in the
brain, mercury can remain trapped in cells, maintaining
detectable levels many years after initial exposure [1, 2, 20].
Organisms, including humans, depend on selenium for
certain functions carried out throughout the body by
selenoproteins.

The body depends on selenium and selenoenzymes for
antioxidative protection. The mercuric ion has an extremely
high affinity for selenium and selenoproteins, which are vital
to cellular redox regulation [1, 21]. The bonding of selenium
to Hg>* becomes nearly impossible to reverse. Based on
autopsy data of humans with proven mercury poisoning, this
bonding plays a key role in its long-term retention in the
brain which is estimated to be 17+ years [1]. In comparison,
the half-life of mercury in the body in general is an estimated
60 days [1, 20, 22]. At extremely low levels, 3.6 parts per
trillion (ppt), Hg>" decreases glutathione, a vital antioxidant,
and increases oxidative stress that can lead to cellular toxicity
and apoptosis [1, 21].

Animal and in vitro studies have demonstrated that
inorganic Hg”" replicates all physical and pathological
symptoms observed in Alzheimer’s patients. These changes
include production of inflammatory amyloid plaques,
production of reactive oxygen species (ROS), and hyper-
phosphorylation of the Tau protein causing neurofibrillary
tangles [1]. The apolipoprotein E (ApoE) transporter protein
genotype is an identified genetic risk factor for Alzheimer’s
disease. The ApoE4 genotype relays a 15-fold risk relative to
the ApoE3 and the ApoE2 genotypes, which appear to have
protective qualities [1].

Mercury exposure at toxic levels most commonly
affects neurologic, renal, and gastrointestinal systems
producing a wide range of symptoms [2, 3]. These
symptoms can include cognitive impairment, tremors,
ataxia (loss of coordination and muscle movement),
hearing loss, pneumonitis, paralysis, shyness and irrita-
bility, insomnia, hallucinations, suppressed immunity,
renal damage, and other systemic/severe symptoms, in-
cluding death at lethal doses. Mercury crosses the placenta
and is considerably more toxic to the fetal brain at ap-
proximately one-tenth of the concentration that is toxic to
adults. Babies exposed in utero and developing children
are the most vulnerable and most severely harmed, when
exposed to mercury, suffering from possible long-term
cognitive impairment, physical maladies, and develop-
mental delays [2, 3, 23].

Commonly used diagnostic modalities to detect
mercury levels in humans, such as blood, urine, hair, and
fecal analysis, are limited, reflecting only current or
recent exposure without assessing total body burden
[22].

2.3. Organic Mercury: Methylmercury (MeHg) and Ethyl-
mercury (EtHg). Mercury, in its elemental and inorganic
states, is routinely altered to its organic form, methylmer-
cury, through the metabolic processes of microorganisms,
particularly some iron- and sulfate-reducing bacteria [24].
Microbes and abiotic processes, along with pH (lower pH
favors methylation) and dissolved organic carbon (DOC)
levels in water, control mercury methylation in an aquatic
environment [25, 26]. In an aquatic environment, the highly
reactive Hg’" is the base for methylation, creation of MeHg,
and other organic mercury species [25]. Of particular
concern is the known bioaccumulation, concentration, and
magnification of methylmercury in aquatic food webs
3, 25, 27].

Progressively elevated levels of mercury in food chains
can reach levels exponentially higher in the top predators, as
compared to mercury levels in surrounding waters. The
major source of MeHg for humans is contaminated seafood
[3, 22, 26, 27].

Americans consume on average about 2.4 ug of mercury
per week through fish consumption, 2.3 ug of which is
absorbed [1]. National and global agencies have set guide-
lines, which often do not indicate total mercury loads, for
mercury exposure. The World Health Organization (WHO)
and Environmental Protection Agency (EPA) established
the following mercury guidelines:

(i) World Health Organization (WHO)-Mercury
Standard Guidelines [18]: WHO-human-methyl-
mercury (0.23 ug/kg/day)

(ii) Environmental Protection Agency (EPA)-Mercury
Guidelines [18]: EPA-human-methylmercury (0.1 ug/
kg/day)

The maximum allowable daily mercury intake from the
two government sources differ significantly, illustrating the
difficulty of establishing such guidelines on known highly
toxic substances within mass populations. The relatively
large discrepancy is mainly attributable to hypothetical
inferences taken from a variety of sources, none of which are
drawn from clinical human trials performed with proper
protocols. However, these extremely low WHO and EPA
numbers, at 0.23 ug/Kg/day and 0.1 ug/Kg/day, illustrate the
perceived high level of toxicity of mercury by both agencies.

2.4. Synergism Amplifies Mercury Toxicity. Synergistic tox-
icity refers to a combined toxicity of two or more poisonous
chemicals that is considerably greater than the toxic effect of
the chemicals taken separately. Data are available on the
individual toxicities of heavy metals such as mercury, lead,
cadmium, and an array of other elements and compounds
(e.g., arsenic, PCBs, BPA, and organophosphate pesticides
(glyphosate in formulations such as Roundup). Determining
the combined toxicity of multiple toxins may be equally, if
not more, important than quantifying harmful effects of
single toxins. For example, in a much-cited study by Shubert
et al. [28], the relationship between mercury and lead was
observed to be synergistic. The experiment used the lethal
dose of both mercury and lead salt that would each kill 1/100



(LD;) mice. The combined salts were then administered to
mice, killing 100/100 (LD;q0) of them. This level of increase
in lethal toxicity strongly suggests that the combined salts
had a multiplier effect, causing a much higher LD than what
would have been predicted for a mere combination of the
mercury and lead salts.

It is difficult to test precisely for the synergistic inter-
actions among heavy metals due to their complex rela-
tionships in actual biological systems; “each metal may be
involved in a spectrum of metabolic pathways to elicit
specific toxic effects.” Yet in one study of synergistic toxicity
of multiple heavy metals which started using a lethality test
using a single metal and then followed it with lethality tests
using multiple metals, the results showed that even minute
amounts of each metal in concentration could generate a
severe lethal impact on Caenorhabditis elegans, a free-living
nematode species [29].

The widespread use of pesticides in public health and
agriculture is responsible for both environmental pollu-
tion and health hazards. “A widespread and repeated
exposure of both human and animal populations to
mercury combined with other heavy metals and pesticides
has been observed. Heavy metals and pesticides in
combination may have a more severe impact on health
than their individual effects” [30]. Despite its general high
standard of living, the United States ranks 46™ in infant
mortality rate (IMR) among nations in the report sub-
mitted to the World Health Organization. In addition to
giving us key information about maternal and infant
health, IMR is a well-known marker of a society’s overall
health.

Environmental toxicants may be one factor responsible
for increased infant mortality. When mercury, aluminum,
and lead interact synergistically with fluoride compounds,
they produce metal fluoride complexes which can disrupt
the signaling processes that control and guide development.
Pesticides may play an important role: “Among the inter-
actants are glyphosate and phosphate containing fertilizers
that end up in the food and water because of their wide-
spread use in agriculture” [31].

In developing countries, particularly in sub-Saharan
Africa, “increased artisanal mining activities, illegal refining,
use of leaded petrol, airborne dust, arbitrary discarding of
toxic waste, absorption of production activities in inhabited
areas, inadequate environmental legislation, and weak
implementation of policies” have all added to the public
health burden caused by heavy metal mixtures (including
mercury) [32]. These preliminary studies highlight the
importance of further research in determining which other
known toxic substances have synergistic effects with mer-
cury and what the nature of these synergistic effects is.
Pollutants in the environment are rarely ever present singly,
occurring instead in mixtures with largely unknown toxicity
potentials.

2.5. Global Sources of Mercury Pollution. Natural sources of
mercury pollution include volcanic activity, forest fires, and
soil emissions. Although mercury compounds have multiple
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applications, including those in industry and dentistry, an
increasing understanding of mercury’s toxicity has led to
progressive restrictions in its use [3, 21]. Global contribu-
tions of mercury pollution in 2010 are illustrated in Figure 1.
Asia accounts for the greatest proportion of anthropogenic
mercury emissions, contributing over 50% of the total global
distribution.

Global anthropogenic sources of mercury pollution in
the environment include coal-burning plants, chlorine
factories, and gold mining/processing activities (see
Figures 2 and 3). As indicated in Figure 2, China emits three
quarters of the East and Southeast Asian emissions and is
solely responsible for approximately one-third of the total
global pollution load [26]. Other regions emit mercury,
decreasing in the following order: Europe, North America,
South America, Russia, and sub-Saharan Africa. As clearly
illustrated in Figure 2, Asia was the only region that sig-
nificantly increased its mercury output between 1995 and
2005.

The EPA [33] quantifies approximate anthropogenic
industrial contributions of mercury to the air (see Figure 3).
Annual contributions include artisanal and small-scale gold
mining (37%, 727 tons), fossil fuel burning (25%, (484 tons),
nonferrous metal production (10%, 193 tons), cement
production (9%, 173 tons), large-scale gold production (5%,
97 tons), waste disposal (5%, 95 tons), contaminated sites
(4%, 82.5 tons), primary ferrous metal production 2%, 45.5
tons), and the chlor-alkali industry and crematoriums (1%,
4-6 tons each).

2.6. Sources of Mercury in the San Francisco Bay Area (SFBA).
Miners used mercury, also known as quicksilver, to recover
and purify gold from ore throughout the Western United
States. Mercury was used in the process of amalgamation
(physical combination) because of its relatively low boiling
point for a metal (357°C), which is less than that of gold
(2,970°C). Mercury also has a high density, which allows
gold-mercury amalgams to sink and settle. Most of the
mercury used in gold recovery was obtained from mercury
deposits in the Coast Range on the West side of the Central
Valley [34].

After the Gold Rush, notable amounts of mercury-
contaminated sediments remained at mining sites, es-
pecially in drainage tunnels. Sources of mercury con-
tamination in the SFBA include contributions from
mercury mines in New Almaden, which lies adjacent to
the Guadalupe River watershed and drains into South San
Francisco Bay. In addition, gold mining in upstream
portions of the Sierra Nevada Mountains played a sig-
nificant role in adding mercury to the SFBA environment
and in other local watersheds [35].

In 2000, the United States Geological Survey [35] re-
ported that some 550 abandoned and inactive mercury
mines in California continued to cause environmental
damage (see Figure 4). The map in Figure 5 highlights sites of
mercury (red) and gold mines (yellow) throughout northern
and central California and their connective water tributaries.
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Mercury emission 2010, g/km2

Global distribution of anthropogenic mercury emissions to air in 2010.
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FIGURE 2: Anthropogenic global mercury emissions, tons, 1995-2005. Figure source: United Nations Environment Program [26].

Figure 5 shows the major pathways through which mercury
contamination can occur in sediment and water.

Placer mining in California released close to 10 million
Ibs of mercury to the environment. About 80-90% of it was
concentrated in the Sierra Nevada Mountains [36]. Three
million Ibs of mercury were lost in hardrock mines, which
crushed gold ore using stamp mills. Mercury production in
California, spanning the years 1850-1981, totaled well over
220 million lbs, and it peaked in the 1870s [36, 37]. For
instance, a gold pan could be found with over 30g of
mercury from just 1 kg of mercury-contaminated sediments
in a drainage tunnel.

2.7. Environmental Bioaccumulation of Mercury: Movement
from Air, Water, and Sediments into Biological Systems.

Landers et al [38] assessed fate, transport, and ecological
impacts of mercury and other airborne contaminants through
a study in National Parks of Western USA. They report
mercury can be carried to these parks, both on fine particulate
matter and as gaseous compounds. Gaseous elemental
mercury (Hg’) has a lifetime up to one year or more, which
results in a fairly uniform global reservoir of elemental
mercury in the atmosphere [38]. Elemental mercury slowly
oxidizes to Hg**, which is then quickly removed via wet or dry
deposition. Similarly, Wright et al [39] investigated mercury
deposition at the coast of California. Mercury is present in the
atmosphere as elemental gaseous oxidized compounds. In air
(Table 1), mercury is generally found in low concentrations
(parts per trillion (ppt)). However, aerial mercury concen-
trations at industrial (e.g., coal burning power plants and oil
refineries) sites occur at higher concentrations. Mercury is
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FIGURE 3: Data for 2010 mercury emissions from the highest emitting industry sectors, from the 2013 UNEP Global Mercury Assessment.

Figure source: United Nations Environment Program [26].

broadly distributed throughout much of the SFBA, with most
of it from aerial transport, historic mining, and weathering of
cinnabar, a natural mercury ore. The North Bay receives over
95% of the total freshwater inflow, while the South Bay re-
ceives less than 5%.

Long and Morgan [42] reported in 1990 on sediment-
sorbed contaminants as part of the National Oceanic and
Atmospheric Administration’s “national status and trends
program.” Their extensive summary evaluated biological
effects of mercury and other toxins. It included a review of
published information on mercury concentrations in estu-
arine and coastal marine sediments. Only a moderate
amount of sediment data were available for the US but did
include two studies in San Francisco Bay. One study re-
ported 2.3 ppm mercury dry weight (Table 1).

As might be expected, mercury is also found in ter-
restrial soils. An Environmental Protection Agency (EPA)
report [43] reviews and summarizes data on mercury
content of virgin and cultivated surface soils from several
countries; average concentrations ranged from 20 to
625ng/g (0.020 to 0.625ppm). The EPA review explains

the highest concentrations were generally found in soils
from urban locations and in organic rather than mineral
soils. Content of most soils varies with depth, with the
highest mercury concentrations generally found in sur-
face layers.

Figure 6 conceptually illustrates biomagnification of
mercury concentrations up through food webs in aquatic
ecosystems, starting with bacteria converting inorganic
mercury to methylmercury. Upon methylation, mercury
enters food chains, where organisms successively bio-
accumulate mercury up to 10 times greater concentrations
than the level in their food source. To illustrate this ex-
ample of increasing magnitude, bacteria and phyto-
plankton have a mercury concentration of 10ng/kg
(10 ppt), followed by zooplankton and protozoa with a
concentration of 100ng/kg (100 ppt). The level of con-
centration continues to increase up through the trophic
levels of this food chain until the apex predator, the
kingfisher (in this example), is reached. Apex predators,
such as the kingfisher, can bioaccumulate concentrations
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FIGURE 4: Map of mercury mines in California. Figure source:
United States Geological Survey [35].

up to several million times greater than the concentration
in water.

Biomagnification processes may be compounded by
water acidification. Substances including sulfur, which
provide reactants required for methylation, result in con-
version of mercury to organic mercury. Much remains to be
understood about some processes in the biogeochemical
cycle of mercury, including its methylation (creating MeHg,
the bioavailable form of mercury), subsequent bio-
accumulation in biota, and resulting biomagnification in the
food web.

3. Mercury Concentrations up through
Trophic Levels

Species are often classified into five trophic levels, which are
based on the transfer of energy at each level, i.e., whether
they synthesize or consume energy. Some organisms create
their own energy, while others receive energy by feeding on
other organisms, typically lower in the food chain. In this
report section, we provide available examples of SFBA or-
ganisms reported to contain mercury at each trophic level.
However, as some information gaps exist, the text and tables
are supplemented with data and discussion of mercury-
laden species from other locations in USA and other
countries.

~~ Rivers
J Lakes

@ Mercury mines

Gold mines

FIGURE 5: Map of gold mines and mercury waterways in California.

3.1. Trophic Level I: Autotrophic Bacteria, Algae, and Plants
That Produce Their Own Energy (Autotrophic Primary
Producers). Examples: phytoplankton, diatoms, and kelp.

Most methylmercury taken up by aquatic biota comes
from microbes that process inorganic, divalent mercury,
Hg’", in anaerobic sediments facilitated by some sulfate- and
iron-reducing bacteria [45]. Sulfate-reducing bacteria and
archaea convert sulfate (SO,>-) into hydrogen sulfide (H,S),
essentially anaerobically “breathing” sulfate rather than
oxygen. Methylmercury production relies on availability of
inorganic mercury (Hg”") for assimilation and methylation.
The capacity for methylation of mercury depends on the
strain (genetic variant or subtype) of algae or bacteria [45].
For example, in sulfate-reducing bacteria, methylation can
occur through passive diffusion or an active transport
mechanism [45]. The methylated mercury that does not
accumulate in the bacteria is excreted as methylmercury and
becomes available for uptake by diatoms, desmids, and
aquatic rooted plants. All of these organisms, which are at
the base of the food chain, are then consumed by organisms
from higher trophic levels.

The phenomenon of methylation takes place as Hg"
ions segregate, primarily in the outer membranes of cells.
Methylmercury passes into the cytoplasm of a cell where
assimilation efficiency is greater. This crucial step of
methylation of inorganic Hg** to organic, MeHg, which is
fundamental to the entry of mercury into the food chain and
its further biomagnification at higher trophic levels, is not
fully understood.
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TaBLE 1: Environmental methylmercury concentrations measured in air, water, and sediments.

. Amount or range of MeHg Air, water, and sediment Literature
Location of mercury .
concentrations transport source
Occurs in picograms/m>. . . .
Air in Europe Picograms are equivalent to parts Mereury is transported worldwide, regionally, [40]
s and locally.
per trillion (ppt).

. . L. Serves as distribution source of Hg via rain,
Water from Sacramento River Basin, 0.27-2.84 ng/g, which is streams. and run-off from lakes and oceans. H
CA (where most gold mining took equivalent to parts per billion > 8 [41]

place during 1849-1981) (ppb).
Sediments collected from within SFO

Bay and at Oakland estuary Oakland Estuary

SFO Bay samples analyzed
2.3 ppm (dry weight) in SFO Bay’s reducing bacteria to transform elemental Hg to [42]

becomes CH;Hg through microbial processes in
water.
Hg trapped in aquatic sediment allows sulfate-

organic CH;Hg.

FIGURE 6: Mercury biomagnification in an aquatic and riparian food chain. Source: New Jersey Department of Environmental Protection,

Mercury Task Force [44].

Algae also play a vital role in trophic transfer of MeHg to
fish. The greatest bioconcentration (i.e., uptake from water)
takes place in these plants, which essentially function as
“mercury sponges” [46]. Methylmercury assimilation by
algae begins with an adsorption interaction at the aqueous
solution-cell membrane interface. The toxin is then trans-
ported across the membrane barrier. Reactions take place
within the cytoplasm and nucleus of the cell [46]. As with
bacteria, details of binding mechanisms and assimilation are
unknown.

Kuwabara and coinvestigators [47] provided an example
of MeHg concentrations in phytoplankton from Lake
Almaden, located in the SFBO Area several miles south of
San Francisco Bay. Their collections for analysis consisted
primarily of the taxa Merismopedia glauca, Cryptomonas
erosa, and Aphanothece smithii. MeHg content ranged from
less than 1.50 (the low detection limit) to 8.2 nanograms
per gram dry weight (Table 2). These concentrations in
phytoplankton were higher than those of the Kuwabara
team found in Guadalupe Reservoir, which is also located

just south of the SFO Bay Area. Methylmercury in this
reservoir’s phytoplankton was undetectable.

3.2. Trophic Level II: Plant Consumers (Primary Consumers).
Examples: clams, cod, and sardines.

Trophic level II organisms, generally herbivores and
small-prey fish, typically consume autotrophic level I or-
ganisms, such as rooted plants and algae. Herbivores, such as
some zooplanktonic species, feed on phytoplankton. Trophic
level II species often have MeHg concentrations of a few ppb.
For example, investigators have reported concentrations of
0.009 ppm (9 ppb) in zooplankton and filter-feeding clams.
However, for some primary consumers, concentrations of
MeHg can reach nearly 5 ppm, as shown in Table 3.

Thus, MeHg is introduced to other higher-level (trophic
level TI-V) organisms. Methylmercury does not dissolve or
break down; it binds to proteins found in visceral, muscular, and
adipose tissue. Fish assimilate MeHg rapidly but excrete it slowly
due to its insoluble nature. This higher rate of MeHg assimilation



Journal of Environmental and Public Health 9
TABLE 2: Methylmercury concentrations in representative trophic level I organisms.
Trophic level I Methylmercury (MeHg) concentration Comments L;z?it;l;e
Primary producers: plants and algae Beginning of accumulation and
that synthesize their own energy and Concentrations are species specific concentration into biological [22, 25, 27]
food systems
Phytoplankton from Lake Almaden, RZI;g: /belé)w Vlvio }(lih(ild/etegtll(:ir\llalll:lltt)t;o [47]
south of SFO Bay - 1gfe cry welg &8 ¢4
ppb)
TaBLE 3: Methylmercury concentrations in representative trophic level II organisms.
Trophic level II Methylmercury .(MeHg) Comments therza‘ture
concentration citation
Primary Consumers: these are Methylmercury is sequestered in adipose and visceral
L . Range: 0.009 to . . . .
primarily herbivores, filter feeders, 483 opm tissue, and concentrations continue to accumulate in (41, 47]
small prey fish, etc. ©oPP higher trophic levels
Zooplankton 0.009 ppm [47]
Clams 0.009 ppm [48]
Sardines 0.013 ppm [33]
Cod 0.111 ppm [49]
Small-prey fish Range: 1.22-4.83 ppm [4]

versus its slow excretion results in its progressive trophic level
accumulation. In fish, 95% of MeHg is readily absorbed in the
gastrointestinal tract. Because of this accumulation, fish are one
of the most significant sources of consumption-related MeHg
exposure to humans and other animals.

Acute MeHg contamination in fish generally results in
inflammation of gill covers, increased respiratory activity,
loss of homeostatic function, lethargy, and death [50].
Sublethal or chronic exposures to MeHg can manifest as
growth inhibition, behavioral anomalies, metabolic dis-
turbances, reproductive failure, changes in blood chem-
istry, osmoregulatory complications, and altered gas
exchange in both marine and freshwater organisms [51].

3.3. Trophic Level III: Carnivores That Consume Herbivores
(Secondary Consumers). Examples: dragonfly larvae, Cal-
ifornia clapper rail, California least tern, and perch.

Level III organisms are found in various taxonomic
groups of invertebrates and vertebrates. These animals
have higher methylmercury levels than found in trophic
levels I and II organisms. Examples of level III organisms
include some groups of insects, fish, and birds (see Ta-
ble 4). Birds vary greatly in the amount of MeHg in their
bodies, depending on factors such as diet and feeding
grounds. Fruit- or seed-eating birds in trophic level II
have much smaller concentrations of MeHg than do pi-
scivorous (fish-eating) and other carnivorous birds in
trophic levels III and higher. While birds feeding on
grains generally have low concentrations of MeHg in their
bodies, grains treated with mercury-containing fungicides
can cause either acute or chronic effects in these birds
[54].

In avian species, areas of mercury concentration are
feathers, liver, other internal organs, and eggs. Sampling
feathers is advantageous for several reasons: it is

nondestructive, does not require refrigeration for storage,
and can be easily compared with feathers archived decades
ago. Mercury has a high affinity for sulthydryl groups
present in proteins, and developing feathers are comprised
of keratin, a sulthydryl-rich protein.

The California least tern, Sterna antillarum browni
(Figure 7), and the California clapper rail, Rallus longirostris
obsoletus, both Federally-listed as endangered, also exhibit
pathologies related to MeHg contamination. In tidal
marshes of the SFBA, recovery of the California clapper rail
may be in peril due to MeHg toxicity. In a study by Heinz
et al. [55] methylmercury was injected into eggs. The
hatchability in clapper rails was found to be adversely af-
fected by MeHg. Bioaccumulation of MeHg in SFBA eco-
systems is specific to species demographics, due to variation
of MeHg concentrations found in different habitats. Eggs of
piscivorous birds collected from San Pablo Bay and Suisun
Bay (northern part of the SFBA) had concentrations ranging
from 0.28-0.70 ppm, while eggs from the South Bay
(southern part of the SFBA) ranged slightly higher, i.e., from
0.56-1.05 ppm.

The National Park Service is monitoring MeHg distri-
bution in National Parks throughout the country by ex-
amining levels of MeHg present in various species of
dragonfly larvae, which serve as important sentinel organ-
isms. This monitoring effort is conducted by scientists along
with citizens [56] in 22 national parks and one state (GA)
park across the US, including Golden Gate National Rec-
reation Area (“GOGA”) in San Francisco. This project has an
educational component in which students from different age
groups (see Figure 8) are trained to follow protocols for
collecting dragonfly larvae). Specimens from dragonfly
larvae collected in selected freshwater marshes of GOGA had
a mean concentration of 0.343 ppm [52], which is within the
order of magnitude of concentrations expected for organ-
isms in trophic level III. Of dragonfly larvae evaluated in the
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TaBLE 4: Methylmercury concentrations in representative trophic level III organisms.

Trophic level III Methylmercury ‘(MeHg) Comments LlFergture
concentration citation
Methylmercury is retained in tissues of organisms.
Secondary consumers: carnivores ) Organisms of trophic level IIT are consumed by organisms
that consume herbivores Range: 0.1-0.3 ppm in higher trophic levels IV and V; the toxin continues to [49]
accumulate.
Herring 0.1 ppm [49]
American lobster 0.1 ppm [49]
Catfish 0.2 ppm [49]
Black sea bass 0.2 ppm [49]
Dragonfly larvae from Golden Gate
National Recreation Area, San 0.3 ppm (mean) [52]
Francisco
California clapper rail (eggs) 0.3-0.8 ppm Anemia, disturbed gait, feather abnormalities, neurological (53]

changes, and immunological damage.

FiGgure 7: California least tern in trophic level III is a small en-
dangered seabird exhibiting pathologies related to MeHg con-
tamination. It typically inhabits lagoons or shallow estuaries, where
it feeds on the abundant small fish. Photo source: California Dept.
of Pesticide Regulation (cdpr.ca.gov). Photo by Moose Peterson of
Wildlife Photography, http://www.moosepeterson.com.

FIGURE 8: A team of scientists and citizens (young students in this
case) in 2015 collecting dragonfly larvae at Golden Gate National
Recreation Area in San Francisco. Photo source: United States
Geological Survey [4].

23 sites mentioned, those from GOGA had the highest mean
concentration of total mercury. Concentrations at the 23
sites ranged from below detection limit to 0.844 ppm dry
weight, and the overall median concentration for all sites was
0.112 ppm.

3.4. Trophic Level IV: Carnivores That Consume Other Car-
nivores (Tertiary Consumers). Examples: common loon,
Forster’s Tern, jacksmelt, and Chinook salmon.

Organisms in trophic level IV are tertiary consumers,
and they have greater MeHg accumulations than animals in
lower trophic levels. Among level IV animals are some
species of migrating birds that pass through the SFBA.
Wetlands in this area are integral to survival and repro-
duction of large bird populations, and many avian species
are sensitive to methylmercury, particularly during devel-
opmental stages as embryos and chicks [55]. Consequently,
they face reproductive complications.

The American avocet (Recurvirostra americana), For-
ster’s tern (Sterna forsteri), Caspian tern (S. caspia), and
black-necked stilt (Himantopus mexicanus) all inhabit areas
in and around managed ponds in SFBA (see Figure 9).
Ackerman et al. [57] have reported about 48% of breeding
Forster’s terns and nearly 5% of stilts, avocets, and Caspian
terns have a high MeHg blood concentration, i.e., >3.0 ppm
(see Figure 9). At this concentration, common loons (Gavia
immer) experienced a 40% decrease in reproductive success.
The annual mean in MeHg concentrations in Forster’s tern
eggs varied from 0.9-1.6 ppm in 2009. In the South Bay,
downstream of the New Almaden Mining Site, concentra-
tions of MeHg found in both eggs and blood samples of this
species have been consistently higher.

Trophic level IV species, in summary, tend to feed on
other carnivores that bear moderate or high MeHg loads. As
a result, the former species incorporate and further con-
centrate the toxin to their detriment. For example, halibut
reported with a MeHg level of 0.241 ppm (Table 5) were
likely to experience reproductive complications [49].

3.5. Trophic Level V: Apex Predators (Final Consumers).
Examples: sharks, eagles, bears, and humans.

At trophic level V are apex predators, animals tending to
have a long life span and larger body size. Because they
consume prey from lower trophic levels (i.e., IIT or IV), apex
predators have the highest “body burdens” of MeHg.
Humans are no exception and can be exposed to high
concentrations of MeHg from eating seafood.

The gray smooth-hound shark (Mustelus californicus) is
found in California, including the San Francisco Bay estuary.
It feeds on mollusks, clams, crabs, shrimp, small fish, and
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Mercury toxicity categories
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FIGURE 9: SFBA native bird species in trophic level IV are at varying risks from mercury toxicity. This figure shows relationship between
MeHg levels and diet. Those at higher trophic levels, e.g., Forster’s tern, have a greater risk due to their consumption of more highly
contaminated mercury-tainted organisms. Figure source: Ackerman et al. [57].

TaBLE 5: Methylmercury concentrations in representative trophic level IV organisms.

Trophic level IV Methylmercury .(MeHg) Comments L1’Fera.ture
concentration citation
Mercury toxicity leads to the following reproductive
Tertiary consumers: carnivores ) consequences in avian life: eggshells of developing bird
that consume other carnivores Range: 0.008-1.6 ppm embryos are thinner and more fragile, and offspring exhibit (53]
decreased appetite and poor development
Salmon (canned) 0.008 ppm [49]
Salmon (frozen/fresh) 0.022 ppm [49]
Fish are likely to experience reproductive complications due to
Halibut 0.241 ppm bioaccumulation of methylmercury in the viscera, which lines [49]
the abdomen
Forster’s tern (eggs) sampled 0.9-1.6 ppm (27]

from SFBA

squid. Although these food items have lower concentrations
of MeHg, this shark consumes them in high amounts.
Largemouth bass (Micropterus salmoides) are native to
North America, including California and the SFBA. This
ubiquitous game-fish species is commonly found in reser-
voirs and lakes. As such, this bass provides a sound baseline
of MeHg concentrations for apex species in aquatic habitats
and can be used for fish consumption advisories [58].
Largemouth bass, which occur in some reservoirs in the
Guadalupe River watershed (New Almaden Mining Dis-
trict), have among the highest MeHg concentrations (e.g.,
6.6 ppm) observed in the entire United States [53].

A 1994 survey of fish in the SFBA found levels of
mercury ranging from 0.07-1.26 ppm in species popular
with human consumers. High concentrations were found
in the leopard shark (Triakis semifasciata), brown
smooth-hound shark (Mustelus henlei), white sturgeon
(Acipenser transmontanus), and striped bass (Morone
saxatilis). Striped bass from the SFBA have the highest
average concentration with a mean of 0.44 ppm in fish
60 cm long [53]. Fish with lower mercury levels include

Chinook salmon (Oncorhynchus tshawytscha), jacksmelt
(Atherinopsis californiensis), brown rockfish (Sebastes
auriculatus), and red rock crab (Cancer productus). Fish
with higher mercury levels tend to be large, apex predators
in both fresh and marine systems. Among these are
walleye (Sander vitreus), striped bass, swordfish (Xiphias
gladius), yellow tilefish (Hoplolatilus luteus), king
mackerel (Scomberomorus cavalla), and brown smooth-
hound shark. The mercury concentration of 3.5 ppm in
this shark is among the highest levels detected in apex
predators. Table 6 summarizes concentration levels of
mercury in selected trophic level 5 organisms. No con-
sistent reliable data exists on general levels of mercury
concentration in humans due to variable diets and other
environmental factors.

4. Sources and Measurement of Mercury
Contamination in Humans

Mercury is uniquely harmful when released into the envi-
ronment, due to its toxicity and its long-term persistence in
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TaBLE 6: Methylmercury concentrations in representative trophic level V organisms.

Trophic level V Methylmercury (CH,He) Comments Literature
concentration citation

Apex predators: highest level Organisms in this level contain the highest levels of

bex precarors: Wgnes Range: 1.0-6.1 ppm methylmercury, as MeHg has biomagnified up through the  [49, 53, 58]
consumers in food chains . . .

food web. Concentrations are species specific.

Largemouth bass 6.6 ppm [53]
Selected shark species 1.0-4.0 ppm [49]
Three-spined stickleback Seasonal range: Sticklebacks collected from the Alviso Slough, South San (59]

0.6-1 ppm (dry weight)

Francisco Bay.

ecosystems through recycling. Mercury is mobile when
incorporated into organic compounds, principally in the
form of methylmercury. It accumulates and concentrates
dramatically as it is biomagnified through terrestrial and
marine food webs. Global anthropogenic mercury emissions
pose immediate and long-term challenges for many species,
including humans. Mercury is “the only metal representing a
volatile gas at room temperature, which is readily absorbed
(80%) by the respiratory system” [1].

Data and evidence summarized from studies cited in this
paper demonstrate how and to what extent mercury moves
through the environment and food chains [38].

Air transports mercury worldwide and releases it in the
form of precipitation, contaminating water bodies,
groundwater, sediments, and subsequently ecosystems.
Measured concentrations of mercury yield convincing evi-
dence of biological amplification [47].

Concentrations magnify exponentially, starting with
primary producers of the first trophic level, including
bacteria and algae, and reaching toxic levels in apex species,
such as sharks, killer whales, and polar bears. Humans fall
into the upper end of trophic levels and are among those
species with the highest potential to capture mercury and
concentrate it in organs and tissues.

In addition to sources of mercury already discussed,
humans are potentially exposed to mercury from such sources
as dental amalgams and vaccines. Amalgams, commonly
referred to as “silver fillings,” continue to be used in dentistry
to fill cavities from tooth decay. Amalgams are alloys of liquid
mercury mixed with powdered metals consisting of tin,
copper, and silver. Elemental mercury comprises about 50%
of these amalgams by weight [60]. Mercury is the only metal
in a liquid state at room temperature, allowing it to bind well
with the powdered alloy [61].

These filling materials are cost-effective and durable, and
for this reason mercury amalgams continue to be used but
not as widely as they once were. Many dentists now choose
to use alternative materials such as resin and composites for
health reasons. Although several countries in Europe, in-
cluding Norway, Sweden, and Denmark, have banned the
use of mercury in dental amalgams, mercury is still being
used in the US for dental fillings [31].

Small amounts of mercury vapor are released during
mechanical processes such as chewing and are absorbed
through the lungs by inhalation and ingestion. Concen-
trations of mercury can increase through bruxism or teeth
grinding. Other factors, such as oral temperature, pH, and

surface area of the amalgam itself, are contributing factors to
mercury concentration. Exposure to high levels of mercury
vapor have been linked to adverse effects in the kidneys and
brain. Susceptibility to this neurotoxin varies among indi-
viduals, depending on their genotype [62]. Studies such as
the Children’s Amalgam Trials suggest that exposure
through dental amalgams can be deleterious to those who
possess susceptible genes. In addition, there is evidence that
the use of mercury containing amalgams may be affecting
dentists, dental hygienists, and their assistants as well as
patients: “Dental workers have higher levels of mercury as
measured in blood, urine, stool, nails, hair, and organs” [61].

Current diagnostic modalities available to determine
mercury in humans include urine, blood, and hair analysis.
These methods typically show recent, acute, or chronic
exposure to mercury, but do not measure deposited mercury
levels in tissues. Mercury is measured in various tissues and
organs of nonhuman organisms, but almost exclusively in
urine, blood, and hair of humans. In addition, total mercury
load in humans up to this point cannot be determined
exclusively by one test; urine analysis yields elemental
mercury load, while hair and blood analyses identify organic
mercury loads.

The meta-analysis study by Bernhoft, Mercury Toxicity
and Treatment, a Review of Literature, found the following:
“In addition to the brain, metallic mercury is also deposited
in the thyroid, breast, myocardium, muscles, adrenals, liver,
kidneys, skin, sweat glands, pancreas, enterocytes, lungs,
salivary glands, testes, and prostate and may be associated
with dysfunction of those organs. Mercury also has affinity
for binding sites on the surface of T cells and for sulthydryl
groups influencing T cell function. Mercury deposits readily
in placenta and fetal tissues and is found in breast milk” [22].

Knowing human health is challenged by both acute,
chronic exposure and accumulation of mercury from food
and environmental sources, it is extremely important to
develop more sensitive methods of measuring total mercury
load. One possible promising development is the patented
liquid chromatographic mercury speciation technology used
by Dr. Christopher Shade to create the Mercury Tri-Test,
which measures urine, blood, and hair levels [63]. Early
detection of total mercury load would help to prevent hu-
man pathologies associated with mercury exposure from
developing over time. These maladies include kidney, heart
disease, and cognitive degeneration.

As discussed earlier, large amounts of mercury were
dumped into Minamata Bay, Japan, starting in the 1930s,
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resulting in a population devastated by harmful effects of
mercury contamination. One of the major achievements of
the international community has been the Minamata
Convention on Mercury, an international treaty designed to
protect human health and the environment from anthro-
pogenic releases of mercury and its secondary compounds.

5. Recommendations to Minimize Human
Mercury Exposure

In October, 2013, more than 90 countries signed the Min-
amata Convention on Mercury, an initiative begun in 2009
by the Governing Council of the United Nations Environ-
ment Program (UNEP) (http://www.mercuryconvention.
org/Portals/11/documents/conventionText/Minamata%
20Convention%200n%20Mercurye.pdf).

The Minamata Convention on Mercury is a global treaty
to protect human health and the environment from the
adverse effects of mercury. The convention is designed to
recall the name of the Japanese city that went through the
devastating episode of mercury poisoning that first brought
the extreme dangers of mercury to global awareness. The
Minamata treaty presented comprehensive recommended
measures to reduce mercury emissions globally. The goal of
this pact is to “...protect the human health and the envi-
ronment from anthropogenic emissions and releases of
mercury and mercury compounds.” The participating
members in the treaty are expected to reduce their mercury
emissions by complying with key provisions designed to curb
both intended and unintended future emissions of mercury
and its use by leading contributing industries.

Among its requirements are cutting edge emission-
control technologies on new coal-fired power plants, boilers,
and smelters; in addition, it bans the use of mercury in the
production of acetaldehyde. Certain controversial uses of
mercury were exempted, including artisanal gold mining,
the use of dental amalgams, and as a preservative in vaccines.
Further reductions in mercury usage and emission must be
brought about by public education, combined with strong
regulations effectively enforced through legal systems to
ensure compliance. Only such comprehensive efforts will
bring about desired long-term reductions in levels of
mercury in the environment.

The primary exposure to methylmercury occurs through the
consumption of contaminated seafood [64]; in some inland
areas it is through rice grown in contaminated waters [65].
Methylmercury in the diet is clearly toxic for the human brain,
kidney, liver, heart, and nervous system; it is particularly dan-
gerous for the developing fetus, as earlier cited work shows (e.g.,
Minamata and Faroe Islands). Mercury exposure during
pregnancy can cause lasting deficits in development of a child’s
brain and nervous system. In 2001, the EPA concluded that a
pregnant woman could consume 0.1 micrograms of mercury per
kilogram of bodyweight daily without ill effects to her fetus and
that this amount of mercury would also be safe for children and
adults [66]. Since then, however, some studies have found
measurable damage to infants’ brain development in mothers
exposed to lower levels of mercury. Several scientists and ad-
vocates specializing in mercury damage have concluded that the
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EPA’s safe level is too lax to protect the developing fetus, and
recommendations have been made that the EPA lower its
mercury exposure level by 50 to 75% [67, 68].

While general fish advisories can be found at the EPA
website (https://www.epa.gov/mercury/guidelines-eating-fish-
contain-mercury and both state and regional advisory ones
as  well (https://fishadvisoryonline.epa.gov/AdvisoryDetails.
aspx?ADVNUM=27), these government websites are not
easily accessible or user-friendly. The Monterey Bay Aquarium
is a neighbor of SFBA, with its own fish advisory (https://www.
seafoodwatch.org/-/m/sfw/pdf/whats%20new/complete%
20recommendation%20list.pdf.

In our judgment, the Environmental Working Group
(https://www.ewg.org/research/ewgs-good-seafood-guide pub-
lishes the clearest and most user-friendly guide to wise fish
consumption. The Environmental Working Group’s (EWG)
extensive analysis of the latest scientific research on seafood
points consumers to fish lowest in mercury contamination,
highest in omega-3 fatty acids, and most sustainably produced
(https://americanpregnancy.org/pregnancy-health/omega-3-
fish-oil-and-pregnancy/).

The EWG website contains a Seafood Calculator for
making a custom seafood list based on age, weight, gender,
and other personal information (https://www.ewg.org/
research/ewgs-good-seafood-guide.

(i) It includes a well-documented Good Seafood Guide
which most highly recommends wild salmon, sar-
dines, mussels, rainbow trout, and Atlantic mack-
erel: one or two four-ounce servings a week of these
fish have little mercury and optimum levels of
omega-3 fatty acids for pregnant or nursing women
and people with heart disease.

(ii) Oysters, anchovies, pollock, and herring are also
healthy choices: these species have favorable con-
centrations of omega-3 fats. One four-ounce serving
provides at least 25 percent of the weekly recom-
mended omega-3 consumption. A pregnant woman
of average weight could eat three four-ounce servings
per week without ingesting too much mercury.

(iii) Shrimp, catfish, tilapia, clams, and scallops are low
mercury but also low omega-3 sources. They can be
healthy sources of protein and other nutrients, but
an adult would have to eat five to 20 four-ounce
portions to meet the omega-3 recommendation for
pregnant women and people with heart disease.

(iv) Canned light and albacore tuna, halibut, lobster,
mahi-mabhi, and sea bass contain too much mercury
to be part of the regular diet of pregnant women and
children; the safe amount in the diet depends on age,
weight, and health status.

(v) The following fish are to be avoided on account of
high mercury content: shark, swordfish, tilefish,
king mackerel, marlin, bluefin and bigeye tuna, and
orange roughy. This high mercury seafood should
never be eaten by pregnant women and children,
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and it should be eaten by others only infrequently or
not at all.

A historical factor needs to be mentioned. The SFBA
generally has higher levels of mercury in its ecosystems than
other urbanized regions of mainland United States, largely
due to the problematic legacy of California’s history of gold
mining. Local environmental measures to decrease mercury
emissions would include more research to curb erosion and
mercury movement into the environment from the more than
550 abandoned gold mines in California. Unfortunately, no
data exists regarding local human health issues resulting from
the higher levels of mercury. Mercury pervasiveness, com-
bined with long-term human exposure, may well play a
contributing role in the etiology of chronic long-term, de-
generative conditions such as coronary and neurodegenera-
tive disease. Symptoms of mercury toxicity at present can go
unrecognized due to lack of testing and the difficulty of
identifying chronic low-dose exposure symptoms.

In order to further reduce mercury exposure, it is highly
recommended that dental amalgams be avoided in favor of
other restorative materials such as composites, gold, and
porcelain. Humans are also exposed to mercury directly
from certain vaccines that contain thimerosal, an EtHg-
based preservative. Safety and potential toxicity of thimer-
osal are hotly debated topics [69, 70]. More research is
needed regarding use of thimerosal, along with a simulta-
neous search for potentially less toxic preservatives.

6. Insights and Conclusions

It is important to remember that one indispensable factor in
identifying the potential harmful effects of a technology is
the nature of the human response. Returning to the Min-
amata events discussed at the outset of this paper, the
mercury that entered Minamata Bay was a by-product of
more than 6,000 tons of acetaldehyde produced each year by
the Chisso Corporation. No one knew that mercury in any
form was responsible for the severe and traumatic health
events affecting the local population, even though mercury
was used as a catalyst in the industrial process. It was only
through a finding made by the team of investigating Japa-
nese physicians led by Masazumi Harada [71] that the in-
volvement of mercury was discovered. Healthy pregnant
women, eating their normal diet of local seafood, were in-
advertently exposing their unborn children to high doses of
MeHg [23]. Neurological and developmental pathologies in
these children were caused by transmission of MeHg
through both the placenta and breast milk [72]. It is im-
portant to recall that the methylmercury causing Minamata
disease was produced not on purpose, but as an unintended
consequence of an industrial error. “Although mercury was
used as a catalyst and a catalyst normally does not change
during the chemical process, in this case a reaction other
than the target one (i.e., a side reaction) is assumed to have
occurred, producing methylmercury that flowed out into the
sea mixed with wastewater of the factory” [73, 74].

Let us look for a moment at the language used here.
From the point of view of the industry, the production of
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methylmercury was just a side effect, or “side reaction” of the
industrial process. Yet from the point of view of the human
and nonhuman population affected by the methylmercury,
the “side effect” was in fact the main effect, the only con-
sequence of importance to them. The linguist Benjamin Lee
Whorf, who initially worked as a fire insurance investigator,
discovered that some industrial accidents had a linguistic
factor: fires were caused by lighted matches being thrown
into what were seen as “empty gasoline drums”; but the
gasoline drums were not in fact empty [75]. Similar linguistic
factors may be at work here and in other areas of technology.
It would be a profound irony of history if through yet
unforeseen multiple synergistic consequences of “side ef-
fects” connected with other technologies, such as the fossil
fuel economy, industrial farming, nuclear reactors, nuclear
weapons, and developments in biowarfare, the entire human
species faces an unprecedented extinction event.

Back in 1972, biologist Garret Hardin made this
observation:

“Food chains are only imperfectly known; the extent of
biological magnification is imperfectly known; long term,
clinical effects on human beings need more study; and we
do not know the probability that the whole system of nature
will ultimately be disrupted, and human existence im-
periled. But it is greater than zero.” And he added “This is
why, now that mercury is a pollutant of the ocean, there is a
health hazard in eating tuna and swordfish, which are at a
high trophic level, and not much of one in the eating of
shrimp. Someday (if we do not mend our ways), even the
shrimp will become inedible. Ultimately the algae them-
selves will be toxic” [76]. Hardin prophesied his warnings
more than forty years ago. His words deserve repeating
today, just after the midpoint of the second decade of the
21% century.
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