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Abstract

Background: International guidelines recommend quantitative neuromuscular monitoring when administering neuro-

muscular blocking agents. The train-of-four count is important for determining the depth of block and appropriate

reversal agents and doses. However, identifying valid compound motor action potentials (cMAPs) during surgery can be

challenging because of low-amplitude signals and an inability to observe motor responses. A convolutional neural

network (CNN) to classify cMAPs as valid or not might improve the accuracy of such determinations.

Methods: We modified a high-accuracy CNN originally developed to identify handwritten numbers. For training, we used

digitised electromyograph waveforms (TetraGraph) from a previous study of 29 patients and tuned the model parameters

using leave-one-out cross-validation. External validation used a dataset of 19 patients from another study with the same

neuromuscular block monitor but with different patient, surgical, and protocol characteristics. All patients underwent

ulnar nerve stimulation at the wrist and the surface electromyogram was recorded from the adductor pollicis muscle.

Results: The tuned CNN performed highly on the validation dataset, with an accuracy of 0.9997 (99% confidence interval

0.9994e0.9999) and F1 score¼0.9998. Performance was equally good for classifying the four individual responses in the

train-of-four sequence. The calibration plot showed excellent agreement between the predicted probabilities and the

actual prevalence of valid cMAPs. Ten-fold cross-validation using all data showed similar high performance.

Conclusions: The CNN distinguished valid cMAPs from artifacts after ulnar nerve stimulation at the wrist with >99.5%
accuracy. Incorporationof suchaprocesswithinquantitativeelectromyographicneuromuscularblockmonitors is feasible.

Keywords: electromyography; machine learning; neural network; neuromuscular block; train-of-four
The American Society of Anesthesiologists and the European

Society of Anaesthesiology and Intensive Care recently pub-

lished guidelines strongly recommending quantitative

neuromuscular monitoring when using neuromuscular
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blocking agents.1,2 Assessment of the train-of-four count

(TOFC) is a critical component of such monitoring because it

informs the choice and dose of reversal agent (sugammadex

vs neostigmine),1,2 provides information related to the depth
naesthesia. This is an open access article under the CC BY-NC-ND license
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of paralysis (e.g. return of the second twitch in the train-of-

four [TOF] corresponds to 93% first twitch (T1) depression

from baseline for atracurium and vecuronium3), and allows

assessment and maintenance of deep levels of neuromus-

cular block using the post-tetanic count (PTC).4

To evaluate the TOFC or the PTC, a neuromuscular monitor

must determine if a valid compound motor action potential

(cMAP) has occurred after nerve stimulation (Fig 1) and

differentiate it from noise.

While, conceptually, a determination that an elicited motor

response represents a cMAP is simple, such is not the case in

clinical practice. At deep levels of neuromuscular block, the

signal-to-noise ratio is small, oftenmaking suchdeterminations

difficult because electrical noise may be misinterpreted as a

cMAP or the valid cMAP waveform may be altered by such

interference. A common complaint from anaesthesia practi-

tioners new to quantitative monitoring of neuromuscular

function is ‘The TOFC displayed by the monitor was 0, yet the

patient was breathing or moving’. Such a lack of convergent

validity between clinical observation andamonitor’s output can

reduce confidence in the device’s accuracy and forestall accep-

tance of quantitative monitoring into routine clinical practice.

These apparent discrepancies between subjective and objective

assessments increasewhenthebaseline twitchamplitude is low

because of factors such as the amount of subcutaneous fat5 or
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Fig. 1. Archetypal compound motor action potential (cMAP)

from a representative study subject before administration of the

neuromuscular blocking agent. This trace displays the cMAP

from the adductor pollicis muscle as recorded from surface

electrodes after stimulation of the ulnar nerve at the volar wrist

at time 0. The initial positive deflection of the recording repre-

sents the sum of all activated motor unit depolarisations and

the subsequent trough, the sum of all motor unit repolarisa-

tions. The amplitude of the response is the difference between

the peak and trough of the signal. Recordings continued for 100

ms after the stimulus, but as there is no meaningful information

related to motor activity beyond 20 ms, the analysed signals

were truncated at 20 ms. Traces are frequently not as pristine as

shown but are often altered by superimposed noise or shifted

from the nominal baseline of 0 mV. A range of amplitudes and

varying peak and trough locations occur among patients.
improper stimulating or recording electrode placement (e.g. not

directly over the ulnar nerve or the correspondingmuscle being

monitored). Furthermore, the TOFC may differ if assessed by

visual inspection, palpation, mechanomyography, accel-

eromyography, or electromyography (EMG).6 7 Manufacturers’

algorithms to identify valid cMAP responses are proprietary and

can vary between versions of the same device. Some changes

(e.g.modificationof the threshold amplitude required to identify

a twitch) can result in calculation of a different TOFC from the

same set of electromyogram signals in the TOF. Furthermore,

tucking a patient’s arms under the surgical drapes during lapa-

roscopic, robotic, or neurosurgical procedures will adversely

affect monitor accuracy when using methods that require un-

encumbered thumb movement (e.g. accelerometry, kine-

myography), and interfere with subjective TOFC detection.

Finally, improper placement of stimulating electrodes or high

impedance from inadequate skin preparation can make the

TOFC displayed by the monitor inaccurate.

Because prescribed therapy may be influenced substanti-

vely by technology and patient considerations, exploring

alternative and potentially less ambiguous methods to mea-

sure the TOFC and PTC is worthwhile. In a clinical setting, it is

not possible to directly measure neuromuscular block of the

diaphragm; rather, one must make inferences based on pe-

ripheral nerve stimulation (e.g. the ulnar nerve) and motor

responses (e.g. from the adductor pollicis muscle). Ensuring

the absence of diaphragmatic movement requires intense

levels of neuromuscular block such that only several twitches

after post-tetanic stimulation are present.8 Because monitors

often systematically undercount valid cMAP responses at deep

levels of block, titrating neuromuscular blocking agents to

achieve that goal can be challenging.

When using EMG, the cMAP has a typical shape, varying

within individual patients at different levels of neuromuscular

block primarily by a scaling factor (amplitude) rather than

morphology (Fig 1). The shape of a cMAP resembles the letter z

when rotated ~70� clockwise, with variation among patients.

Thus, by analogy, cMAP classification by a convolutional

neural network (CNN) is feasible because this machine

learning method works extremely well for identifying hand-

written digits and letters, whose morphology also varies.9 We

hypothesised that a published CNN used to identify digits

would perform at least as well for recognising valid cMAP re-

sponses after TOF stimulation.
Methods

The institutional review board of the University of Miami

determined on 16 March 2023 that this analysis of deidentified

EMG waveform data obtained from prior studies that had ob-

tained informed consent does not constitute human subjects

research. The randomised clinical trials from which the data

were provided were approved by an institutional review board

(Mayo Clinic, Jacksonville, FL, #20e000629) or an ethical board

(University of Debrecen, Debrecen, Hungary, No. OGY�EI2690/

2018), and informed patient consent was obtained from all

enrolled subjects. The 2015 version of the Standards for

Reporting Diagnostic accuracy studies (STARD) checklist was

followed.10
Data sources

Data used for training the CNNwere provided by one of the co-

authors (JRR) from 29 adult patients enrolled at Mayo Clinic,
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Fig. 2. Sequential preprocessing of the digitised compoundmotor action potential (cMAP). A low-amplitude cMAP from the adductor pollicis

muscle after delivery of a single 50-mA stimulus lasting 200 ms to the ulnar nerve at the wrist is shown. Panel (a) plots the raw data from a

partially paralysed patientwho received a dose of rocuronium. The recording intervalwas every 1ms for 100ms,with the first 20ms after the

stimulus used for classifying the response as a valid cMAP. The amplitude (peakminus trough,measured inmVat 3e8ms [0.16mV] and 8e13

ms [�0.46mV], respectively)was 0.62mV. Inpanel (b), the voltageswere scaledby21.74 so that themaximumof theabsolute value of thepeak

and trough values was 10mV (i.e. 21.74¼10.0/0.46). Then, a smooth curvewas constructed using the locally estimated scatterplot smoothing

(LOESS) method with span¼0.25. In panel (c), the LOESS line was used to interpolate the voltages from 1.0 to 20.0 ms at 0.1 ms intervals. In

panel (d), the values frompanel (c) were converted into a raster imagewith of 191� 201 pixels (38 391 pixels per image). Values<�10mVwere

set equal to �10 mV, and those above 10 mV were set equal to 10 mV. The image was then used as the input to the convolutional neural

network (see Fig 3). The process resulted in each cMAP being scaled to approximately the same size. Each cMAPwasmanually tagged as valid

or invalid using an Excel workbook (Microsoft, Redmond,WA, USA)with a visual inspection of the smoothed plots of the voltage vs time data.

For each patient, the cMAP was considered to represent a valid response if the shape of the curve followed the contour of the baseline cMAP

and the peak and trough locations were close to those obtained from the baseline for the patient.
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Jacksonville, as part of a study in which the TetraGraph EMG

(Senzime AB, Uppsala, Sweden) neuromuscular block monitor

was used.11 In that investigation, patients’ arms were tucked

under surgical drapes for elective robotic or laparoscopic sur-

gery. All patients included in the current study received

rocuronium for neuromuscular relaxation, mostly inhalation
anaesthesia for maintenance, deep neuromuscular block

throughout surgery, and sugammadex for antagonism of

neuromuscular block.11

The data used for external validation of the CNN were

provided by another co-author (RN) from 19 American Society

of Anesthesiologists physical status 1e3 patients aged �18 yr
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Fig. 3. Schematic description of the initial (‘out-of-box’) convolutional neural network (CNN) used for the binary classification of a valid

compound motor action potential (cMAP) or a non-response. This CNN was modified from a published algorithm for classifying hand-

written digits or characters in the Modified National Institute of Standards and Technology (MNIST) dataset. The CNN used for this study

consists of a single input, three hidden layers, and two outputs. The input is the raster image of the processed EMG waveform at the

adductor pollicis or abductor digiti minimi muscles after electrical stimulation of the ulnar nerve, as described in Fig 1. The three

sequential hidden layers have 512, 256, and 128 nodes with rectified linear unit (relu) activation and a dropout applied after each to reduce

overfitting. The model was fit using five epochs with a batch size of 128. The output layer uses softmax activation to assign a probability

that the waveform is a valid cMAP or a non-response.
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undergoing elective surgery given rocuronium for neuromus-

cular block. Anaesthesia was maintained with a target-

controlled propofol infusion, and the TetraGraph was used

to monitor the depth of neuromuscular block.12 The protocol

was designed to facilitate spontaneous recovery to a TOF

ratio (TOFR) >0.9, with neostigmine administered if

this endpoint was not reached. Spontaneous recovery

produced a wider range of cMAP amplitudes that increased

more slowly and more smoothly than in the training dataset.

Thus, a more extensive evaluation of the CNN could be

performed.

In both studies, anonymised data files containing the raw,

digitised EMGwaveforms had been uploaded to a secure server

(TetraConnect, Senzime AB) maintained by the manufacturer

and made available for analysis. These files consisted of sur-

face EMG voltages recorded over the adductor pollicis muscle

from 1 to 100 ms after stimulation of the ulnar nerve at the

wrist. The current and pulse width necessary to achieve

supramaximal stimulation were determined automatically by

the monitor for each patient and ranged from 40 to 60 mA and

200e300 ms, respectively. For each pulse, the stimulationmode

(TOF or single twitch), the elapsed time from the start of data

recording, and the amplitude of the peak and trough of each
cMAP were provided. Also, the file included the stimulus cur-

rent (mA) and pulse width (ms) and the relevant output from

each TOF neurostimulation sequence (i.e. the TOFR, TOFC, or

PTC).

Sufficient details are provided in the remaining sections of

the Methods to allow other researchers to replicate our pro-

cess. For readers mostly interested in the Results, these sec-

tions can be skimmed or disregarded.
Data preprocessing

Preprocessing and tagging were required to prepare the raw

EMG data for input to the CNN. The individual waveform data

were uploaded into an Excel workbook (Microsoft, Redmond,

WA, USA) and code written in Visual Basic for Applications

(Microsoft) to facilitate visual exploration and manual clas-

sification of the electromyographic response to each stimulus

of the ulnar nerve. The cMAP, corresponding to depolarisation

and repolarisation of themotor unit, was completed within 18

ms after ulnar nerve stimulation, with peaks nearly always

occurring between 3 and 8 ms and troughs between 8 and 13

ms after stimulation (Fig 1). Thus, the EMG data were trun-

cated at 20 ms because the signal after this interval was
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uninformative. Two authors (RHE, OFP) independently clas-

sified each twitch, autoscaled by Excel in the y-axis to produce

a uniformly sized plot based on the maximum and minimum

voltage recorded as a binary value (valid cMAP or not). The

waveform was classified as representing a valid cMAP if the

morphology resembled that of the archetypal twitch (Fig 1)

and the location of the peak and trough (i.e. the elapsed time

in ms after the stimulus) matched the locations of the base-

line twitch. Valid cMAPs with amplitudes as small as 0.05 mV

were often discernible with this approach, but no arbitrary

amplitude cut-off was applied. The first author (RHE) re-

examined all waveforms for which there was a discrepancy

between the evaluators or where the other evaluator (OFP)

was unsure, then assigned a final classification. All twitches

(single twitch or part of a TOF) were included in the training

dataset. Only the responses elicited from TOF stimulation

were included in the external validation dataset, with each

component identified as the first through fourth twitch (T1,

T2, T3, and T4).

After tagging, each 20-ms portion of the EMG waveform

was processed (Fig 2) in RStudio 2022.12.0 (RStudio, Boston,

MA, USA) running R version 4.2.1 (R Foundation, Vienna,

Austria). To summarise the process described in detail in the

legend of Fig 2, data were scaled such that themaximumof the

absolute value of the peak or trough voltage was 10 mV, a

smooth line was fit through the data points, and then the

predicted voltages (truncated to 10 mV or e10 mV if outside

that range) were determined at 0.1 ms intervals between 1 and

20 ms. Then, each curve was converted to a raster image 191

pixels wide � 201 pixels high for processing by the CNN. Ras-

terisation is required because CNNs are designed to deal with

images, not time-series amplitude data.

Because the immense size of the image tensor resulted

in long execution times during training, and occasional

insufficient memory exceptions when the combined data

were processed, we evaluated the impact on CNN perfor-

mance of reducing the image resolution. In parallel, we

decreased the time resolution from 0.1 to 0.2 and 0.25 ms

and the voltage resolution from 0.1 to 0.2 and 0.25 mV

during cross-validation of the combined datasets. This data

reduction step lowered the image size from 191 � 201 pixels

(38 391 pixels) to 96 � 101 pixels (9696 pixels) and 77 � 81

pixels (6237 pixels), respectively, reducing the computation

times.

To further evaluate the performance of the CNN, the two

datasets were combined from the 46 patients and n¼47 016

twitches elicited after TOF stimulation (i.e. 11 754 TOF stimu-

lations). The amplitude of each twitch was then calculated for

each waveform as the difference between the peak voltage

(occurring between 2.8 and 8.2 ms after the stimulus) and the

trough voltage (occurring between 6.4 and 12.6 ms after the

stimulus). The original classifications were then rechecked by

printing the waveforms to a PDF file after digital scaling and

interpolation, with each set of twitches from a TOF on a single

row and four sets per page to facilitate comparisons of the

peaks and troughs. Each of the 47 016 waveforms was re-

evaluated independently by RHE and SJB (based on

morphology and the interval from stimulus to the peak and

trough) and classified as valid or not. Disagreements were

resolved by subsequent collaborative reinspection of the

waveforms by these investigators. There were 527 reassign-

ments made (1.12%), with 59.2% representing changes to a

valid twitch from an invalid twitch and 40.8% from a valid to

an invalid twitch.
Neural network development

A CNN in RStudio was built based on a published example of

code used to process the Modified National Institute of Stan-

dards and Technology (MNIST) image dataset of handwritten

digits (Fig 3).13 14 The packages required included ggplot2, dplyr,

tidyverse, keras, reticulate, tensorflow, and caret. The input to the

neural network was the raster image corresponding to the

cMAP, as described in the previous section. A dropout layer was

added to the example code after each dense layer in the three

hidden layers of the CNN to reduce overfitting. Instead of 10

outputs in the MNIST example, corresponding to digits 0 to 9,

there were two outputs, corresponding to a valid cMAP or

absence of a response.

The CNN was applied to the training dataset using the

original 191� 201 pixel images, and performancewas assessed

for the 29 subjects by 28 leave-one-out cross-validation runs.

Among the 28 runs, the means and 99% confidence intervals

(CIs) were calculated for the sensitivity, specificity, positive

predictive value, negative predictive value, precision, recall, F1
Score, and accuracy of the classifier.

The model hyperparameters were tuned for the training

dataset, using the 96 � 101 pixel images and leave-one-out

cross-validation based on consideration of performance

criteria, memory usage, and execution time. A limited grid

search was performed varying the number of nodes in the

three hidden layers from (512, 256, 128) to (256, 128, 64), the

number of epochs from 2, 3, or 4, and the batch size from 8, 16,

or 32. Thus, there were 2 � 3 � 3¼18 distinct models, each

cross-validated 28 times with one different subject held out

from among the 29 subjects for each validation run. Perfor-

mance metrics were calculated among the 28 cross-validation

results for each model. The tuned model was then used to

assess the performance and calibration of the external vali-

dation dataset. In addition, the distribution of correct classi-

fications by the CNN as related to the amplitudes of the

manually identified valid twitches was determined. This pro-

cess incorporated three types of external validation: temporal

(different study dates), population (different patient groups

and neuromuscular blocking agent administration protocol),

and geographic (from different institutions).15

The performance impact of reducing the image size from

191 � 201 pixels to 96 � 101 pixels and then 77 � 81 pixels was

assessed by 10-fold cross-validation of the combined training

and external validation datasets. This analysis was performed

because computational times and memory requirements are

substantively affected by image size.

As a final evaluation of the performance of the CNN, the

model using the tuned hyperparameters was applied to the

combined dataset (with the additional cycle of manual valida-

tion, as described in the last paragraph of the previous section)

and performance was evaluated with 10-fold cross-validation

(five patients held out of the 46 total patients in each fold).
Results

There were 28 025 cMAP responses evaluated among 29 pa-

tients in the training dataset and 20 912 among 19 patients in

the external validation dataset. There were 5228 individual

responses for each twitch (T1-T4) in the TOF in the validation

dataset. Substantive differences were present in the two study

populations, an important feature of an external validation

process (Table 1).15 In the training dataset, case durations were

considerably longer (mean 3.94 vs 1.20 h of monitoring), and
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there was a much higher percentage of absent twitches

recorded at the adductor pollicis in response to ulnar nerve

stimulation (77.6% vs 18.1%). These differences reflected the

study protocols (laparoscopic/robotic surgery with deep pa-

ralysis vs all elective surgery with spontaneous neuromus-

cular recovery). In addition, the average frequency of

monitoring was much lower in the training dataset (approxi-

mately one TOF sequence per minute) than in the external

validation dataset (approximately four TOF sequences per

minute). Amplitudes were not normally distributed in either

the training or external validation datasets. Baseline T1 am-

plitudes were higher in the training dataset (median 13.9 mV

vs 10.6 mV, P¼0.022 by the Wilcoxon rank-sum test, Table 1).

Baseline amplitudes ranged from 2.8 mV to 28.7 mV, Table 1).

Among the 48 037 cMAPs (T1-T4), amplitudes were higher in

the external validation dataset (median 4.1 mV vs 2.4 mV,

P<0.0001, Table 1).

The unmodified CNN13 performed well on cross-validation

of the training dataset, with an overall accuracy of 0.987 (99%

CI 0.974e1.000) and F1 score¼0.977 (99% CI 0.974e1.000,

Table 2). CNN performance improved after hyperparameter

tuning (Table 2). The optimal hyperparameters were three

hidden layers with 512, 256, and 128 nodes (no change),

respectively, four epochs (reduced from five), and a batch size

of 32 (reduced from 128). From the leave-one-out cross-vali-

dation, results were: overall accuracy¼0.999 (99% CI

0.997e1.00), precision¼1.000 (99% CI 1.000e1.000), recall¼0.999

(99% CI 0.997e1.000), and F1 score¼0.999 (99% CI 0.999e1.000).

Image size reduction from 191 � 201 pixels to 96 � 101

pixels resulted in equivalent overall model performance (ac-

curacy 1.000 [99% CI 1.000e1.000] vs 0.992 [99% CI 0.974e1.000];

F1 score 1.000 [99% CI 0.999e1.000] vs 0.993 [99% CI 0.977e1.000]

(Supplementary Table S1). However, further reduction to 77 x

81 pixels reduced performance substantively (accuracy 0.929

[99% CI 0.876 to 0.982]; F1 score 0.890 [99% CI 0.803 to 0.977],

Supplementary Table S1). Thus, the 96� 101 pixel imageswere

used for external validation of the CNN.

The tuned CNN performed more highly than the raw CNN

on the external dataset among all twitches, with an accu-

racy¼0.9997 (99% CI 0.9994e0.9999) and F1 score¼0.9998

(Table 3). Performance for these metrics was equally good for

classifying each of the four individual responses (T1-T4) in the

TOF sequence (Table 3).

The calibration plot for the external validation dataset

showed excellent agreement between the predicted probabili-

ties and the actual prevalence of valid twitches, with all data

points lying on the line of identity (Supplementary Fig. S1).
Table 1 Dataset characteristics. IQR, inter-quartile range

Dat

Tra

Number of subjects 29
Hours of monitoring, mean (SD) 3.94
Responses analysed per case, mean (SD) 966
Responses analysed, n 28 0
Valid, n (%) 627
Non-response, n (%) 21 7
All valid amplitudes, mV, median (IQR) 2.4
Baseline amplitude, mV, median (IQR, range) 13.9
The tuned CNN had a similar high performance on the

combined dataset as evaluated by 10-fold cross-validation

(five random patients from the 46 withheld, without replace-

ment, for each fold), with accuracy¼0.998 (95% CI 0.995e1.001)

and F1 score¼0.997 (95% CI 0.994e1.001) (Table 2). Among the

18 962 twitches classifiedmanually as valid, the CNN correctly

identified 99.75%. There were only two twitches that were

assessed as invalid manually and the CNN provided classifi-

cation as a valid cMAP. The CNN was able to reliably detect

cMAPs classified manually as valid with amplitudes even as

low as 0.05 mV.
Discussion

The CNN described had excellent performance for classifying

valid cMAPs from the adductor pollicis muscle after electrical

stimulation of the ulnar nerve. After hyperparameter tuning,

model accuracy on an external validation dataset was at least

as good as that of the best-reported average accuracies of

neural network algorithms for handwritten digit recognition

(99.3%e99.5%).9 This comparison is relevant because digit and

character recognition have been used commercially for many

years with a high degree of success in a variety of real-world

processes (e.g. recognition of zip codes by automated mail

sorting machines, license plate scanners used by law

enforcement, mobile bank deposits from cell phone cameras).

The excellent correlation between the predicted and actual

probabilities of identifying a valid cMAP from the calibration

plot (Supplementary Fig. S1) and the ability to detect cMAPs

with extremely low amplitudes (Fig 2) further demonstrates

the utility of our method to determine validly the TOFC or the

PTC. Nonetheless, achieving a strong EMG signal is important

for the reliable use of quantitative neuromuscular block

monitors currently in clinical use. We stress the importance of

carefully prepping the skin, applying the sensor in the proper

location, allowing for adequate curing time of the silver/silver-

chloride electrodes once placed (up to 10 min), and measuring

the baseline twitch as soon as the patient loses consciousness,

before administering the neuromuscular blocking agent.16

It is likely that each electromyographic neuromuscular

block monitor model would need to have a dedicated CNN

developed to identify valid cMAPs because signal processing

algorithms applied for artifact rejection vary among manu-

facturers. Signal processing and filtering alters the

morphology of the underlying waveform, for example, the

electrocardiogram when one switches from the standard

monitoringmode to a diagnosticmode (e.g. to allow viewing of
; mV, millivolts; SD, standard deviation.

aset

ining External validation

19
(1.28) 1.20 (0.33)
(770) 1101 (317)
25 20 912
3 (22.4) 17124 (81.9)
52 (77.6) 3788 (18.1)
(1.0e6.1) 4.1 (1.4e7.0)
(11.0e18.0, 2.9e28.7) 10.6 (7.5e14.6, 3.1e19.1)



Table 2 Performance of the convolutional neural network among the n¼28 leave-one-out cross-validation runs from the training
dataset, and 10-fold cross-validation for the combined dataset. CI, confidence interval; cMAP, compound motor action potential;
F1 score, the harmonic mean of the precision and recall. a Model with original hyperparameters as used for handwritten digit
recognition.10. Hidden layers¼3 (512, 256, 128 nodes); image resolution 191� 201 pixels (0.1ms and 0.1 mV); epochs¼5; batch size¼128.
b Model with hyperparameter tuning based on leave-one-out cross-validation. Hidden layers¼3 (512, 256, 128 nodes); image resolution
96 � 101 pixels (0.2 ms and 0.2 mV); epochs¼4; batch size¼32. c Combined training and testing dataset, tested using the original
hyperparameters noted in first table footnote but with the image resolution in second table footnote because of memory constraints.
Therewere 47 016 images evaluated, 53.1% ofwhichwere classifiedmanually as valid cMAPs and 46.9% as non-responses (i.e. not valid
cMAPs). In each fold, five patients were withheld for testing. The detection prevalence in the holdout samples ranged from 33.1% to
74.0%.

Leave-one-out cross-validation 10-Fold cross-validation

Performance metric “Out-of-box” modela

Mean (99% CI)
Tuned modelb

Mean (99% CI)
Combined datac

Mean (99% CI)

Sensitivity 0.959 (0.921e0.997) 0.999 (0.997e1.000) 0.995 (0.988e1.002)
Specificity 1.000 (0.999e1.000) 1.000 (1.000e1.000) 1.000 (1.000e1.000)
Positive predictive value 0.999 (0.998e1.000) 1.000 (1.000e1.000) 1.000 (0.999e1.000)
Negative predictive value 0.981 (0.963e1.000) 0.999 (0.997e1.000) 0.995 (0.989e1.001)
Precision 0.999 (0.998e1.000) 1.000 (1.000e1.000) 1.000 (0.999e1.000)
Recall 0.959 (0.921e0.997) 0.999 (0.997e1.000) 0.995 (0.988e1.002)
F1 score 0.977 (0.954e1.000) 0.999 (0.999e1.000) 0.997 (0.994e1.001)
Accuracy 0.987 (0.974e1.000) 1.000 (0.999e1.000) 0.998 (0.995e1.001)
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pacer spikes). As a corollary, revalidation of the CNN would

need to be performed if modifications to digital or hardware

filters between model versions substantively altered wave-

forms. CNN model programming is straightforward, but the

manual effort to tag a sufficient number of traces is consid-

erable. Typically, CNNs require at least several thousand in-

stances of each class for training; for example, the MNIST digit

dataset consists of 60 000 training and 10 000 testing images

among the 10 digits.13 However, incorporation within a

quantitative EMG neuromuscular block monitor is much less

resource intensive and would be achievable within the typical

computer systems and programming languages embedded in

such devices. For example, the TetraGraph software is written

in Cþþ, which is well-suited for neural network image pro-

cessing.17 The embedding of a CNN to classify cMAPs into

clinically used EMG monitors is the ultimate objective of this

research and would have a substantively positive impact on

the quality of the analytics performed by those devices.

Our study identified valid cMAPs for each patient during the

tagging process based on morphology and correspondence of

the peak and trough to their baseline location, where the

signal was always robust. We did not have any information as
Table 3 External validation of the tuned convolutional neural netwo
cision and recall.

Train-of-four twitch analysed (N)

Performance metric All (20 912) T1 (5228)

Sensitivity 0.9996 0.9994
Specificity 1.0000 1.0000
Positive predictive value 1.0000 1.0000
Negative predictive value 0.9984 0.9935
Precision 1.0000 1.0000
Recall 0.9996 0.9994
F1 score 0.9998 0.9997
Accuracy (95% CI) 0.9997

(0.9994e0.9999)
0.9994
(0.9983e0.9999
to whether a palpable or visible motor contraction of the

thumb was present. However, we question the validity of such

subjective assessments. We know from clinical estimates of

the TOFR that anaesthesia practitioners cannot reliably

differentiate a 50% difference in strength between the first and

fourth twitch after TOF stimulation either when assessed

visually or tactilely.18,19 Inferentially, because the forces

generated by the adductor pollicis muscle at deep levels of

neuromuscular block aremuch smaller (e.g. <5% of baseline) it

is unclear if counting such twitches would be accurate.

Moreover, the hand is often inaccessible for visual or tactile

assessment of the response to TOF stimulation during surgery.

Correlation between quantitative and qualitative assess-

ment of the TOFC depends on the baseline first twitch cMAP

amplitude because the degree of muscle paralysis is inversely

related to the ratio of the first twitch amplitude to the baseline

(control) first twitch amplitude (T1/T1c). This ratio is the rele-

vant metric when determining the onset time of neuromus-

cular block (i.e. 95% first twitch depression) and clinical

duration (i.e. time to 25% spontaneous recovery).20 Thus, there

will be a greater degree of neuromuscular block for the same

first twitch amplitude when the baseline amplitude is high
rk. CI, confidence interval; F1 Score, the harmonic mean of pre-

T2 (5228) T3 (5228) T4 (5228)

0.9995 0.9997 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
0.9976 0.9992 1.0000
1.0000 1.0000 1.0000
0.9995 0.9997 1.0000
0.9998 0.9999 1.0000

)
0.9996
(0.9986e1.0000)

0.9998
(0.9989e1.0000)

1.0000
(0.9993e1.0000)



8 - Epstein et al.
than when it is low. For example, an amplitude of 1.0 mV re-

flects 80% first twitch depression when the baseline is 5 mV

but 95% depression when the baseline is 20 mV. This di-

chotomy strongly suggests that counting twitches to deter-

mine block onset or assessing when additional doses of

relaxant are needed will be highly variable among patients,

given the considerable range in baseline amplitudes observed

clinically. Rather, a better strategy would be for the quantita-

tive monitor to identify first that there is a valid first twitch in

the TOF and then, if true, compute the ratio of the amplitude of

that twitch to the baseline (obtained at supramaximal current)

value (T1/T1c) and display themagnitude of twitch depression.

This normalisation provides independence from the baseline

amplitude and eliminates the need to apply an arbitrary

threshold value. Feedback controllers that adjust infusions of

neuromuscular blocking drugs to maintain a constant level of

neuromuscular block are based on T1 depression, not the

TOFC.21,22 Providing the magnitude of T1 depression

(compared with baseline T1) would facilitate delivery of in-

fusions to maintain moderate to deep levels of block.

We note that our proposed process of identifying valid

cMAPs using a CNN is most relevant to managing moderate to

deep levels of neuromuscular block,23 when the TOFC is only 1

or 2. Nonetheless, the algorithm works extremely well when

the signal amplitude is large. For assessing that the TOFR is

>0.9 to confirm adequate recovery of neuromuscular function

before extubation, routine engineering signal processing al-

gorithms, as currently applied, are sufficient because the T1

will have returned to close to its baseline value of at least

several mV. At the time of extubation, the clinical issue related

to assessing adequate recovery of neuromuscular function is

that practitioners cannot accurately assess the TOFR visually

or tactilely, despite being able to correctly discern the number

of twitches present (TOFC).

The approach we followed likely can be generalised to cat-

egorising other waveforms with typical morphologies

commonly encountered during routine anaesthesia and inten-

sive care practice, such as those from invasive pressure moni-

tors, photoplethysmographs, capnographs, and thermodilution

cardiac output devices. Essentially, these share the character-

istic of a waveform that ascends and then descends after some

periodic event (e.g. cardiac contraction, exhalation, saline in-

jection). One only needs to convert the waveform to a raster

image, and then the CNN will process the relevant visual in-

formation to generate themost probable output class. Thus, we

anticipate that the approach we outline should work well for

recognition of overdamped or underdamped arterial wave-

forms, bronchospasm, spontaneous breathing, or cardiac os-

cillations in the capnograph, and invalid thermodilution curves.
Limitations and strengths

Only a single manufacturer’s quantitative neuromuscular

block monitor was analysed, so the weighting factors in the

hidden layers of the CNNwould likely not be optimal for every

device. However, the approach described in this study can be

followed, and a similarly high classification performance of

the CNN would be expected because EMG waveforms (cMAPS)

are fundamentally the same. A strength of the study is that we

performed external validation and confirmed calibration of

the CNN using a large dataset of waveforms from another

institution obtained in a group of patients studied under a very

different protocol. External validation and calibration are

steps often omitted from machine learning assessments in
medicine, with only internal validation performed.24 Other

populations in which the described CNN needs to be validated

before clinical use include infants, children, and patients with

underlying neuromuscular diseases. However, the output

layer of the CNN can easily be modified from the current two

classes (valid or invalid) to multiple classes (e.g. valid adult,

valid paediatric, invalid) or extended to include alternative

pathways (e.g. a different hidden layer based on patient age or

presence of a specific neuromuscular disorder that affects

peripheral nerve conduction or the neuromuscular junction).

The absence of information related to the presence of visible

or tactile twitches corresponding to the digitisedwaveforms is a

potential limitation related to implementation but is not rele-

vant to the evaluation of the CNN’s performance. The absence

of clinical correlation is irrelevant to our study because our goal

was to identify valid cMAP waveforms, not subjectively

observed twitches. As we explain above, decision-making

regarding the management of moderate to deep levels of

neuromuscular block would be improved by considering the

extent of first-twitch depression, not the TOFC. However, hav-

ing a more reliable method to assess the TOFC during sponta-

neous recovery and to determine the PTC are also clinically

valuable.
Conclusions

We modified a convolutional neural network (CNN) developed

originally for recognising handwritten digits to classify EMG

waveforms recorded at the adductor pollicis as a valid com-

poundmotor action potential relevant to determining the train-

of-four count. The CNN had extremely high accuracy on both

the training dataset and an external dataset performed in a

different geographical location, on a different group of patients

undergoing different surgical procedures, and under a different

protocol of muscle relaxation. The approach described should

have utility in improving the determination of the train-of-four

count responses, a measurement critical to selecting the

appropriate drug and dose for reversing neuromuscular block

and monitoring the level of paralysis during surgical cases.
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