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Reasonable exercise is beneficial to human health. However, it is difficult for

ordinary athletes to judge whether they are already in a state of fatigue that is

not suitable for exercise. In this case, it is easy to cause physical damage or even

life-threatening. Therefore, to health sports, protecting the human body in

sports not be injured by unreasonable sports, this study proposes an exercise

fatigue diagnosis method based on short-time Fourier transform (STFT) and

convolutional neural network (CNN). The method analyzes and diagnoses the

real-time electrocardiogram, and obtains whether the current exerciser has

exercise fatigue according to the electrocardiogram. The algorithm first

performs short-time Fourier transform on the electrocardiogram (ECG)

signal to obtain the time spectrum of the signal, which is divided into

training set and validation set. The training set is then fed into the

convolutional neural network for learning, and the network parameters are

adjusted. Finally, the trained convolutional neural network model is applied to

the test set, and the recognition result of fatigue level is output. The validity and

feasibility of the method are verified by the ECG experiment of exercise fatigue

degree. The experimental recognition accuracy rate can reach 97.70%, which

proves that the constructed sports fatigue diagnosis model has high diagnostic

accuracy and is feasible for practical application.
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1 Introduction

In recent years, competitive sports have increasingly developed, and many people

have gradually realized the importance of sports to health and began to exercise regularly

in their daily lives. However, it is not uncommon for ordinary people and professional

athletes to be injured during sports, andmost of them are caused by physical fatigue due to

inappropriate exercise methods and inappropriate exercise intensity (Campbell et al.,

2017; Evans et al., 2022). Reasonable physical activity is good for health, but unreasonable

high-intensity exercise will lead to excessive fatigue, which will cause physical damage,

and even cause tachycardia and myocardial strain in severe cases, which will eventually
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endanger life. How to judge the degree of fatigue of a person’s

exercise and make a reminder when the degree of fatigue is

serious has become a very important issue (Pernek et al., 2015;

Tang et al., 2020; Liu et al., 2021; MacIntosh et al., 2021). In

most cases, exercisers judge the fatigue level of the current

activity by observing their breathing rate, heart rate and other

system indicators and exercise duration, which is highly

subjective. Respiration rate, heart rate and other signals are

only rough information, and the accuracy of monitoring the

human state during exercise is not high. Exercise duration on

the other hand only applies to sustained aerobic activities like

track and field or cycling. For discontinuous and fixed-position

training like weight-lifting, indicators such as respiratory rate,

heart rate and exercise duration are not applicable, and it is

difficult to obtain an accurate result only with them (Gatti et al.,

2014; Yang et al., 2019; Huang et al., 2020; Gundogdu et al.,

2021).

In recent years, researchers have turned their attention to

other more informative physical indicators for detecting fatigue

during exercise (Garcia-Garcia et al., 2016; Chai et al., 2019;

Yang et al., 2019). Padhmashree and Bhattacharyya, (2022)

used multi-channel EEG signals and extract features for

emotion recognition. Lakhan et al. (Sharma and

Bhattacharyya, 2021; Sharma et al., 2021; Sharma et al.,

2022) used EEG and wavelet transform to identify the stress

of the human body and produced good results. Sugay et al.

(Galen and Malek, 2014) proposed an electromyogram to

monitor neuromuscular fatigue during sustained exercise.

Kulawiec et al. (2021) used instruments to evaluate the

blood sugar level of the human body after exercise to judge

the fatigue degree of the body. Pero et al. (2020) monitor the

body’s urine composition after exercise, andmonitor the fatigue

status of athletes according to the composition of urine before

and after exercise. Xiao-qiu et al. (Wang and Yin, 2019) used

sensors to collect physiological signals such as heart rate,

ventilation times and oxygen uptake, and then used machine

learning methods to analyze them, achieving better detection

results. Cui Juan et al. (Wang, 2022) used comprehensive health

monitoring technology to diagnose exercise fatigue in aerobics,

and obtained an accuracy of 85% in the fatigue diagnosis of this

exercise. You-Lei et al. (Fu et al., 2022) used deep learning

technology to identify the features of surface electromyography,

which was used for the fatigue level of sitting office. Abid et al.

(Minhas et al., 2022) collected the driver’s facial image and

assessed the driver’s fatigue level to prevent the occurrence of

traffic accidents. Muhammad et al. (Usman et al., 2022) used an

IoT system to collect EMG and observe muscle contraction and

fatigue analysis. It can be seen that the more signal information,

the better the monitoring effect will be. However, most of these

traditional methods are only targeted at a specific movement.

When the algorithm runs in a more complex and diverse

environment, traditional machine learning algorithms such

as SUPPORT vector machine (SVM), K-nearest Neighbors

(KNN) are difficult to adapt to all environments with one

algorithm. With the advent of wearable devices, monitoring

devices have become miniaturized and can obtain ECG signals

during exercise in real time. The researchers preprocessed the

ECG signals using different transformations, and then

combined with the shallow machine learning model, and

achieved certain results, and the real-time monitoring was

guaranteed, but there are still problems such as incomplete

feature extraction, low accuracy, and poor generalization

ability. With the development of artificial intelligence,

researchers have proposed different real-time monitoring

systems based on deep learning technology to identify sensor

signals to obtain the fatigue state of the human body in motion.

Jian et al. (Yu, 2021) used a convolutional neural network-based

motion recognition technique to identify training fatigue levels.

Vahid et al. (Farrahi et al., 2020) used machine learning

algorithm to identify the joint acceleration collected by

multiple sensors and judge the motion fatigue degree, with

an accuracy of 80.4–90.7% on different data sets. The gradual

maturity of technology based on Internet of Things (IoT) and

wearable technology. AFZAAL et al. (Hussain et al., 2021)

recorded signals such as electrocardiogram, heart rate, and

respiratory rate during exercise. According to these signals,

the system could identify the physical state of athletes with 97%

accuracy.

Most of these studies have used electrocardiographic signals

(ECGs) from the heart, which contain rich exercise-related

features, and high diagnostic accuracy has been achieved

based on these features. The miniaturized ECG monitor has a

small size and can be carried around during daily exercise

training. Exercise is a continuous process, and it is not

comprehensive to analyze the state of exercise fatigue only

based on a certain moment. There is a close relationship

between the fatigue state of the human body at different times

(Schiphof-Godart et al., 2018; Guan et al., 2021; Shi, 2021). CNN

is a feedforward neural network, which includes deep structure

and convolution computation.

Therefore, this paper proposes an exercise fatigue diagnosis

method based on short-time Fourier transform and

convolutional neural network, and monitors the fatigue degree

of the human body during exercise according to the ECG signal.

Firstly, the Visual Geometry Group (VGG) convolutional neural

network model used for training was established, and the

attention mechanism imitating biological eye attention

behavior was added into the model to improve accuracy; then

the signals collected by the sensor are converted into

spectrograms using STFT, and the set divided into training

sets and validation sets. The set is fed to the VGG network

for training and recognition, and an accuracy of 99.9% is

obtained. The experimental results show that the real-time

ECG signal can be used to monitor the fatigue degree during

exercise with high accuracy. On the other hand, the identification

data only needs to be derived from the spectrogram by STFT, and
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no additional data preprocessing is required. The spectrogram is

directly sent to the neural network for classification and

recognition, which has better robustness and generalization

ability.

2 Methods

In this part, short-time Fourier transform and

convolutional neural network will be briefly introduced to

diagnose fatigue degree in motion, mainly including the

structure of VGG neural network and the principle of ECG

signal processing as spectrum graph. In other parts of this

section, the evaluation index of neural network model and the

overall method flow of using ECG signal to diagnose exercise

fatigue degree are also introduced.

2.1 Short time Fourier transform

STFT is a commonly used signal processing method to

quantify the time-varying frequency and phase content of a

nonstationary signal. By adding a window function (the length

of the window function is fixed), the time domain signal is firstly

windowed, and the original time domain signal is divided into

multiple segments by sliding windows, and then each segment is

STFT transformed to obtain the signal time spectrum. Time and

frequency are expressed by STFT as two-dimensional functions,

as follows:f(t) is the time domain signal, and g(t − τ) is the time

window centered at time τ. It can be seen from this that STFT is

the Fourier transform of the signal f( t )multiplied by a window

function g( t − τ) centered on τ (Munteanu et al., 2009; Wang

et al., 2020). The calculation formula of STFT is shown in

Formula 1 as shown below.

FIGURE 1
Structure of VGG convolutional neural network.

FIGURE 2
ReLU function and function image.
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STFTf(t,ω) � ∫+∞

−∞
f(t)g(t − τ)e−jωtdt (1)

2.2 Convolutional neural network

The most basic CNN model consists of four parts, including

convolution layer, pooling layer, full connection layer and

classification layer. The convolution layer uses convolution

kernels to extract features and contains multiple convolution

kernels. Each neuron in the network maintains a one-way

connection with the neuron at the next layer, which is called

“receptive field”, and the size of this area depends on the size of

the convolution kernel. Formula 2 is defined as follows: the gray

value of the image is represented by v; the size of the convolution

kernel is the value of p × q; the weight of the convolution kernel is

represented by w; the bias b is added after the convolution; f is

the activation function.

zx,y � f⎛⎝∑ppq

i
wivi + b⎞⎠ (2)

The pooling layer is a subsampling operation, and its main

objective is to gradually reduce the number of features contained

in the feature graph. In this paper, Max Pooling is used, and its

function is Formula 3.

f � Max(xm,n, xm+1,n, xm,n+1, xm+1,n+1) (0≤m≤M, 0≤ n≤N)
(3)

The fully connected layer reintegrates the local features

extracted in the previous steps. In the following Formula 4,

θ1, θ2, . . . , θk is the learning parameter of the model, and

multiplication by 1∑k

j�1 e
θT
j
xi

is to make the probability

distribution between [0, 1].

hθ(xi) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p(yi � 1|xi; θ)
p(yi � 2|xi; θ)

..

.

p(yi � k
∣∣∣∣xi; θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
1

∑k
j�1e

θTj xi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eθ

T
1 xi

eθ
T
2 xi

..

.

eθ
T
k xi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The classification layer (SoftMax) is a general form of logistic

regression, which can implement multi-classification problems.

The input data has k categories, and the probability of input data

x belonging to each of k categories is calculated using the

SoftMax function.

The mainstream CNN models include AlexNet, GoogLeNet

and VGG network. In 2014, the Visual Geometry Group at the

University of Oxford proposed an even deeper neural network

with 13 convolutional layers and three fully connected layers. The

proposed network structure is stacked by multiple 3 × 3

convolutional layers. Multiple small convolutional kernels can

replace the traditional large convolutional kernels to complete

the required calculation and reduce the amount of calculation. In

practice, the superposition of two small 3 × 3 convolutional

kernels can replace a 5 × 5 large convolutional kernels, and

the superposition of three small convolutional kernels can

replace a 7 × 7 large convolutional kernels (Simonyan and

Zisserman, 2014). The network structure of VGG is shown in

Figure 1.

The pooling window of the pooling layer has a size of 2 × 2

and a step of 2. In the fully connected layer, it is combined by

3 consecutive full connections. The first two channels are

4096 and 4096 respectively, and finally the classification

output is performed by the SoftMax classifier with 1000 labels.

The network structure is shown in the figure above. VGG-16 uses

the ReLU activation function. Using the sparse running results of

ReLU function, the backpropagation errors can be effectively

reduced in the training process, and the convergence speed of

neural network can be accelerated Figure 2.

The VGG network is used to build a signal recognition

model. The activation function of the model uses the ReLU

FIGURE 3
Confusion matrix visualization.

Frontiers in Physiology frontiersin.org04

Zhu et al. 10.3389/fphys.2022.965974

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.965974


function. The number of weight parameters of VGG-16 is as

high as 70303557, of which the three fully connected layer

parameters account for a large proportion. The original

parameter setting of VGG-16 is to complete

1000 classification, and the classification of processing

signals is less. Therefore, the first two fully connected layers

only use half of the original number of nodes, that is,

2048 nodes, and the third fully connected layer has 6 nodes

corresponding to the classification category, which further

improves the training efficiency and recognition accuracy of

the neural network model.

2.3 Evaluation indicators

2.3.1 Loss function and accuracy function
In the process of continuous training, CNN needs an

evaluation index to evaluate the training effect of the current

CNN model and decide whether to terminate the training. In

general, loss function and accuracy function are used to evaluate

the model. The smaller the loss function is, the higher the

accuracy value is, and the better the model effect is. In

network constructed in this paper using the evaluating model

of cross entropy loss function, this kind of loss function is suitable

FIGURE 4
Overall flow chart.
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for the multiple classification problems. Formula 5 as shown

below, which m represents the number of categories, y is a

symbolic function and value of 0 or 1. When the model

prediction probability true value is 1, false prediction

probability value is 0. The prediction probability of sample i

predicted by the model as class c is represented by pic.

Loss � 1
n
∑

i
∑m

c�1yic log(pic) (5)

Accuracy is usually used to evaluate the evaluation results of

the current model in the test set during model testing. In

multiple categories, a model that identifies a category

correctly will be defined as positive, and a model that

identifies a category as any other category will be defined as

negative. The formula is defined as Formula 6, FP represents

the number of other categories that are predicted to be the

current category; TP represents the number of categories that

are predicted to be correct; FN represents the number of

current categories that are predicted to be other categories;

FP represents the probability that other categories are predicted

to be correct.

Accuracy � TP + TN

TP + TN + FP + FN
(6)

2.3.2 Confusion matrix
Visualization method is simple while intuitive observation

model prediction results, the multiple classification problems,

and the predicted results are usually use confusion matrix

visualization. Confusion matrix uses value of accuracy for

visualization. As shown in Figure 3, samples using neural

network prediction: FP represents the number of other

categories that are predicted to be the current category; TP

represents the number of categories that are predicted to be

correct; FN represents the number of current categories that

are predicted to be other categories; FP represents the

probability that other categories are predicted to be correct;

and the final value will fill in the complete visual confusion

matrix.

2.4 t-Distributed Stochastic Neighbor
Embedding methods

T-sne was proposed by Laurens van derMaaten and Geoffrey

Hinton in 2008. It is a machine learning algorithm mainly used

for dimensionality reduction of data. After dimensionality

reduction, data can be better visualized, so that experimental

results can be observed and model parameters can be adjusted

according to the experimental results. To improve model

performance, T-sne was used to reduce the dimensionality of

the data of the whole connection layer in the prediction process,

and the relations between categories were represented by two-

dimensional images (Li et al., 2020).

2.5 Process of exercise fatigue diagnosis

The main process is to use VGG convolutional neural

network for feature extraction and classification of ECG

signals, and then detect the fatigue degree of human

movement according to the trained model, as shown in Figure 4.

FIGURE 5
ECG at six different fatigue states: (A) lying in bed, (B) sitting in
an armchair, (C) walking at a constant speed, (D) pedaling a
stationary bicycle, (E) riding a stationary bicycle, (F) Bruce protocol
treadmill stress test.
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Step 1. First, ECG signals in motion are collected by ECG

sensors, and then STFT is used to process the ECG raw data to

obtain a two-dimensional spectrogram.

Step 2. The spectrum graph data set is divided into training set

and verification set, and then the training set is fed to the VGG

neural network for training.

Step 3. According to the obtained loss function, accuracy value

and visualization results, the parameters of the VGG neural

network model are constantly adjusted to make the neural

network model convergent. Finally, the validation set is sent

into the model for testing, and after satisfactory test results are

obtained, the neural network model can be used for fatigue

monitoring.

Step 4. The neural network model is applied to real movement

fatigue monitoring.

3 Datasets

In this study, synchronous ECG and echocardiogram

databases from Physical Web were used as validation data

to verify the validity of the method (Goldberger, 2000;

Kazemnejad et al., 2021). The dataset address is at www.

physionet.org/content/ephnogram/1.0.0/. The biomedical

engineering review committee of Shiraz University

approved the acquisition experiment of ECG and PCG

data. Before the experiment, each subject signed a written

consent to participate in the study in learning about the

subjects’ physical condition through structured interviews.

According to the structured interview, the subjects can be

determined with good physical condition, without

cardiovascular diseases. Three hours before the test, the

subjects’ diets are controlled, that is, they can drink, but

eating and, alcohol intake and caffeinated beverages are

banned. Then data are acquired. 24 male subjects between

FIGURE 6
ECG spectrograms after STFT processing: (A) lying in bed, (B) sitting in an armchair, (C) walking at a constant speed, (D) pedaling a stationary
bicycle, (E) bicycle stress test, (F) Bruce protocol treadmill stress test.

TABLE 1 The ECG signal is processed through an STFT data set.

Class Trainset Validation set

Fatigue level 1 387 42

Fatigue level 2 258 28

Fatigue level 3 387 42

Fatigue level 4 387 42

Fatigue level 5 387 42

Fatigue level 6 258 28
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the ages of 23 and 29 took part in the experiment, and the

experiment was conducted indoors.

A 3-lead ECG acquisition device with a sampling rate of

8 kHz and a resolution of 12 bits was used. Each volunteer

performed a specific task and 69 ECG and PCG recordings

were collected. In the few cases where the data quality was

poor, the test was repeated to obtain acceptable data. Poor

quality samples were also included in the dataset for noise

research purposes and marked as low quality in the

spreadsheet accompanying the dataset. In our validation

experiments, poor quality data were discarded for data

balance. The data set was divided into six different fatigue

levels according to the exercise in the test. 1) Fatigue level 1:

ECG signal in a calm lying state. 2) Fatigue level 2: Subjects

remained calm, sat in a chair, and did nothing else. 3) Fatigue

level 3: Subjects performed light activity and walked at a constant

speed of 3.7 km/h 4) Fatigue level 4: Subjects rode at a constant

speed on a fixed bicycle. 5) Fatigue level 5: The subjects rode on a

fixed bicycle, but increased the load until they were tired. 6)

Fatigue level 6: Subjects were tested running at an increasing pace

until they became fatigued. Figure 5 shows 6 different signal

waveforms.

During the training, the data set was divided into 6 levels

according to the motion state of different fatigue levels. The

lowest level of fatigue was when the subject lay flat on the bed in a

calm state, and the subject accelerated continuously until the

tired ECG signal dataset was defined as the highest level of

fatigue, at which the ECG signal would be identified as overtired

and should be stopped for rest. Only records with a time of about

30 min are selected in the experiment. At the sampling frequency

of 8KHZ, each data file contains about 14400,000 data points,

which are too large for the experiment. In order to improve the

calculation efficiency, the original data is down-sampled and the

sampling frequency of the down-sampled data becomes 0.08khz.

At this sampling frequency, the Numerical Python library

function in Python is used to divide 1000 data points into a

sample. Figure 6 is a data segment after segmentation. It can be

seen that when 1000 data points are used as a sample, there are

several cycles in a period of time, and the resulting spectrogram

will better represent the fatigue state.

4 Experiments and analysis

The hardware device for the experiments was a Lenovo

laptop with an Intel Core i7-10875H CPU and an Nvidia

GeForce RTX 2060 GPU with 16 GB of RAM. The notebook

uses a 64-bit Windows 10 operating system, and the system uses

FIGURE 7
Loss and acc curves of four methods:(A) Train loss, (B) Train acc, (C) Val loss, (D) Val acc.
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the python runtime environment and the keras deep learning

framework to build the required CNN structure.

The spectrogram dataset of ECG signals will be divided into

90% training set and 10% test set. The number of training

samples per iteration of the VGG model is 32, the number of

training iterations is 40, and the learning rate is set to 0.0001.

4.1 Comparative experiment

The ECG data was processed using the STFT two-

dimensional method, and the data set was divided according

to the ratio of 1:9, and the sample data set shown in Table 1 was

obtained. In order to compare the effectiveness of this method,

three different two-dimension (2D) methods such as direct

rendering method, GAF method and MTF method are also

used. Direct drawing means that the ECG signal does not

perform any processing, and directly uses the plt function in

the matplotlib package in Python to convert it into a two-

dimensional image. When it contains multi-channel signals,

the ECG signal is fused into a two-dimensional image. The

Gram Angular Difference Field (GAF) method encodes the

time-domain signal by the Gram Angular Difference Field to

generate a Gram Angular Field Image (GAF) containing motion

fatigue features. The Markov transition field (MTF) coding

method uses the MTF matrix to encode the time series into a

two-dimensional image, which uniquely corresponds to the one-

dimensional (1D) time series and contains the features in the

time series (Xiao et al., 2020).

Four different 2D methods are trained using the same VGG

neural network, and the training results for four different

methods are presented in Figure 7. Figure 7 plots the final

FIGURE 8
Confusion matrix of four methods:(A) Draw directly, (B) GAF, (C) MTF, (D) STFT.
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loss and accuracy after training on datasets generated by the four

2D methods. The direct drawing method got 93.3% accuracy on

the validation set; the GAF method got 86.1% accuracy on the

validation set; the MTF method got 73.6% accuracy on the

validation set; the STFT method got 97.7% accuracy. It can be

seen that the method of STFT processing ECG data achieves the

lowest loss value and the highest accuracy on both the training set

and the validation set. While identifying accurately, it has a high

convergence speed.

4.2 Confusion matrix and cluster analysis

The existing results cannot intuitively see the impact of different

signal processing methods on fatigue recognition, so it is necessary

to visualize the recognition results of the model on the validation set

to better observe the classification results. The prediction results are

shown in Figure 8 with the confusion matrix, and the fully

connected layer data is shown in Figure 9 after dimensionality

reduction using t-SNE. The GAF and MTF methods have larger

errors in distinguishing higher fatigue levels in the confusionmatrix.

The proposed STFT method has the smallest error, only 2% of the

4th class is recognized as the 3rd class, and 2% of the 6th class is

recognized as the 5th class, which may be due to a similar motion.

Therefore, there is a similar ECG signal and degree of exercise

fatigue, which leads to errors in the results.

The clustering results also prove that STFT and VGG neural

networks have stronger classification performance. In Figure 9,

the results obtained by GAF and MTF methods show that the

distance between categories is close, and the categories are loose,

while a large part of the categories are mixed together, so the

effect is not ideal. In the direct rendering method, there are still

many classification errors between categories. In STFT and VGG

neural network methods, the clustering boundary is obvious; the

classification errors are low; the distance between the categories is

large; the inner classes are tight. Therefore, THE classification

result of ECG signal processed by STFT in neural network is

better than that of other data processing methods.

FIGURE 9
Cluster analysis of four methods:(A) Draw directly, (B) GAF, (C) MTF, (D) STFT.
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5 Conclusion

ECG signal is the physiological signal that can best reflect the

fatigue state during exercise. ECG signals also have different

characteristic axes under different exercise fatigue degrees and

different fatigue states, so ECG signals have the characteristics of

diversity and complexity. With the application of high-precision

heart rate sensors in wearable devices, while traditional methods

only use part of ECG signal information, it is difficult to meet the

requirements of accurate monitoring in the face of these huge data.

To solve these problems, a motion fatigue diagnosis method based

on short-time Fourier transform and convolutional neural network

was proposed, and the fast classification and diagnosis of ECG

signals was realized by using VGG convolutional neural network.

First, using STFT to process the 1D ECG signal to obtain a 2D

spectrogram, then divide the data set, and use the VGG neural

network for training and diagnosis. In this study, different two-

dimensional processing methods were used for experiments. The

combination of STFT and VGG neural network has the highest

classification accuracy, and obtained a fatigue level diagnosis

accuracy of 97.7%. Compared with the common 1D data

processing method, it has the highest accuracy and the fastest

convergence speed. It can be seen that when converting 1D time

series into 2D images for fatigue level diagnosis, the STFT

conversion method can effectively represent the characteristic

information in the signal. The VGG network structure has better

classification performance for fatigue diagnosis based onECG signal.

The combination of STFT data processing and VGG convolutional

neural network can make full use of human ECG signals in exercise,

reduce the complex process of extracting features, and quickly

diagnose the current human fatigue level with strong robustness

and effectiveness.
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