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In synapses, calcium is required for modulating synaptic transmission, plasticity,

synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within

neurons involves cellular mechanisms such as synaptically activated channels and

pumps, calcium buffers, and calcium sequestrating organelles. Many experimental

studies tend to focus on only one or a small number of these mechanisms, as technical

limitations make it difficult to observe all features at once. Computational modeling

enables incorporation of many of these properties together, allowing for more complete

and integrated studies. However, the scale of existing detailed models is often limited

to synaptic and dendritic compartments as the computational burden rapidly increases

when these models are integrated in cellular or network level simulations. In this article

we present a computational model of calcium dynamics at the postsynaptic spine of

a CA1 pyramidal neuron, as well as a methodology that enables its implementation in

multi-scale, large-scale simulations. We first present a mechanistic model that includes

individually validated models of various components involved in the regulation of calcium

at the spine. We validated our mechanistic model by comparing simulated calcium

levels to experimental data found in the literature. We performed additional simulations

with the mechanistic model to determine how the simulated calcium activity varies with

respect to presynaptic-postsynaptic stimulation intervals and spine distance from the

soma. We then developed an input-output (IO) model that complements the mechanistic

calcium model and provide a computationally efficient representation for use in larger

scale modeling studies; we show the performance of the IO model compared to the

mechanistic model in terms of accuracy and speed. The models presented here help

achieve two objectives. First, the mechanistic model provides a comprehensive platform

to describe spine calcium dynamics based on individual contributing factors. Second, the

IO model is trained on the main dynamical features of the mechanistic model and enables

nonlinear spine calciummodeling on the cell and network level simulation scales. Utilizing

both model representations provide a multi-level perspective on calcium dynamics,

originating from the molecular interactions at spines and propagating the effects to higher

levels of activity involved in network behavior.
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INTRODUCTION

The calcium ion is a key biochemical signaling molecule for

cellular function, and a number of studies have demonstrated

its importance in numerous cell types. Calcium is known to be
involved in regulation of gene transcription factors (Bading et al.,

1993; Dolmetsch et al., 1998), muscle contraction (Ebashi and
Endo, 1968; Weber and Murray, 1973), bone formation (Zhu
and Prince, 2012), cell metabolism (Contreras et al., 2010) and
apoptosis (Mattson and Chan, 2003). Within neurons, calcium
has an especially critical role in modulating communication and
network activity (Zucker, 1999; Emptage et al., 2001). Calcium
has been extensively investigated in postsynaptic spines due to
its involvement in various signaling cascades that lead to synapse
formation and plasticity, cellular mechanisms which underlie
learning and memory.

Early experimental studies on spine calcium focused on
measuring calcium concentration changes at postsynaptic
spines of the CA1 pyramidal cell in response to presynaptic
stimulations and action potential transients through fluorescence
procedures (Sabatini et al., 2002). Other studies focused on
identifying sources of calcium influx, which include voltage
dependent calcium channels (Bloodgood and Sabatini, 2007),
intracellular calcium stores (Holbro et al., 2009), and NMDA
receptor channels (Bloodgood and Sabatini, 2009). Downstream
calcium signaling pathways have also been investigated, where
calcium microdomains and localized calcium signaling (Higley
and Sabatini, 2012) can invoke signaling of the ubiquitous
Calmodulin/CAMKII protein, which leads to AMPA receptor
upregulation (Naoki et al., 2005; Zhabotinsky et al., 2006).
These standalone studies have helped further our understanding
of numerous processes that regulate calcium dynamics in
spines, but more research is needed to study how such
processes interact with each other and together influence synaptic
transmission.

Computational models have also been successfully adapted
to the study of calcium dynamics in spines and neurons
(Shouval et al., 2002; Naoki et al., 2005; Bartol et al., 2015). The
advantage of using computermodels over experimental protocols
is their inherent ability to provide a controlled environment
and overcome limitations in size constraints, an issue common
when studying subcellular spaces such as synaptic compartments.
Calcium dynamics models vary in biophysiological detail and
accuracy, ranging from simple phenomonological models that
directly relate calcium concentration to synaptic plasticity
(Shouval et al., 2002), to detailed and complete reconstruction of
the calcium dynamics at a dendritic subsection of a hippocampal
CA1 neuron using stochastic Monte Carlo simulations (Bartol
et al., 2015). Typically, the degree of realism used for a model is
often dependent on the scale of the study, where calcium models
at the cellular or network scales have less physiological detail than
molecular scale models.

Scientific computation has been trending toward multi-
scale modeling, where models are developed to explore
biological phenomena across multiple length or hierarchical
scales (Yu and Bagheri, 2016; Seo and Jun, 2017). Neural
computation spans molecular (Naoki et al., 2005; Bartol

et al., 2015), cellular (Jarsky et al., 2005; Migliore and
Migliore, 2012), network (Hendrickson et al., 2015), and
cortical systems (Markram, 2006) hierarchical scales. Thus,
multi-scale modeling is especially valuable for studying calcium
dynamics in neurons, because calcium induced molecular
signaling cascades can have dramatic effects on patterns of
activity at the cellular/network level. Calcium activity in a
CA1 pyramidal neuron is not distributed equally as evidenced
in experimental studies (Higley and Sabatini, 2008). Rather,
calcium processes can be categorized based on location and
degree of influence (Figure 1). For example, the high-voltage
activated (HVA) calcium channels present on postsynaptic
spines can create localized calcium microdomains—brief,
high concentrations of calcium in a small area—which can
then lead to protein kinase activation and induce secondary
messenger cascades, eventually resulting in synaptic plasticity
and larger scale changes in cell properties and network
activity (Higley and Sabatini, 2012). Meanwhile, intracellular
calcium stores, such as the smooth endoplasmic reticulum
(ER) and mitochondria, in dendritic compartments can be
involved in more metabolic processes such as gene transcription
and ATP production (Li et al., 2004). If possible, use
of detailed, biologically accurate computational models in
large-scale simulations would add the benefit of monitoring
such significant molecular-level influences in large network
interaction; however, simulating such a large number of complex
mechanisms and interactions in a realistic model requires
a prohibitively high computational cost. Unfortunately, this
computational burden limits the capability of current models to
elucidate critical calcium-dependent mechanisms associated with
plasticity, learning, and memory, which emerge from network
level activity.

To adequately model calcium-influenced cellular and network
level behaviors, it is critical to construct a model that can
efficiently and accurately replicate nonlinear calcium dynamics
based on the numerous calcium processes on multiple levels,
starting at the spine.

The focus of this article is to present a model describing
the calcium dynamics at the postsynaptic spine of a CA1
pyramidal cell, as well as a methodology to adapt the previously
defined model for multi-scale simulations. The calcium model
presented aims to (1) consider the variety of subcellular processes
that influence calcium at the spine, and (2) enable multi-
scale simulations that include the influence of said subcellular
processes on calcium dynamics on a larger scale. In (1), we
develop a mechanistic model that consists of various kinetic
state models of receptor channels and pumps pertaining to
calcium regulation at the spine; the mechanistic model is
validated with experimental data from the literature and is
used to study the subcellular processes involved in spine
calcium dynamics. In (2), we implement a “input-output” model
using the Volterra functional series trained on the nonlinear
calcium dynamics from the mechanistic model; the Volterra
functional series is a nonlinear systems filter that has been
adapted previously to successfully model dynamics of nonlinear
systems with reduced computational cost (Marmarelis and
Marmarelis, 1978; Bharathy et al., 2008; Song et al., 2009a,b;
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FIGURE 1 | Calcium is regulated within a CA1 pyramidal cell neuron on multiple scales—from spines, to dendrites, to the entire cell itself. Presented here is a

schematic representation of the regulation of calcium within a CA1 pyramidal cell neuron, as well as some of its functional properties. At the molecular level, calcium

dynamics at the postsynaptic spine are controlled by various ion channels and pumps that respond to synaptic activity. Opening of high-voltage activated (HVA)

calcium channels can influence other key processes such as localization of calcium microdomains, which can lead to functional changes brought about by

calcium-dependent protein kinases such as activation of secondary messenger pathways and synaptic plasticity. Calcium dynamics are also important in dendrites,

where many intracellular calcium stores, such as the smooth endoplasmic reticulum (ER) and mitochondria, are located. The presence of calcium stores allows

calcium to influence local regulation of factors such as gene transcription and ATP production and regulation. The various sub-cellular calcium dynamics integrated

together make up the changes in cell and network activity of the neuron. Our current work in this manuscript is highlighted in the dashed red rectangle in the presented

hierarchy: we focus on the development of a model of calcium at the postsynaptic spine, and how our model may be applied in future work to higher hierarchies.

Berger et al., 2010; Tu et al., 2012; Hu et al., 2015). We
demonstrate that the IO model requires less time to simulate
than the mechanistic model, while still reproducing the complex
nonlinear dynamics that arise from calcium interactions at the
spine. Thus, we propose that the IO model is better suited

for multi-scale modeling of calcium. In future studies, this
will allow us to investigate the effects of how the various
subcellular mechanisms in which affect spine calcium dynamics
can influence cell to cell interactions at the cellular and network
levels.
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MATERIALS AND METHODS

Here we first describe the models and parameters used for
the mechanistic model; an overview diagram is presented
in Figure 2, and a summary of the parameters is provided
in Table 1. A precursor of the mechanistic model had been
described previously in a conference publication (Hu et al.,
2016), which was at the time an incomplete; this current model
now describes the model in full with additional mechanisms,
optimized parameters, and validation that is described in the
results section. The development of the Input-Output model is
described afterwards.

Mechanistic Model
The premise of the mechanistic model is to build a physiological
representation of the postsynaptic spine taking into account
the components that are known to significantly influence
spine calcium dynamics. These components are identified
based on a number of experiments, reviews, and models
found in the literature (Sabatini et al., 2002; Bloodgood
and Sabatini, 2007; Higley and Sabatini, 2012; Bartol et al.,
2015). In the mechanistic model, influx and efflux components

such as the calcium channels (NMDAr, VDCC) and calcium
pumps (PMCA, NCX) are represented as calcium current
sources which can add or remove calcium in the spine
compartment. As calcium ions flow in and out of the
spine, the concentration is determined by calculating the
change in calcium divided by spine volume—the standard
definition of concentration. Buffers and intracellular calcium
stores interact directly with the calcium within the spine
using reaction rate equations. A schematic diagram of the
interactions between the components in the model is presented
in Figure 3A.

Besides modeling calcium in itself, each synapse also
provides postsynaptic current to the model neuron. The
postsynaptic current influences the postsynaptic potential,
which later influences spine calcium via voltage-dependent
calcium mechanisms. The postsynaptic current is governed
by both AMPA receptor channel and NMDA receptor
channel kinetic rate models. The NMDA receptor channel
kinetic rate model is the same model described in this
Supplementary Figure 1. The AMPA receptor channel rate
model is the model described in Robert and Howe (2003).
These components are part of the synaptic platform which

FIGURE 2 | Postsynaptic calcium can be influenced by a number of factors. Our focus is on calcium dynamics at the postsynaptic spine, as was highlighted in the red

dashed rectangle in Figure 1. Models for receptor channels and pumps that contribute to calcium dynamics have been developed in several studies. In our model,

these sources are integrated into a single platform to construct a mechanistic model of postsynaptic calcium dynamics.
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TABLE 1 | List of the parameters, specifications, and models used in the mechanistic model and their sources.

Parameter name Value References

SPINE PROPERTIES

Spine volume (Vspine ) 0.1 µm3 Stewart et al., 2005

PSD volume (VPSD ) 0.0032 µm3 Stewart et al., 2005

Spine surface area 0.671 µm2 Stewart et al., 2005

PSD surface area 0.132 µm2 Stewart et al., 2005

Diffusion equation within spine Equation 1 Naoki et al., 2005

Backpropagation attenuation ∼30% Golding et al., 2001

Nernst potential of [Ca2+]i at 0.05µM −60mV Calculated

Nernst potential of [Ca2+]i at 10µM −30mV Calculated

NMDA MODEL

Kinetic states model Supplementary Figure 1 Erreger et al., 2005

Number of NMDA receptors (nNMDA) 20 Racca et al., 2000

Percent of Ca Ion in NMDAr current 11% Burnashev et al., 1995

Simulated NMDAr response amplitude 1.2µM Higley and Sabatini, 2012

CALCIUM EFFLUX

PMCA Hill equation model (I) Equation 10 Fridlyand et al., 2003

PmCap (max PMCA extrusion) 0.25 pA Calibrated

Half max concentration 0.1µM Fridlyand et al., 2003

NCX Hill equation with Na/Ca gradient Equation 11 Gall and Susa, 1999

gNaCa (max conductance) 0.0117 pS Gall and Susa, 1999

Half max concentration 1.5µM Gall and Susa, 1999

[Ca2+]i, [Ca
2+]o, [Na

+]i, [Na
+]o 0.05µM, 2mM, 10mM, 140mM Gall and Susa, 1999

VDCC MODEL

Predominant type T-type channels Higley and Sabatini, 2012

Total number of VDCCs per spine 1–20 Sabatini and Svoboda, 2000

Number of VDCCs opened during BPAP 5 Sabatini and Svoboda, 2000

T-Type single channel conductance (gVDCC) 7.5 pS Perez-Reyes et al., 1998

Max [Ca2+] during BPAP ∼600 nM Sabatini et al., 2002

Decay of [Ca2+] during BPAP transient ∼30ms Sabatini et al., 2002

CALCIUM BUFFERS

Percent of calcium buffered 95% Sabatini et al., 2002

Calmodulin (CaM) Supplementary Figure 2 Zhabotinsky et al., 2006

CaM concentration 0.01mM Zhabotinsky et al., 2006

CaM Hill coefficient (hc) 3 Zhabotinsky et al., 2006

CaM forward rate kforward () 10e7/mM3 * ms Zhabotinsky et al., 2006

CaM reverse rate (kreverse) 10/ms Zhabotinsky et al., 2006

Calbindin Supplementary Figure 2 Bartol et al., 2015

Calcium binding proteins (CBP) Supplementary Figure 2 Naoki et al., 2005; Bartol et al., 2015

CBP concentration 0.8mM Calibrated

CBP forward rate (kforward ) 247/mM * ms Calibrated

CBP reverse rate (kreverse) 4/ms Calibrated

has been developed in our lab and further details can be seen
in Bouteiller et al. (2011), Allam et al. (2015), and Hu et al.
(2015).

Spine Volume and Diffusion

The concentration of any constituent depends on the volume
of its compartment. Spines come in a variety of shapes and
sizes, with different forms such as thin spines, stubby spines,
and mushroom spines (Stewart et al., 2005). The postsynaptic

calcium model presented here considers the composition of an
average mushroom spine of a CA1 neuron, with a spine volume
of 0.1 µm3 and the postsynaptic density volume set to 0.0032
µm3 (Stewart et al., 2005). Here, we model the postsynaptic
density as separate compartment due to the rapid increase
in local calcium concentration during ion channel activation;
the calcium concentration then diffuses into the rest of the
spine. Diffusion from the postsynaptic density (PSD) to the
spine compartment was approximated using the spine diffusion
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FIGURE 3 | A visual depiction of (A) mechanistic calcium model and (B) the Input-Output spine calcium model. (A) portrays an interaction diagram of the mechanistic

calcium model presented in the manuscript, with references the equations and kinetic schemas which govern the dynamics of each of the individual components. (B)

In the IO model, the inputs and output correspond to parameters in the mechanistic model. Inputs to the IO model are NMDAr conductance and postsynaptic

potential. Output is the estimate on calcium concentration in the spine. Coefficients are estimated based on the spine calcium mechanistic model, and presented in

Supplementary Table 6.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2018 | Volume 12 | Article 58

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hu et al. Spine Model of Calcium Dynamics

model described by Naoki et al. (2005). The diffusion rate is
modeled as:

(

d
[

Ca2+
]

dt

)

diffusion

= D
A

d∗Vspine
(
[

Ca2+
]

PSD
−
[

Ca2+
]

)

(1)

d
[

Ca2+
]

PSD

dt
=−

INMDA

2FVPSD
− D

A

d∗VPSD
(
[

Ca2+
]

PSD
−
[

Ca2+
]

)

(2)

where A is the surface area between the PSD and the rest of
the spine volume, d is the distance between the midpoints of
the PSD and the spine, Vspine is the total volume of the spine,
and

[

Ca2+
]

PSD
and

[

Ca2+
]

Spine
is the calcium concentration

at the postsynaptic density and the spine, respectively. The
postsynaptic density is dependent on INMDA, which is the calcium
influx current from NMDA receptors. The equation for INMDA

is described in Equation (3). The influx depends on Faraday’s
constant F and the volume of the postsynaptic density VPSD.

In our model, we consider the spine to be an isolated
compartment from the rest of the cell, where the calcium does
not flow out of the spine into the dendrite or vice versa. We
make this assumption based on experimental evidence that spines
are isolated electrically (Grunditz et al., 2008), and that less than
0.01% of the total calcium flux into the spine comes from the
adjacent dendrite (Sabatini et al., 2002). As such, the model
described here assumes that calcium exchange with the dendrite
is insignificant and calcium dynamics from our spine model does
not influence dendritic potential in our neuron model. We are
aware that while dendritic calcium can be influenced by spine
calcium dynamics, but in the current study, the focus of our
model considers only the spine calcium and not dendrite calcium
dynamics, as highlighted specifically as the red area in Figure 1.
Future studies are planned that will expand ourmodel beyond the
spine level and integrate calcium across more hierarchies that had
been presented in Figure 1. In the meanwhile, dendritic potential
can influence spine calcium influx dynamics, as described in the
following section.

Calcium Influx

Here, we first describe the models for NMDAr and VDCC, then
explain protocols to simulate calcium influx mechanisms and
activate the aformentioned models.

The calcium current contribution of the NMDA channel is
calculated as:

INMDA = gtotalNMDA × VCa (3)

gtotalNMDA = gNMDA × nNMDA (4)

INMDA indicates total calcium current that flows into the
spine, gNMDA is the NMDA conductance to be described in
the following paragraph and nNMDA represents the number of
NMDA receptors with the given PSD volume and is set to
20 (Racca et al., 2000). VCa represents the calcium potential

difference between intracellular and extracellular calcium, which
again will be described in more detail later in the text.

The NMDA receptor channel is represented as a kinetic
states model as described in Erreger et al. (2005). The model
consists of 8 states that represent the resting, activation, opening,
and desensitization states of the NMDA receptor channel. The
magnesium ion blockade of the NMDAr channel also must be
considered. To do so, the magnesium ion binding properties in
the channel pore are described by:

g0 = g1 +
g2 − g1

1+ eαV
(5)

gmax =
g0

1+
(

[Mg2+]o
K0

)

e−δzFV/RT
(6)

gNMDA = gmax × O(t) (7)

Where g0 represents the total conductance in the absence of any
magnesium, g1 and g2 represent the open state conductances
with one glutamate bound and two glutamate molecules bound,
respectively. g1is set at 40 pS while g2 is set at 247 pS. The value
α = 0.01 represents the steepness of the transition between g1and
g2.

[

Mg2+
]

o
represents the external magnesium concentration

and is set at 1mM. K0 is the equilibrium constant for magnesium
set at 3.57, F is Faraday’s Constant (9.64867.104Cmol−1), R is the
molecular gas constant (8.31434 J mol−1 K−1), z is the valency
of the calcium ion (2), and T is the temperature at 299.5 K.
V represents the membrane potential. δ is the affinity between
NMDAr andmagnesium, which is dependent on the postsynaptic
potential of the synapse; the value is set to 0.8. The variableO(t) is
the open state probability governed by the kinetic rate equations
for the NMDA model. The kinetic schema of the NMDAr model
is presented in Supplementary Figure 1 whereO (t) is represented
as “Open.” The rate constants which govern NMDA kinetics
are presented in Supplementary Table 1. In the kinetic model,
presynaptic action potentials cause vesicle glutamate release.
Thus, in our model, a presynaptic event correlates to a glutamate
spike in the NMDAr kinetic states model, moving the NMDAr
channel kinetics away from resting state and causing them to
open. For a more extensive description of the kinetic NMDAr
model, please refer to Erreger et al. (2005).

NMDAr is differentially permeable to different ions when
activated. Burnashev et al. (1995) reported that on average,
calcium constitutes about 11% of the total ion current when
NMDAr channels are opened. However, considering NMDA
current alone lead to an incorrect representation of NMDAr
mediated calcium influx, since the reversal potential of calcium
(+ 50mV) is considerably different from the reversal potential
of NMDAr conductance (+0mV). Therefore, in this model we
calculate the influx using the Nernst equation, which instead
depends on the difference between intracellular and extracellular
calcium concentration. The Nernst equation used is as follows:

VCa = −
RT

2F
log

(

[Ca2+]o
[Ca2+]

)

(8)

VCa represents the potential difference for calcium. R, T, and F
represent the molecular gas constant, temperature, and Faraday’s
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constant with the same values mentioned previously. [Ca2+]o is
the extracellular calcium set as a constant concentration of 2mM,
while [Ca2+] represents intracellular calcium concentration at
the spine. Here, we assume the calcium at the spine dominates
the driving force represented by the Nernst potential. It is also
possible to use the calcium concentration at the postsynaptic
density to calculate the potential, but due to its small volume,
minor fluctuations in current can result in drastic changes in the
concentration value, which would lead to more erratic changes in
the potential. Therefore, we consider the use of the overall spine
concentration to be a more adequate representation of the Nernst
potential for calcium.

The Nernst potential is typically used to determine the
potential when the spine is at during the resting state. However,
for our purposes we use the Nernst potential as an estimate
of the driving force for calcium influx. Our justification is
thus: In our spine model, we assume that all ions besides
calcium remain constant and the electrochemical force for all
other ions is zero. As mentioned earlier, considering only a
percentage of synaptic current influx as calcium is inaccurate,
since the reversal potential between calcium is much higher
than the reversal potential of synaptic current. This case is true
even for the Goldman–Hodgkin–Katz flux equation, since it
depends on the membrane potential—if the membrane potential
moves from negative to positive, the flux is also reversed. On
the other hand, using a constant value for calcium potential,
i.e., when calcium is at rest at 50 nM, does not account for
changes in flux induced by increased calcium levels in the spine.
Therefore, the use of the Nernst potential is an estimation
of the electrochemical gradient when calcium concentration is
changed. The concentration of intracellular calcium is orders
of magnitude lower than the concentration of extracellular
calcium, so the change is not large, but still significant enough
such that we believe it should be accounted for, i.e., the value
of VCa when intracellular calcium is 50 nM is approximately
−60mV, but can reach −30mV when intracellular calcium
reaches at 10µM.

Voltage dependent calcium channels (VDCCs) let calcium
into the spine when there is a significant difference in
membrane potential, such as action potential backpropagation
from the postsynaptic neuron (Higley and Sabatini, 2012).
Various types of VDCCs exist—each having different channel
properties, mechanics, and functional roles—and are found on
different types of cells (Catterall, 2011). For CA1 pyramidal
cells, experimental evidence suggests that T-type VDCCs
contribute the most to overall calcium concentration within
dendritic spines (Bloodgood and Sabatini, 2007). It should
be noted that L type and R type VDCCs are also present.
However, the calcium influx contribution of L-types and R-
types to the overall calcium concentration within spines was
found to be insignificant. Instead, these channels tend to
be concentrated into microdomains and activate secondary
messenger pathways (Higley and Sabatini, 2012). Consequently,
we consider the VDCC influx through T-type channels
only.

The more specific details of the VDCCmodel are described in
Supplementary Table 2. In general, the calcium contribution of

the VDCC channel is calculated as:

IVDCC = gVDCC ·m2
· h · fdrive (9)

Where IVDCC is the calcium current from the voltage dependent
calcium channel. m and h are part of the Hodgkin-Huxley
equation, with parameters as defined from Jaffe et al. (1994). fdrive
is the driving force of the internal and external calcium dynamics,
considered through modifications to the Hodgkin Huxley
equation as reported by Poirazi et al. (2003) (equivalent to dvf
in their model). Once again, the equations and parameters used
in the model related to VDCC are presented in Supplementary
Table 2. gVDCC is the he single channel conductance for VDCC is
set to be 7.5 pS (Perez-Reyes et al., 1998) and the average number
of VDCCs opened for each AP-evoked transient is 5 (Sabatini and
Svoboda, 2000).

Calcium Efflux

Experimental evidence indicates that calcium is removed from
the intracellular space through pumps and exchangers, but
mechanistic details concerning calcium efflux at the postsynaptic
spine are not yet fully understood. Generally, Plasma Membrane
Calcium Pumps (PMCA) and Sodium-Calcium Exchangers
(NCX) are the two prominent elements that participate in
calcium extrusion in spines and small dendrites of CA1
pyramidal cell neurons (Scheuss et al., 2006). Overall it is thought
that the constant active pumping by PMCA helps maintain the
standard basal levels of calcium at∼50 nM (Carafoli, 1991), while
NCX helps to quickly extrude calcium in a short amount of
time, such as during an action potential (Carafoli et al., 2001).
One source in the literature suggests the PMCA isoform is type
PMCA2w, although details on the dynamics and extrusion rates
of the isoform are lacking (Burette et al., 2010). Details on NCX
at spines are even less studied, with only one source indicating
that NCX is present in larger numbers in dendritic shafts than in
spines, though exact numbers are unknown (Lörincz et al., 2007).

Previously published models of spine calcium use calcium
extrusion models as a calibration factor to fit simulations
to experimental results (Naoki et al., 2005; Bartol et al.,
2015). For our model, we are interested in using more
physiologically accurate representations of extrusion, but such
models specifically relating to the extrusion pumps and channels
in spines are currently absent from the literature. Therefore,
we have decided to use extrusion models from models of other
physiological systems (Gall and Susa, 1999; Fridlyand et al.,
2003), and adjust parameters according to the geometry of the
synapse based on the surface area density of themodels presented
within these papers. The adjusted parameters are detailed in the
following paragraph.

Both PMCA and NCX are represented through the Hill
equation, which is typically used to describe binding properties
of a ligand to the receptor:

I = IMAX

[

Ca2+
]hc

Khc +
[

Ca2+
]hc

(10)

Here, IMAX is the maximum calcium current extruded from
the model, K is the equilibrium constant and hc is the hill
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coefficient. For PMCA model parameters, the Hill coefficient is
set to 2 and an equilibrium constant of 1µM (Fridlyand et al.,
2003). The maximum calcium current was optimized through
gradient descent based on experimental protocols highlighted
in the results section; the optimized maximal PMCA current
was set to be 0.25 pA. The NCX model has a Hill coefficient
of 5, equilibrium constant value of 1.5µM and a conductance
of 0.0117 pS (Gall and Susa, 1999); maximal current is then
calculated from the sodium/calcium gradient and the given
conductance. The higher Hill coefficient represented in the NCX
model indicates a higher affinity for calcium ions when more
calcium is bound. A table describing the parameter values is
presented in Table 2.

Additionally, the NCX model accounts for the
sodium/calcium gradient in which three sodium ions are
exchanged for one calcium ion (Fridlyand et al., 2003):

VNa,Ca =
RT

F
(3ln(

[

Na+
]

o
[

Na+
]

i

)− ln

(
[

Ca2+
]

o
[

Ca2+
]

i

)

) (11)

R, T, and F represent the molecular gas constant, temperature,
and Faraday’s constant with the same values mentioned
previously. IMAX for NCX is determined based on the gradient
difference. In the current model, intracellular and extracellular
sodium concentrations are considered constant at 10 and
140mM respectively. Similar to VCa from the Nernst equation,
VNa,Ca is an estimate of the driving force to consider how
calcium efflux will change depending on calcium concentration,
providing a slightly better estimate compared to keeping VNa,Ca

constant.

Buffers and Intracellular Calcium Stores

Buffering is an integral part of calcium dynamics at the
postsynaptic spine, as up to 95% of the total intracellular calcium
is bound to buffers (Sabatini et al., 2002). There are numerous
types of buffers that can bind calcium; in our model, we
specify two types of buffers, calmodulin and calbindin, while
the other possible buffers are represented as a collection of
generic calcium binding proteins (CBP). In our platform, the
buffer models directly influence the free calcium concentration
in the spine using reaction rate equations. The kinetic schemas
and descriptions of the parameters and equations are presented
in Supplementary Figure 2, Table 1, and Supplementary Table
3. Calmodulin is a ubiquitous calcium buffer which plays a
role in AMPA receptor upregulation and synaptic potentiation
when found in the postsynaptic spine. The calmodulin buffering
parameters are defined in accordance to Zhabotinsky et al.
(2006). Calbindin is a binding protein with four calcium binding

TABLE 2 | List of calcium efflux parameters.

Parameter PMCA model NCX model

hc 2 5

K 1µM 1.5µM

IMAX 0.25 pA VNa,Ca * 0.117 pS

sites; here it is defined as a 9 states kinetic model, with
parameters defined in the calcium model by Bartol et al. (2015).
The CBP were calibrated after the previous two buffers were
implemented, where the total buffered calcium at steady state
reaches approximately 95% in the presence of all three buffers.

Intracellular calcium stores are known to play a large role in
calcium dynamics, but current evidence on its impact particularly
on dendritic spines in CA1 neurons remains controversial.
So far it is found that approximately 19% of the total spine
count contain endoplasmic reticulum (ER), with a majority of
the ER-containing spines having a larger volume than others
(approx. 0.06 µm3) (Holbro et al., 2009). The ER apparatus
within the spine was shown to have no IP3 receptors present
while retaining a number of ryanodine receptors (Paula-Lima
et al., 2014). As such, we have included in our model state
representations for SERCA pumps and ryanodine receptors, but
omit IP3 receptors. Just like the buffer models, the models
pertaining to the intracellular calcium stores directly interact
with the free calcium concentration in the spine. We describe
the kinetic schema, parameters, and equations of SERCA and
ryanodine receptors in Supplementary Figure 3, Supplementary
Tables 4, 5. The SERCA pump is a 2 states model with equations
and parameters derived from Higgins et al. (2006). We also
included the ryanodine receptors model proposed by Williams
et al. (2011).

Inputs Into the Mechanistic Spine Calcium Model

In Figure 3A, we provide a diagram of the interactions in
the mechanistic model and describe the components which
can influence calcium activity. Input stimulation predominantly
occurs in two ways: (1) through synaptically activated transients,
where presynaptic release of neurotransmitter activates the
NMDA receptor channels on the postsynaptic density; and (2)
AP-evoked transients, where stimulation of the postsynaptic
neuron triggers an action potential, which is then backpropagated
to the spines. Simulation of (1) is represented through
presynaptic event-based activation of the NMDA receptormodel,
where a single event triggers the opening kinetics of the NMDAr
model. The protocol for (2) is slightly more complex: in order
to simulate AP-evoked transients in our model, we stimulate
a number of synapses on the neuron model to invoke an
action potential. Calcium concentration can then be measured
on a stimulated or non-stimulated synapse, where the back-
propagating action potential opens VDCCs and prompts calcium
entry into the spine.

Input-Output Model
The development of the Input-Output (IO) model for
postsynaptic calcium dynamics follows a protocol similar
to the IO models that had been covered in Berger et al. (2010)
and Hu et al. (2015). To describe briefly, the IO model uses
the Volterra functional power series, with Laguerre functions
as the basis equations of the Volterra series. The single input,
single output (SISO) model of the Volterra functional series and
the Laguerre equations have been previously described in Hu
et al. (2015). In brief, we propose to use a simplified functional
representation of the system under consideration.
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In the current work, a multi-input, single output (MISO)
model was developed with the inputs being the two major
sources of calcium influx for the calcium model: (1) postsynaptic
potential (V), and (2) NMDAr channel conductance (gtotalNMDA)
based on glutamate-based calcium influx. One notable difference
is that we herein consider the inputs to be continuous. Although
we use spike trains as input to our synapse platform, the
conductance and potential which are calculated from the spike
trains are continuous. The use of continuous inputs contrasts
with IO models that have been published previously assumed
the inputs to be of binary nature (Hu et al., 2015). A pictorial
representation of the mechanistic model and IO model is shown
in Figure 3B, to highlight which parameters the two models have
in common.

The inputs of the IO model were chosen because they
represent outside activity that drives changes in calcium
dynamics. The first input, the postsynaptic potential, is a
factor known to drive calcium influx due to its effects on
voltage dependent mechanisms (NMDAr associated channel and
calcium channels). In both mechanistic and IO models, the
postsynaptic potential depends on the neuron cell model. In
our simulations, the Izhikevich model (Izhikevich, 2003) is used
for most simulations except simulations that involve distance
measurements, where the Migliore neuron model is used instead
(Migliore and Migliore, 2012). Since the Izhikevich model has
no geometry component, measurements with respect to distance
cannot be performed using the Izhikevich model. The Migliore
model, on the other hand, is a reconstruction of a hippocampal
CA1 neuron, which consequently has dendritic geometry that
can be used for our simulation study. In the neuron model, we
simulate synaptic activity which results in firing of the cell; the
action potential is then backpropagated to the spinemodel, which
we use as input to either the mechanistic or the IO model. The
second input, i.e., NMDA-R channel conductance, is a critical
measure of pre- and postsynaptic activity; we determine the
total NMDAr conductance based on both pre- and post-synaptic
activity of the spine.

In our platform, opening of the NMDA receptor channel
model: (1) Allows calcium influx into the spine, and (2) produces
postsynaptic currents, which are passed to the neuron model
and influences the postsynaptic potential. We chose the NMDAr
channel conductance as an input parameter to the input-output
model to account for the calcium influx while still allowing
NMDAr channels to influence postsynaptic activity. The output
response of the IO model is calcium concentration, calibrated
using the calcium concentration obtained with the mechanistic
model. Thus, the influence on calcium dynamics of all other
components besides the NMDAr model are captured in the IO
model. The use of the IO model then allows us to model complex
nonlinear calcium dynamics without requiring the large number
of components that would otherwise be necessary when using a
mechanistic model.

To describe the structure of the IO model, we first begin with
a description of the SISO Volterra series:

uSISO (t) = c0 +

L
∑

j=1

c1
(

j
)

vj(t)+

L
∑

j1=1

j1
∑

j2

c2s
(

j1, j2
)

vj1 (t) vj2(t)

+

L
∑

j1=1

j1
∑

j2=1

j2
∑

j3=1

c3s
(

j1, j2, j3
)

vj1 (t) vj2(t)vj3(t) (12)

vj (t) =

M
∑

τ= 0

bj (τ ) x(t − τ ) (13)

Where uSISO is the single input Volterra series up to 3rd order.
L refers to the total Laguerre functions in the SISO model, and
c0, c1, c2s, and c3s refer to the coefficients associated with the 0th,
1st, 2nd, and 3rd order response of the series, respectively. vj (t)
is the convolution of the input to the IO model with the basis
function; x(t−τ ) is the input to the IOmodel; and bj (τ ) is the j-th
basis function. M is the memory window of the IO model, set to
5 s. The coefficients are determined during the training process to
best fit the nonlinear response of calcium dynamics. For our case,
we use the Laguerre basis functions for our model. The Laguerre
equations are used for their orthogonality and convergence
properties, which are characteristic of many biophysiological
systems (Berger and Song, 2010; Ghaderi et al., 2011).

The structure of the Volterra functional series in the MISO
model is similar to the SISO model. In the case of two inputs, the
series consists of the summation of two SISO model components
that account for two different inputs, then adding a cross-kernel
component accounting for possible nonlinear interactions that
may occur due to the presence of two inputs. The equations
become thus:

uMISO (t) = c0 + u1 (t) + u2 (t)

+

L1
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L2
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(t)vu2
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(14)

v
ui
j (t) =

M
∑

τ= 0

bj (τ ) xui (t − τ ) (15)

Here, uMISO is the equation for the multi-input Volterra series,
and u1 and u2 are the single input Volterra series based on uSISO
with the inputs the postsynaptic potential (V), and the NMDA
receptor conductance (gtotalNMDA), respectively. The cross kernel
components involve the number of Laguerre functions L1 and
L2 from the first and second SISO components, respectively, and
at all orders. vu

k (t) is the associated basis functions convolved
with inputs: postsynaptic potential (V), and the NMDA receptor
conductance (gtotalNMDA). cr is then the associated coefficients for
these terms. As a result, the nonlinearities influenced by having
two different inputs are considered.

The IO model must be trained to tune its parameters and
minimize the error with respect to the original system—in this
case, the mechanistic model. The training process consisted in
using the response of the original mechanistic model to random
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Poisson train events given at both low average frequency (2Hz)
and high average frequency (10Hz), with a total of 1,000 events
to ensure a wide range of activity. The low average frequency of
2Hz was chosen to reflect the typical firing rate of hippocampal
CA1 and CA3 neurons during resting state (Berger et al., 1988).
Meanwhile, the high average frequency of 10Hz is used to
account for situations with higher levels of neuron activity
in physiological conditions (Ranck, 1973). The coefficients
associated with the basis functions were determined through
the pseudoinverse matrix multiplication, and the optimal decay
values associated with the Volterra series were estimated using
gradient descent to find the parameters that resulted in the lowest
root mean square error value in the comparison between the
estimated and the actual result from the original model.

Platforms and Computational Tools

The mechanistic calcium model is described in the Systems
Biology Markup Language (SBML) and was constructed using
CellDesigner, a visual diagram editor for SBML (Funahashi et al.,
2008). Our models were then run in MEMORY, a python-
based platform designed for synapse-based simulations using
the libSBML library and the simulation engine libroadrunner
(Somogyi et al., 2015). In our studies which involve measuring
calcium and dendritic potential based on distance from the
soma, we required a neuron model with a detailed dendritic
structure where synapses can be placed along the dendritic
arbor. To achieve this, we use the CA1 pyramidal cell model
designed by Migliore (Migliore and Migliore, 2012) simulated
within NEURON cell simulation platform (Carnevale and Hines,
2006). The IO calcium model first required the coefficients to be
determined, which were calculated within MATLAB; afterwards,
the model was implemented into the MEMORY platform to run
for simulation. Unless otherwise indicated, the input stimulus
provided to synapses during simulation were Poisson 2Hz
randomized input trains, where each synapse was provided a
unique randomized input. All simulations were conducted on a
computer using the Fedora OS, with Intel quad-core 2.67 GHz
processor and 8 Gb RAM.

RESULTS

Calcium Dynamics Calibration and
Validation With Published Experimental
Data
In the resting phase, the average cytosolic calcium concentration
in spines is typically kept at around ∼50 nM, maintained by
various pumps and buffers (Higley and Sabatini, 2012). Calcium
influx occurs during activation of the various channels present
on the spine. There are two major sources of calcium influx:
Glutamate-dependent calcium influx, where calcium flows into
the spine via NMDA receptor channels, and Voltage-dependent
calcium influx, primarily through voltage-dependent calcium
channels. For calibration of the mechanistic calcium model at
the spine, we consider two scenarios: (1) calcium influx due to
presynaptic activation, where the presynaptic terminal releases
glutamate in response to a presynaptic action potential, and (2)
calcium levels when the postsynaptic neuron is fired, leading to a
backpropagating action potential (bAP). The response in (1) has

been measured both in the presence and absence of postsynaptic
depolarization (Sabatini et al., 2002; Higley and Sabatini, 2012).
Our calciummodel has a response of approximately 9 and 0.9µM
in the presence and absence of postsynaptic depolarization,
respectively, which is in line with the experimental data presented
in the literature (Figure 4A). Similarly, calcium levels in response
to bAP were simulated and compared to calcium levels measured
in Sabatini et al. (2002) (Figure 4B). The backpropagation factor
assumed that the spine was a distance of ∼150µm from the
soma, similar to the synapses recorded in the literature. The
simulated results showed an amplitude of approximately 700 nM,
comparable to measurements from Sabatini et al. (2002).

Calcium Fluctuations Vary According to the
Inter-spike Intervals Between Presynaptic
and Postsynaptic Activity of the Neuron
Due to the number of mechanisms in place, the integration
of glutamate-dependent calcium influx and voltage-dependent
calcium influx leads to further complex dynamics in calcium
concentration at the spine. When the membrane potential
increases as a result of postsynaptic events, the magnesium block
is removed in the NMDA receptor channel pore, increasing the
influx of ions when the receptor is activated (Jahr and Stevens,
1990; Ambert et al., 2010). In our model, we measured the
maximum amplitude of calcium concentration at varying pre-
post intervals to determine its influence on calcium dynamics
in the spine (Figure 5). Through the study, we found that
the highest calcium concentration peak reached was 9.88µM,
when the postsynaptic event occurred 3ms after the presynaptic
event. It was also noted that for pre-post intervals, where
the presynaptic event precedes the postsynaptic event, there
is a notable increase in the magnitude in comparison to the
calcium response when there is only presynaptic activation with
no postsynaptic activation. The increase in maximum calcium
amplitude is present when the pre-post interval ranges from 0
to 80ms; beyond 80ms, there appears to be no significant change
in maximum amplitude compared to presynaptic activation only.
In the case of post-pre intervals, where the presynaptic event
follows the postsynaptic event (corresponding to negative delays
in Figure 5), calcium amplitude begins rising sharply starting
at 20ms all the way to 0ms. It is interesting to note that
while our model does not account for synaptic plasticity, the
pre-post interval time-scale dependency of calcium amplitude
on pre-post intervals resembles the well-known spike timing
dependent plasticity (STDP) curve presented by Bi and Poo
(2001), particularly in regards to synaptic strengthening when
post-synaptic activation follows pre-synaptic activation. The
correlation in timescale dependence between the STDP curve
and the presented results from the mechanistic calcium model
suggests the mechanistic model can be considered a plausible
model basis for a plasticity model in the future.

Postsynaptic Calcium Activity Depends on
the Distance Between the Synapse and the
Soma
The experimental studies conducted by Sabatini et al. (2002)
observed synapses located approximately 150µm from the soma.
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FIGURE 4 | Validation of single event responses of the mechanistic model of calcium concentration at the postsynaptic spine. (A) The response of the postsynaptic

spine model to a single presynaptic event with an elicited action potential (in light blue, dashed) that reaches ∼9µM, and without any resulting action potential (in blue,

solid) that reaches ∼1µM, in line with expected amplitudes that have been reported in experimental studies and reviews (Sabatini et al., 2002; Higley and Sabatini,

2012). Neurotransmitter release following a presynaptic event opens NMDA receptor channels, causing calcium influx; the degree of influx is also dependent on

membrane potential due to the voltage-dependent magnesium block. (B) Response to a single postsynaptic backpropagation event by the postsynaptic spine model

(in red) in comparison to reported calcium response seen in the study by Sabatini et al. (2002) (in black). Voltage-dependent calcium channels (VDCC) open in

response to a change in calcium levels—the result shown here is the response due to low-voltage activated VDCC-T type channels in the postsynaptic spine model.

FIGURE 5 | The magnitude of the calcium response changes depending on

the interval between presynaptic and postsynaptic events. Timing interval

between presynaptic and postsynaptic events can influence the amplitude of

calcium dynamics in the mechanistic model of calcium at the postsynaptic

spine. Pre-Post interval is defined as the amount of time in milliseconds the

postsynaptic event (presynaptic neuron activation, NT release is triggered)

occurs after the presynaptic event (postsynaptic neuron activation, the action

potential is backpropagated to the spine). Black dots indicate measured

maximum calcium response for simulations with the designated pre-post

interval. In the inset, A., B., and C. show the simulated calcium profile in

response to different pre-post intervals. The change in maximum calcium

amplitude reflects the kinetics of the NMDAr channel dynamics, where the

voltage dependent magnesium block results in the nonlinear behavior of the

calcium response.

Studies have shown that backpropagation signal properties of
the synapse and dendrite can change depending on distance
(Golding et al., 2001). To observe the influence of distance
on the calcium response, we used the CA1 pyramidal neuron
model by Migliore and Migliore (2012) to simulate 50 randomly
placed synapses on the stratum radiatum, with the closest synapse
having a distance of 72.62µm and the furthest synapse has a
distance of 407.03µm; these values are close to theminimum and
maximum range specified for the stratum radiatum (Megías et al.,
2001). When synapses were randomly placed on the pyramidal
cell model, we measured the dendritic diameter of the synapse
locations. It was found that 45 (90%) of the synapse locations
had a diameter of 0.5µm. This corresponds to the measured
diameters of the thin dendrites located in the stratum radiatum in
experimental findings (Megías et al., 2001). Other diameters were
2, 2, 1.2, 1.2, and 0.18µm. Our simulations from these synapses
showed no influence of the diameter on our measured results. In
our first set of simulations, the synapses were stimulated with a
single presynaptic event, then a fixed single postsynaptic event
following 10ms afterwards. Figure 6A shows a schematic of the
simulation setup. In Figure 6B, we summarize the results where
for each synapse we consider (Figure 6Bi) the resting potential,
Figure 6Bii maximum amplitude of the backpropagating action
potential during stimulation with a pre-post interval of 10ms,
and Figure 6Biiimaximum calcium response during stimulation
with a pre-post interval of 10ms. We note that both the resting
potential from Figure 6Bi and the max bAP from Figure 6Bii are
properties inherent to the neuron model described by Migliore
and Migliore (2012). For Figure 6Biii, we simulate calcium
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FIGURE 6 | Simulated results of dendritic potential and maximum calcium amplitudes as a function of distance from the soma. Fifty random locations were chosen

within the stratum radiatum sections of a pyramidal CA1 cell model by Migliore and Migliore (2012). (A) Diagram of the simulation protocol for stimulating and

(Continued)
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FIGURE 6 | measuring calcium levels for synapses located at different distances from the dendrite. Presynaptic stimulation indicates simulated presynaptic release on

the respective synapse, while postsynaptic stimulation indicates simulation of the soma, inducing a backpropagating action potential. (B) Synapses were stimulated

with a presynaptic release event at time 0, followed by a simulated current injection into the soma of the neuron 10ms following the presynaptic event, triggering an

action potential and invoking backpropagation. (i) The dendritic resting potential values from the 50 locations with respect to distance. On average, the potential is

slightly higher in distal than in proximal locations by approximately 2mV. (ii) In contrast to the baseline potential, the maximum potential reached with the

backpropagation of a single postsynaptic spike becomes more attenuated when further away from the soma. (iii) The influence of the attenuation is seen in the

calcium measurements, where maximum calcium is reduced when moving further away from the soma, with 300µm and beyond the backpropagation becomes

negligible. (C) The pre-post interval was varied between simulations, and the maximum calcium response was measured for each simulation at each synapse location.

The darker lines indicate calcium responses from synapse locations closer to the soma, while lighter lines are responses from locations further away from the soma.

The blue dotted line is where the pre-post interval is 10 milliseconds, reflecting results that are seen in (Bi) through (Biii).

dynamics at the spine using our mechanistic calcium model
described in this manuscript. In Figure 6C, we repeated the
simulations with different pre-post intervals and measured the
maximum calcium response at the spine of each synapse location.

Our simulation results indicated that baseline potential is
slightly increased in distal dendrites than in proximal dendrites,
with a range lying between −73.4mV and −71mV. Such a
difference appears rather small, but still constitutes a notable
trend with respect to distance. Differences up to 2mV between
somatic and dendritic resting potential have been observed
experimentally, and our model falls in line within these
constraints (Golding et al., 2001). Conversely, the maximum
potential reached after pre-post event stimulations decreases with
respect to distance; proximal dendrites are more likely to reach a
higher maximum potential than distal synapses.

Observations of the calcium concentration levels at the
postsynaptic spine indicated that at a pre-post interval of
10ms, the amplitude of the calcium concentration peak in
spines decreased as distance with the soma increased. Again,
beyond 300µmwe found that calcium amplitudes do not extend
much beyond 1µM, likely due to the reduced influence of the
postsynaptic activity. Subsequent simulations where the pre-post
intervals are changed demonstrated that the influence of the
timing between presynaptic and postsynaptic events is more
prominent in proximal synapses than in distal synapses. In
particular, there no longer appears to be any dependency of the
max calcium response on the pre-post interval timing for the
synapses farthest away from the soma. These simulations are in
line with studies on the influence of distance on STDP, where it
was found that backpropagation induces LTP more commonly
in proximal synapses, while at distal synapses LTD occurs more
frequently in response to the same backpropagating potential
(Sjöström and Häusser, 2006).

Results presented here suggest that the bAP is significantly
attenuated in distal spines to the degree that a single pre-post
events does not trigger much calcium influx. At the time of
writing, experimental data of spine calcium levels based on
distance have not been documented in the literature. However,
the results presented on backpropagation are in line with what
has been observed in experimental studies, such as Golding et al.
(2001), where it was observed the bAP amplitude is reduced when
further away from the soma, and especially beyond 300µm. The
reason for attenuation is likely due to two factors: (1) changes
in active conductance with respect to distance from the soma,
where at distal dendrites there is a higher density of potassium
channels and low density of calcium and sodium channels

(Bikbaev et al., 2016); and (2) the branching of the dendritic
arbors, which has also been seen to contribute to the attenuation
of the bAP (Golding et al., 2001). In distal synapses, there may be
other mechanisms at play that may more prominently influence
signaling and plasticity to compensate for attenuated bAP, such
as modulation by glial cells and neurotransmitters (acetylcholine,
brain derived neurotrophic factor, dopamine noradrenaline)
(Edelmann et al., 2017).

A Third Order, Multi-Input Input-Output
Calcium Model Closely Replicates the
Response of the Mechanistic Calcium
Model at Lower Frequency
Each individual component in the mechanistic calcium spine
model has its own degree of computational complexity, and the
integration of all the components also compounds the overall
computational burden. As a result, simulation of the calcium
dynamics for a larger number of spines becomes increasingly
difficult. We demonstrate here the use of an input-output
model based on the Volterra functional series that reduces
computational cost of simulating calcium dynamics. The output
of the model is calcium concentration. The inputs to the
proposed model are membrane potential and NMDA receptor
conductance. The NMDA receptor model is the only component
in the calcium dynamics model that we consider outside of
the IO calcium model, since an IO NMDA model had been
developed before and can be utilized in its place (Hu et al.,
2015). In brief, the IO NMDA model is a single-input-single
output model which uses the Volterra series with Laguerre basis
functions to predict the open state probability of the NMDA
receptor channel (“Open” from Supplementary Figure 1). The
open state probability is then used to calculate the conductance
based on the magnesium blockade equation (Equations 3–5).
However, for the purposes of consistency, in our simulations
we use the kinetic NMDA receptor model to properly compare
results only between the IO calcium model and mechanistic
calciummodel. Training the IOmodel requires keeping track and
replicating calcium concentration profiles from the mechanistic
model in three separate conditions. First, when only presynaptic
stimulation is applied; then, when only postsynaptic stimulation
is applied (back-propagated action potential); and finally, when
both presynaptic and postsynaptic stimulations are applied to
the spine. For each type of stimulation, we used Poisson random
interval trains for 1,000 events at 2Hz and 1,000 events at 10Hz
for a total of 2,000 events, as each input. This gives us a total
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of 8,000 events for the model to be trained on: 4,000 events
in total for presynaptic stimulation, and 4,000 events total for
postsynaptic stimulation. The large number of events at lower
and higher frequencies gives the IO model an adequate range of
nonlinear dynamics to be trained on. At the end of the training
phase, the root mean square (RMS) difference is calculated and
normalized to the maximum value and minimum of mechanistic
model response. The difference between the mechanistic model
and the trained IO model was 6.79% with the given training data.

We then validated the trained IO model with a naive train
of presynaptic and postsynaptic stimulations for both 2 and
10Hz and compared the results with the ones obtained with
mechanistic model. The trained IO model was found to be more
accurate at lower frequencies: the validation error at 2Hz was
8.15%, while the error for 10Hz reached 16.9% (Figure 7). We
have also provided a comparison between the mechanistic model
response and the response from the linear calcium model by
Shouval et al. (2002), which is presented in Figure 8. The linear
calcium model is presented as:

d
[

Ca2+
]

dt
= INMDA (t) − (

1

τCa

[

Ca2+
]

) (16)

[

Ca2+
]

represents calcium concentration. INMDA (t) is the
contribution of calcium current provided by the NMDA
receptors; in our simulations, we used the NMDAr kinetic rate
model described by Erreger et al. (2005) to determine calcium
current from NMDA receptors. This is the same NMDAr model
used for our mechanistic calcium model and IO calcium model.
τCa is the time constant for calcium decay in the linear model.
As a result, all nonlinearities associated with NMDAr kinetics
are also being accounted for in the simulation with the linear
calcium model. We calibrated the parameter to 20ms, which
best approximates the decay of the first order response to
the mechanistic model. After calibration, we simulated Poisson
random input events with an average frequency of 2 and 10Hz to
the linear model to compare with the mechanistic calciummodel
response. The difference is shown in Figure 8. The root mean
square difference between the two models is very large: 80.52%
for the 2Hz average response, and 89.75% for the 10Hz average
response. This demonstrates that, even with the nonlinear
dynamics of the NMDAr model accounted for, considerable
nonlinearities in the mechanistic calciummodel exist that cannot
be replicated in a linear calcium model. In particular, the results
from the linear model significantly undershoots the calcium
dynamics seen in the mechanistic model as demonstrated in
Figures 8C,D. Because the nonlinear dynamics of the NMDA
receptor channel have been accounted for, these differences in
nonlinearity are more likely a result of the buffers, VDCC, and
calcium influx dynamics simulated within the mechanistic model
but not in the linear model. Meanwhile, the nonlinear dynamics
are reproduced in the IOmodel, where the RMS error was shown
to be much lower.

Following validation, the computational time to run the IO
model and the mechanistic model was determined based on
number of spines with 2Hz Poisson random interval train inputs.
We find that the IOmodel finished the simulations faster than the

mechanistic model, where the runtime of the IO model required
around half the time to finish a simulation compared to the
mechanistic model (Figure 9).

Another advantage of the IO calcium model is that the
framework of the input-output model is easily implemented and
adaptable to other simulation platforms. To test the performance
of the IO calcium model simulated as an embedded mechanism
within the NEURON engine, we adapted the IO model into a
module file for the NEURON platform and compared cell level
simulations based on number of spine instances. Two types of
models were simulated with different spine configurations: (1)
spines using both an NMDA 8 state model and the IO calcium
model, and (2) spines with only the NMDA 8 state model and no
IO calcium model. Simulation protocols with 10, 100, 500, 1,000,
5,000, and 10,000 spine instances were conducted; simulations
were run in fixed time step of 0.1ms, a randomized poisson input
train of 2Hz frequency, and the overall simulated time period is
for 20 s. Simulation times were then benchmarked to determine
how much of a computational burden is added when including
IO calcium model within spines. Simulations were repeated 10
times each to derive the standard deviation in the simulation
time. Results are shown in Figure 10. Our simulations concluded
that at 10,000 spines, the computational burden increases from
9.3 to 13.3 h. For details on the variation in the benchmarks, the
standard deviation of the benchmarking data from Figures 9, 10
are plotted in Supplementary Figure 4. While the increased
required simulation time is not insignificant, the IO framework
still gives a viable option for simulating complex postsynaptic
calcium dynamics on a larger scale—with numerous spines on
a neuron or a neuron network.

DISCUSSION

This article describes the development and simulation of a
model of the postsynaptic calcium concentration in the spine.
The model presented is an integration of various mechanisms
which shape the dynamics of calcium concentration at the
postsynaptic spine, comprising elements that contribute to
calcium influx, calcium extrusion, and buffering. Experimental
studies on spine signaling have focused on calcium more than
any other signaling molecule within active spines (Higley and
Sabatini, 2012), as calcium dynamics and its effectors (NMDA,
VDCC, etc.) have been repeatedly shown to strongly influence
plasticity and learning. Calcium has also been implicated as a role
player in neurodegenerative diseases such as Alzheimer’s Disease
(Khachaturian, 1994; Alberdi et al., 2010). Our goal in modeling
calcium is to: (1) explore mechanisms and details underlying
calcium dynamics that would otherwise be difficult to achieve
with experimental studies alone (i.e., influence of pre-post timing
and distance on spine calcium, where the researcher must take
multiple time measurements at multiple spine locations, would
be difficult to measure in experimental setups), and (2) reduce
computational complexity of the calcium model to enable multi-
scale simulations. We have presented a viable model which is
supported by experimental data. We configured the model to
replicate a particular type of synapse—a glutamatergic CA3-CA1

Frontiers in Computational Neuroscience | www.frontiersin.org 15 July 2018 | Volume 12 | Article 58

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hu et al. Spine Model of Calcium Dynamics

FIGURE 7 | Comparisons between the calcium responses from the mechanistic model and the IO calcium model. (A,B) Shows the responses of the mechanistic

model (in blue) and the trained IO calcium model (in red) over the course of 20 s given Poisson randomized presynaptic and postsynaptic events with an average of 2

and 10Hz, respectively. The difference between the mechanistic and the IO model are plotted beneath each response. The calculated RMS difference between the

two models is 8.15% for the 2Hz response and 16.9% for the 10Hz response. (C,D) Shows a direct comparison between the calcium response values from the

mechanistic model (x axis) and the IO calcium model (y axis) from the 2 and 10Hz responses, respectively.
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FIGURE 8 | Comparison between the linear calcium model (Shouval et al., 2002) and the mechanistic calcium model. (A,B) Shows the responses of the mechanistic

model (in blue) and the linear calcium model (in orange) over the course of 20 s given Poisson randomized presynaptic and postsynaptic events with an average of 2

and 10Hz, respectively. The root mean square difference between the two models is 80.52% for the 2Hz average response, and 89.75% for the 10Hz average

response. (C,D) Shows a direct comparison between the calcium response values from the mechanistic model (x axis) and the linear calcium model (y axis) from the 2

and 10Hz responses, respectably.
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FIGURE 9 | Comparison between the Mechanistic and IO model runtime vs.

number of spines. Each spine represents the kinetics for synaptic transmission

as well as calcium dynamics, which is either represented by the mechanistic

calcium model or the IO calcium model. Benchmarking was conducted at 5,

10, 15, 20, 30, 40, and 50 spines, and simulations were repeated 10 times to

derive the standard deviation of the runtimes. For each simulation, a 2Hz

Poisson random interval train input was given to all synapses. Overall, the IO

spine model required on average a little less than half the runtime needed to

finish a simulation compared to the mechanistic model.

FIGURE 10 | Benchmarking the IO model within the NEURON simulation

platform. The IO model was re-implemented as a module file usable within the

NEURON platform and simulated on a compartmental neuron model for 20

simulated seconds at 0.1ms timesteps. The number of spines was varied for

each simulation ranging from 10 to 10,000, where a spine was defined as a

kinetic NMDA 8 state model, either with or without the IO calcium model and

the simulation runtime is plotted here. Each simulation was repeated 10 times

each to derive the standard deviation, shown as error bars in the figure.

synapse of a pyramidal cell neuron; it incorporates the nonlinear
dynamics that result from interactions between the components
that contribute to spine calcium concentration.

Beyond experimental validation, we presented simulated
results with the mechanistic model which show changes
in spine calcium activity as a function of presynaptic and
postsynaptic intervals—a standard protocol for inducing spike-
timing dependent plasticity. In STDP, the weight of a synapse
changes after repeated identical pre-post stimulations at given
pre-post intervals. In hippocampal CA1 glutamatergic spines,
intervals where presynaptic stimulation precedes postsynaptic
stimulation induce synaptic potentiation, with the strength of
the potentiation inversely proportional to the interval distance
between the pre- and post-stimulation (Bi and Poo, 2001).
Our model demonstrates that similarly, calcium influx is
significantly amplified when presynaptic stimulation precedes
postsynaptic stimulation, and that the amplitude is also inversely
proportional to the interval size. Many plasticity associated
signaling cascades are activated by calcium—for example, AMPA
receptor upregulation into the spine is a known indicator for
synaptic strengthening (Zhabotinsky et al., 2006). This process is
initiated by spine calcium binding with CaMKII and triggering
secondary messenger pathways. Likewise, recruitment of actin
will lead larger spines—this, too has been associated with calcium
interaction (Araya, 2014).

It is thought that the major influence on the calcium
brought about by presynaptic/postsynaptic interactions is the
NMDA receptor channel kinetics, but we have demonstrated
in our simulations that the NMDAr channel alone is not the
sole contributor of the nonlinear dynamics of calcium in the
spine. The role of NMDAr in synaptic activity is considerably
important: it has been shown experimentally that NMDA
contributes to synaptic plasticity and LTP (Sakimura et al., 1995;
Grover et al., 2009; Larson and Munkácsy, 2015). Many LTP
models are based around this hypothesis, where NMDAr models
are used to represent calcium influx, and repeated stimulation
leads to calcium induced plasticity (Shouval et al., 2002; Standage
et al., 2014). However, the NMDA representation in such
models is a simple, linear representation where the NMDA-
based calcium influx is represented as a ratio proportional to
the bAP. This poorly reflects on nonlinear calcium dynamics in
two ways: (1) the simplified version of NMDAr dynamics ignores
important dynamical features that are known to be associated in
NMDAr channels, such as desensitization (Mayer et al., 1989),
which is included as a state in the NMDAr kinetic model used in
our mechanistic calcium platform, and the magnesium blockade
(Calabresi et al., 1992) which is instead roughly approximated
using a BPAP curve; (2) there is no influence or contribution
from other elements or properties from the spine, which can
drastically alter the calcium response. Meanwhile, our model
integrates validated channel kinetics within the confines of the
spine compartment. Thus, our mechanistic model can consider
the nonlinear aspects of calcium influx which are influenced
by NMDAr channels, along with other channels, pumps, and
buffers that regulate spine calcium concentration—all of which
influence observed calcium levels at the spine. Especially to
note is the spine volume and the buffers within the spine.
Changes to volume can result in undercompensation (in larger
volumes) or overcompensation (in smaller volumes) of calcium
concentration, unless the mechanisms which govern calcium
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dynamics are scaled appropriately (O’Donnell et al., 2011).
Furthermore, experimental evidence has shown that changes in
volume also can result in change in AMPAr expression and
upregulation (Noguchi et al., 2011), which is also important for
synaptic plasticity. Such mechanisms revolved around volume
are ignored in linear calcium concentration models, but can
be studied in future simulations using the mechanistic model.
Buffering provides another layer of complexity that will influence
the amplitude and decay of the calcium response, yet there
is no consideration for buffers in the linear calcium models.
Our results demonstrate that, in the study of spine calcium,
these components are important contributors to the nonlinear
response of calcium.

The investigation into calcium dynamics at the postsynaptic
spine is our latest study in the use of computational synaptic
modeling platform to better understand synaptic activity and
signaling: (1) We modeled the impact of astrocytic glutamate
uptake (Allam et al., 2012) and ionotropic receptor distribution
(Allam et al., 2015) on synaptic transmission in glutamatergic
CA1 synapses; (2) Our synapse platform has been adapted
to cellular and network levels in simulation (Bouteiller et al.,
2011) to observe effects of nonlinear activity of synapses
in a network simulation; (3) Large scale simulation models
containing millions of neurons have also been developed within
our research lab (Hendrickson et al., 2015); (4) and efforts
had been made to adapt the complex nonlinear postsynaptic
response of mechanistic synapses to large scale simulations
using input-output modeling (Hu et al., 2015). Our modeling
platform is consistently under expansion, with current projects
considering the effects of modulators such as acetylcholine
and how intracellular calcium stores influence metabolism and
pump activity. The mechanistic and IO calcium model we
describe in this manuscript expands our modeling platform to
simulate not only synaptic transmission, but complex calcium
dynamics as well. From here on, we plan to investigate and
implement mechanisms that are based on spine calcium (the
CaMKII signaling pathway, for example) and move to the next
hierarchical level of calcium dynamics, the calcium response at
the dendrite.

Expansion into large-scale, multi-scale modeling with
complex biologically accurate synapse dynamics requires
reduction of the computational burden while minimizing loss in
accuracy. Spine calcium plays a key role in synaptic plasticity and
influences communication between neurons, and understanding
how calcium dynamics change network properties on a large
scale can give us a better sense of the mechanisms that give
rise to plasticity. Key downstream processes are influenced by
the slightest changes in calcium dynamics (timing, magnitude,
frequency, decay) (Evans and Blackwell, 2015). For example, an
increase in spine calcium levels can activate signaling cascades
that lead to either LTP or LTD induction (Lisman, 1989;
Artola et al., 1990; Malenka and Bear, 2004); however, it is also
observed in experiments that there is not a simple threshold
that distinguishes when LTP or LTD occurs during calcium
influx (Neveu and Zucker, 1996)—emphasizing even more
the need of an integrated model of varying calcium dynamics,
not just a linear model based on thresholds. Hence, we believe

accurate representations of nonlinear calcium are required not
only at the subcellular scale models, but on larger network-level
models as well. Our model can provide an accurate reflection
on the magnitude, duration, and location of spine calcium
response—nonlinear dynamics that have been described to be
more and more important for calcium based synaptic plasticity
(Evans and Blackwell, 2015). Furthermore, neurodegenerative
disease are often accompanied by an imbalance in calcium levels
(Arundine and Tymianski, 2003). Nonlinear calcium models can
be modified to represent pathological conditions, and multi-scale
modeling can help identify the network level changes that occur
with neurodegeneration and disease.

However, the computational cost of using many instances of
the mechanistic calcium model in full exceeds the computational
capacity of even the most recent high-performance computers;
a method to improve computational efficiency is needed. Our
previous work considers the use of the Volterra functional series
to develop an IOmodel for the postsynaptic response to a synapse
(Hu et al., 2015). Using the same input-output framework, we
adapted this method to reduce the computational burden of
modeling calcium dynamics. We have shown that using the IO
model reduces the required simulation time by two to three-
fold compared to the mechanistic model within our MEMORY
platform. We also demonstrate that the IO framework can be
easily adapted into other platforms such as NEURON, where,
in our setup, 10,000 instances of the IO calcium model with
the NMDAr kinetic model can be simulated on a complex,
morphological, compartmental cell model, resulting in 1 h
additional simulation time compared to the same protocol using
the NMDAr kinetic model but without the IO calcium model.
However, the current IO model as described has a limitation
that must be addressed: it is limited to a 3rd order model, with
higher order models requiring exponentially increasing memory
requisites. Spine calcium dynamics become progressively more
nonlinear when given higher frequency input, such as high
frequency stimulation protocols often used in LTP induction.
As such, other IO model frameworks are being investigated,
such as the Laguerre-Volterra network structure (Geng and
Marmarelis, 2016), as possible enhancements leading to even
more efficient computational modeling of complex dynamic
systems.

The concept of using computer simulations to study
postsynaptic calcium dynamics is not new. There have been
several computational models of spine calcium that have been
developed previously, and their work has provided useful insights
on the dynamics and importance of calcium (Shouval et al.,
2002; Standage et al., 2014; Bartol et al., 2015). Generally,
current calcium models are divided into two categories: (1)
Phenomenological models which describe very few mechanistic
aspects of calcium dynamics, but help understand its influence
on synaptic plasticity and LTP (Shouval et al., 2002; Naoki
et al., 2005; Zhabotinsky et al., 2006; Standage et al., 2014);
and (2) detailed, stochastic models which describe calcium all
the way down to each individual ion (Bartol et al., 2015). In
(1), the models do not extensively consider calcium dynamics
at length and may even consider calcium as a linear system.
Instead, models from (1) evaluate the downstream effects of
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calcium on important synaptic processes such as plasticity. In
contrast, the detailed calcium model in (2) considers a complete
reconstruction of a small area on the CA1 pyramidal cell neuron,
including specific channel densities and exact volume and shape
reconstruction of a 6 × 6 × 5 µm3 cube of neuropil in a
Monte Carlo based stochastic simulator. However, such a model
is difficult to adapt outside of the scope of the reconstructed
area and is computationally intensive, making it unsuitable for
larger scale simulations. Themodels in this article help bridge this
discrepancy: (1) the mechanistic model is capable of replicating
complex non-linear interactions between the elements that
shape spine calcium dynamics, and (2) the input-output model
provides a method to simulate these complex calcium dynamics
on a larger scale.

The spine is a constantly changing organelle as a result
of development, plasticity, and/or pathological conditions. The
current spine calcium model as described here represents only a
snapshot of a particular spine, constrained by static parameters
based on the averaged responses from experimental data. Future
renditions of our model will not be limited to a single type of
synapse. Our spine calcium model has potential to be adapted
to varying physiological states (i.e., different morphologies
and channel distributions) and pathological conditions (such
as Alzheimer’s disease). Furthermore, the model has potential
applications in drug discovery, for in silico testing of compounds
that modulate calcium (either directly or via channel/pump
interactions). The calcium model is an expansion of the synapse
model framework that is constantly being built upon to provide

extensive and detailed multi-level models that can help explore
the pathways and processes of that take place in the spine
and influence synaptic plasticity, neuron communication, and
pathological processes.

AVAILABILITY

Model scripts and code will be made available in the future on the
EONS synaptic platform modeling site, www.synapticmodeling.
com.
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