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Abstract

Target proteins that lack accessible binding pockets and conformational stability have posed increasing
challenges for drug development. Induced proximity strategies, such as PROTACs and molecular glues, have
thus gained attention as pharmacological alternatives, but still require small molecule docking at binding
pockets for targeted protein degradation (TPD). The computational design of protein-based binders presents
unique opportunities to access “undruggable” targets, but have often relied on stable 3D structures or
predictions for effective binder generation. Recently, we have leveraged the expressive latent spaces of protein
language models (pLMs) for the prioritization of peptide binders from sequence alone, which we have then
fused to E3 ubiquitin ligase domains, creating a CRISPR-analogous TPD system for target proteins. However,
our methods rely on training discriminator models for ranking heuristically or unconditionally-derived “guide”
peptides for their target binding capability. In this work, we introduce PepMLM, a purely target
sequence-conditioned de novo generator of linear peptide binders. By employing a novel masking strategy that
uniquely positions cognate peptide sequences at the terminus of target protein sequences, PepMLM tasks the
state-of-the-art ESM-2 pLM to fully reconstruct the binder region, achieving low perplexities matching or
improving upon previously-validated peptide-protein sequence pairs. After successful in silico benchmarking
with AlphaFold-Multimer, we experimentally verify PepMLM’s efficacy via fusion of model-derived peptides to
E3 ubiquitin ligase domains, demonstrating endogenous degradation of target substrates in cellular models. In
total, PepMLM enables the generative design of candidate binders to any target protein, without the
requirement of target structure, empowering downstream programmable proteome editing applications.

Introduction
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The development of therapeutics largely relies on the ability to design small molecule- or protein-based binders
to pathogenic target proteins of interest.1 These binders can either be used as inhibitors or as functional
recruiters of effector enzymes.2 For example, proteolysis targeting chimeras (PROTACs) or molecular glues
are heterobifunctional small molecules that bind and recruit endogenous E3 ubiquitin ligases for targeted
protein degradation (TPD).3,4 Still, these small molecule-based methods rely on the existence of accessible
cryptic or canonical binding sites, which are not present on classically “undruggable” intracellular proteins.5,6
With the advent of deep learning-based structure prediction tools such as AlphaFold2,7 combined with
generative modeling,1 algorithms such as RFDiffusion and MASIF-Seed enable researchers to conduct de
novo protein binder design from target structure alone.8,9 Nonetheless, much of the undruggable proteome,
including dysregulated proteins such as transcription factors and fusion oncoproteins, are conformationally
disordered, thus biasing design to a small subset of disease-related proteins.1,6

Over the past few years, deep learning has revolutionized natural language processing (NLP), particularly
through the implementation of the attention mechanism.10 This foundational advancement has transcended the
boundaries of natural language analysis, finding pertinent applications in the modeling of other languages,
such as proteins, which are fundamentally sequences of amino acids.11 In recent times, several protein
language models (pLMs), trained on distinct transformer architectures, such as ProtT5, ProGen2, ProtGPT2,
and the ESM series, have accurately captured critical physicochemical properties of proteins.12–15 Notably,
ESM-2 currently stands as the state-of-the-art model in the realm of protein sequence encoding, essentially
functioning as a BERT-style model that discerns co-evolutionary patterns among protein sequences via a
masked language modeling (MLM) training task.16,17 These models have been extended to powerful
applications, including antibody design, the creation of novel proteins, and structure prediction, offering a
streamlined approach to embedding useful protein information.13,14,16,17 Recently, our lab has leveraged the
expressivity of pLMs to both generate and prioritize effective peptidic binder motifs to targets of interest,
enabling design of peptide-guided degraders, termed ubiquibodies (uAbs).18–20 As such, uAbs represent a
programmable, CRISPR-like approach for TPD. Our early models, Cut&CLIP and SaLT&PepPr, rely on the
existence of interacting partner sequences as scaffolds for peptide design19,20. Most recently, our PepPrCLIP
model generates de novo peptides by first sampling the ESM-2 latent space for naturalistic peptide candidates,
and then screening these candidates through a contrastive model to determine target sequence specificity.21
However, a purely de novo, target sequence-conditioned binder design algorithm has yet to be developed.

To achieve this goal, we introduce PepMLM, a novel Peptide binder design algorithm via Masked Language
Modeling, built upon the foundations of ESM-2.16 PepMLM innovates by employing a contiguous masking
strategy that uniquely positions the entire peptide binder sequence at the terminus of target protein sequences,
compelling ESM-2 to reconstruct the entire binding region (Figure 1A). PepMLM-derived linear peptides
achieve low perplexities, matching or improving upon validated peptide-protein sequence pairs in the test
dataset, and experimentally exhibit degradation capability of endogenous, disordered target substrates when
incorporated into the uAb architecture. Overall, by focusing on the complete reconstruction of peptide regions,
PepMLM represents the first example of target-conditioned de novo binder design from sequence alone, thus
facilitating a deeper understanding of binding dynamics and paving the way for the development of more
effective, targeted binders to unstructured proteins of interest.

Results

We trained PepMLM using existing peptide-protein binding data sourced from the recent PepNN training set
and the gold-standard Propedia dataset.22,23 We subjected our curated dataset to a filtration process based on
the lengths of the binder and target protein sequences, which were confined to 50 and 500 respectively. To
remove redundancies, we applied a homology filter thresholded at 80%, resulting in a final training set of
10,000 samples and leaving 203 samples for testing.24 Each entry in the dataset comprised a concatenated
protein and binder sequence. During the training phase, we masked the entire peptide sequence, tasking the
model to reconstruct them via the ESM-2-650M model. The discrepancy between the ground truth binder and
the reconstructed binder induces a cross entropy loss, thereby forcing parameter updates via gradient descent.
Post fine-tuning, we generate peptide binders of specific lengths by providing the model with a target protein
sequence and a user-defined number of mask tokens, as illustrated in Figure 1A. Final settings and
hyperparameters used to train our model are presented in Supplementary Table 1.
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We considered two distinct decoding strategies during the generation phase. The default strategy, akin to
ESM-2 or BERT-style models,16 employs greedy decoding, wherein the token with the highest probability is
selected at each site. Despite its efficacy, greedy decoding is limited to the generation of a single peptide
binder. To augment the diversity of the peptides, we introduced top-k sampling, allowing PepMLM to randomly
select from the top k probable tokens at each site. In this decoding strategy, we evaluated perplexity alongside
various k values, ranging from 2 to 10, on the test set of target proteins. For each target protein, we generated
10 binders of the same length as the ground truth binder. We observed that as k increased, perplexity also
rose, indicating a decrease in model confidence (Figure 1B). While higher k values yielded more diverse binder
sequences, they also corresponded with an increase in the number of outliers. To find a balance between
sequence diversity and maintaining model confidence (as indicated by the lower perplexity), we settled on k =
3 as our final selection.

To substantiate the efficacy of the generated peptides, we conducted a comprehensive series of computational
benchmarks with test-set peptide-target pairs. The total 203 test-set target proteins were utilized to generate
one peptide binder each, employing pre-trained ESM-2 embeddings and PepMLM (Supplementary Table 2).
Subsequently, the pseudo-perplexity of the binder region was computed for four groups of target protein:binder
pairs. For a significant portion of the test-set, known binders exhibited a reasonable perplexity range, with only
a few outliers, validating the model's effective ability to model them accurately (Figure 1C). A comparative
analysis revealed that the binders generated by PepMLM exhibited lower perplexity values, suggesting a
higher likelihood of them making stable binding interactions with the target (Figure 1C). Moreover, our
distribution analysis revealed that PepMLM closely mirrors the distribution peak of real binders, a deviation
from the distribution shifts observed with the original ESM-2 model alone and with randomly generated binders
(Figure 1D). Our observation underscores the model's ability to grasp the underlying conditional distribution of
protein and peptide binding to a notable extent, enhancing the suitability of ESM-2 for peptide binder design
through fine-tuning.

Next, to benchmark PepMLM’s generation quality, we co-folded the test and generated binders with their
respective target proteins utilizing AlphaFold-Multimer, which has been proven effective at predicting
peptide-protein complexes.25,26 The pLDDT and ipTM scores, verified metrics within AlphaFold2,7 function as
critical indicators of the structural integrity and the potential interface binding affinity of peptide-protein complex,
respectively, providing a quantitative assessment of our generation. The extracted ipTM and pLDDT values
from our benchmarking indicated a significant negative correlation (p<0.01) with PepMLM perplexity, affirming
the model's reliability at prioritizing binders with stable binding capacity to the target (Supplementary Figure 1).
Our further analysis, which involved sorting the test set based on their ipTM values and comparing them with
the corresponding generated binders, revealed a hit rate of over 38%, with many showcasing promising ipTM
scores exceeding 0.95 (Figures 2A and 2B). This data suggests that PepMLM can generate and prioritize
effective binders, precluding the need for extensive downstream experimental screening.

To corroborate our in silico results on more unique targets, we sought to test PepMLM-generated binders in our
uAb architecture to degrade pathogenic proteins in a cellular model of Ewing sarcoma, a pediatric bone
malignancy with no approved targeted therapies.27 As our targets, we chose two cancer-related proteins,
4E-BP2 and β-catenin, as well as the more structured histone H3 protein, a core epigenetic nuclear protein that
comprises chromatin.28–30 To design peptides, we first employed greedy decoding to determine the optimal
binder length that yielded the lowest perplexity, followed by the generation of binders for each target sequence
using top k sampling, where k was fixed at 3 as previously described (Supplementary Table 3). After cloning
these peptides into our uAb backbone and transfecting into A673 Ewing sarcoma cells, we conducted Western
blotting on whole-cell protein extracts with target-selective primary antibodies (Figure 2C). Our results
demonstrate that select PepMLM-generated “guide” peptides induce binding and subsequent degradation of
endogenous targets when fused to E3 ubiquitin ligase domains, demonstrating reduced protein levels relative
to that of the non-targeting control uAb (Figure 2D), motivating further design and testing of effective degraders
to diverse pathogenic targets.

To this point, we had utilized the lightweight ESM-2-650M model, enabling flexible fine-tuning and inference. To
assess the performance of larger models, we additionally fine-tuned ESM-2-3B16 for peptide generation
(PepMLM-3B) and evaluated it using the same methodology as employed for the ESM-2-650M version of
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PepMLM (PepMLM-650M). However, as illustrated in Supplementary Figure 2, we did not observe a
substantial improvement in either perplexity or hit rate for PepMLM-3B (36.02%). Considering the associated
resource and inference costs, we provide our PepMLM-650M model as a resource for effective linear peptide
generation.

Discussion

By simply redesigning a guide RNA, the CRISPR-Cas system enables targeting and modification almost any
DNA sequence, a programmable process that has revolutionized biology.31 Specifically, with the recent
engineering of protospacer adjacent motif (PAM)-relaxed Cas variants, there is minimal restriction as to which
user-defined DNA sequences can be bound and edited.32,33 Unfortunately, an analogous, programmable
system for “editing” proteins has yet to be developed, as the design of target-specific binders requires either
accessible binding pockets for small molecules, which do not exist on “undruggable” targets such as those at
flat protein-protein interaction interfaces, or conformationally-stable 3D structures, precluding the binding of
disordered targets such as dysregulated transcription factors and fusion oncoproteins.1 To mitigate these
shortcomings, here, we introduce PepMLM, the first de novo binder design algorithm directly conditioned on
the target sequence of a protein. By using generated peptides as guides for E3 ubiquitin ligase domains, and
eventually other post-translational modification domains, this work serves as a step forward towards
developing a fully modular proteome editing system.

We envision that further improvements can be made to PepMLM, enabling its adoption as a universal tool for
peptide binder design. A first, simple step would be to integrate PepMLM generation with our recent
PepPrCLIP contrastive discriminator to allow for ranking of peptides with high target specificity.21 Moreover, we
envision that PepMLM can be retrained with modification-aware and variant-aware pLM embeddings to enable
specificity to post-translational isoforms over wild-type protein states. Finally, we are planning to integrate
PepMLM generation with high-throughput lentiviral screening to both evaluate its hit rate experimentally and
input experimental data back into the algorithm, creating an active learning-based optimization loop. As a note,
we have not validated PepMLM’s ability to generate high affinity, standalone peptide binders, those that can be
further stabilized via cyclization or stapling, though this may prove possible via the current algorithm.34,35
Nonetheless, we envision that through additional development, our accessible peptide generator, coupled with
variants of our uAb architecture, will enable a CRISPR-analogous system to bind and modulate any target
protein, whether structured or not.

Methods

Data Curation

In the data curation phase, protein and peptide complexes were amalgamated from the PepNN and Propedia
databases.22,23 Initially, redundancy between the two datasets was eliminated, followed by the utilization of
MMseqs2 to cluster the remaining protein sequences, setting a threshold of 0.8.24 When protein sequences
were identified within the same cluster and exhibited identical binder sequences, a single sequence was
retained. This was followed by a manual filtering process, wherein protein sequences were sorted and those
exhibiting high similarity (threshold of 80%) were removed to further mitigate homology issues. Consequently, a
dataset comprising 10,203 entries was amassed, from which 10,000 were randomly allocated for training and
203 for testing. The maximum lengths for the binder and protein sequences were established at 50 and 500,
respectively.

Conditional Peptide Modeling

Peptide binders are modeled in a distinctive manner, wherein the peptides are modeled conditionally based on
the full protein sequence. Let represent the target protein sequence of length and

denote the binder of length . The protein and peptide sequences are concatenated,
incorporating start, end, and padding tokens. Mask language modeling transforms this into a conditional
modeling problem, where the objective is to reconstruct given , as the entire region is masked during
both training and generation phases. The entire model is updated with a Cross Entropy loss function, where
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represents the target protein sequence of length and denote
the binder of length . The protein and peptide sequences are concatenated, incorporating start, end, and
padding tokens. Mask language modeling transforms this into a conditional modeling problem, where the
objective is to reconstruct given , as the entire region is masked during both training and generation
phases. The entire model is updated with Cross Entropy loss, which can be represented as:

Through this methodology, the discrepancy between the generated binders and the ground truth is minimized,
facilitating the learning of the conditional probability, .

PepMLM Training

The pre-trained protein language model, ESM-2, was utilized to facilitate full parameter fine-tuning. ESM-2, a
transformer-based model, is adept at discerning coevolutionary patterns across protein sequences. The
concatenated protein and peptide sequences were tokenized at the amino acid level and input into the model.
Deviating from the original training strategy of ESM, the entire binder sequence was exclusively masked,
compelling the model to learn the relationship between the peptide binder and the protein. The ESM-2-650M
and ESM-2-3B models were both trained for PepMLM. Both versions were trained on an NVIDIA 8xA100 640
GB DGX GPU system with Pytorch 2.01 and Python 3.10.10. Specific parameters are shown in Supplementary
Table 1.

PepMLM Generation

During the generation phase, the target protein sequence, along with a designated number of mask tokens (at
end), was input into the model. Subsequently, the model greedily decodes logits at each masked position to
identify peptide binders. To infuse greater diversity into the generation process, top-k sampling was
implemented, wherein the model randomly selects the top k highest probability logits at each masked position.

Pseudo-Perplexity of PepMLM

The pseudo-perplexity of ESM-2 was adapted to focus specifically on the evaluation of peptide binder
generation. Notably, the perplexity calculation is confined to the binder region, or, in other words, the masked
regions. Mathematically, the pseudo-perplexity is defined as:

In this equation, represents the binder sequence and is the length of the binder sequence. This
modification ensures a more focused evaluation of the generated peptide binders, aligning with the conditional
modeling approach adopted in this study.

Generated Peptide Benchmarking

To assess the efficacy of the generated peptide binders, two benchmarking studies were conducted: one on
the test set and another on selected critical proteins. In the test set benchmarking, top k sampling (k =3) was
employed to generate a single peptide binder for each target protein. Additionally, the original ESM-2 model
was utilized to generate peptides, and random peptides of equivalent length were created. For ESM-2
generation, specifically, mask tokens of the same length were added at the end of target protein sequences for
analogous model prediction and decoding as for PepMLM. The perplexity of the PepMLM was compared
across four groups. PepMLM-generated binders and test binders were folded using the AlphaFold2 ColabFold
version 1.5.2, in conjunction with the protein sequences. Folding metrics including pLDDT and ipTM were
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gathered, which were utilized to correlate perplexity findings. For each test target protein, the ipTM scores of
the test and generated binders were compared to determine the overall hit rate. Notice, as top k sampling
generates with randomness, the hit rate might vary or increase with different runs or k options.

For the selected critical proteins, greedy decoding generation was initially utilized to ascertain the optimal
length, followed by the implementation of top-k sampling to generate several binders with a desired degree of
diversity. Binders were generated to select target proteins for experimental testing.

Generation of plasmids

All uAb plasmids were generated from the standard pcDNA3 vector, harboring a cytomegalovirus (CMV)
promoter and a C-terminal IRES-mCherry cassette as a transfection control. An Esp3I restriction site was
introduced immediately upstream of the CHIPΔTPR CDS and flexible GSGSG linker via the KLD Enzyme Mix
(NEB) following PCR amplification with mutagenic primers (Genewiz). For uAb assembly, peptide sequences
were human codon-optimized for complementary oligo generation (Genewiz). Oligos were annealed and
ligated via T4 DNA Ligase into the Esp3I-digested uAb backbone. Assembled constructs were transformed into
50 µL NEB Turbo Competent Escherichia coli cells, and plated onto LB agar supplemented with the
appropriate antibiotic for subsequent sequence verification of colonies and plasmid purification (Genewiz).

Cell culture

A673 cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 100 units/ml
penicillin, 100 mg/ml streptomycin, and 10% fetal bovine serum (FBS). For uAb testing, pcDNA3-uAb (500 ng)
plasmids were transfected into cells as triplicates (4x105/well in a 12-well plate) with Lipofectamine 2000
(Invitrogen) in Opti-MEM (Gibco).

Cell fractionation and immunoblotting

On the day of harvest, cells were detached by addition of 0.05% trypsin-EDTA and cell pellets were washed
twice with ice-cold 1X PBS. Cells were then lysed and subcellular fractions were isolated from lysates using a
1:100 dilution of protease inhibitor cocktail (Millipore Sigma) in Pierce RIPA buffer (ThermoFisher). Specifically,
the protease inhibitor cocktail-RIPA buffer solution was added to the cell pellet, the mixture was placed at 4 oC
for 30 min followed by centrifugation at 15,000 rpm for 10 min at 4 oC. The supernatant was collected
immediately to a pre-chilled PCR tube, and after adding 4X Bolt™ LDS Sample Buffer (ThermoFisher) with 5%
β-mercaptoethanol in a 3:1 ratio, the mixture was incubated at 95 oC for 10 min prior to immunoblotting.
Immunoblotting was performed according to standard protocols. Briefly, samples were loaded at equal volumes
into Bolt™ Bis-Tris Plus Mini Protein Gels (ThermoFisher) and separated by electrophoresis. iBlot™ 2 Transfer
Stacks (Invitrogen) were used for membrane blot transfer, and following a 1 h room-temperature incubation in
SuperBlock™ Blocking Buffer (ThermoFisher), proteins were probed with rabbit anti-4E-BP2 antibody (Cell
Signaling, Cat # 2845; diluted 1:500), rabbit anti-Histone 3 antibody (Abcam, Cat # ab1791; diluted 1:500),
rabbit anti-β-catenin antibody (Cell Signaling, Cat # 8480; diluted 1:500), or mouse anti-GAPDH antibody
(Santa Cruz Biotechnology, Cat # sc-47724; diluted 1:500) for overnight incubation at 4oC. The blots were
washed three times with 1X TBST for 5 min each and then probed with a secondary antibody, goat anti-rabbit
IgG (H+L), horseradish peroxidase (HRP) (ThermoFisher, Cat # 31460, diluted 1:5000) or goat anti-mouse IgG
(H+L) Poly-HRP (ThermoFisher, Cat # 32230, diluted 1:2000) for 1-2 h at room temperature. Following three
washes with 1X TBST for 5 min each, blots were detected by chemiluminescence using an iBright 1500
Imaging System (ThermoFisher). Densitometry analysis of protein bands in immunoblots was performed using
ImageJ software as described here: https://imagej.nih.gov/ij/docs/examples/dot-blot/. Briefly, bands in each
lane were grouped as a row or a horizontal “lane” and quantified using FIJI’s gel analysis function. Intensity
data for the uAb bands was first normalized to band intensity of GAPDH in each lane then to the average band
intensity for the uAb vector control cases across replicates.

Statistical analysis and reproducibility
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To ensure robust reproducibility of all results, experiments were performed with at least three biological
replicates. Sample sizes were not predetermined based on statistical methods but were chosen according to
the standards of the field (at least three independent biological replicates for each condition). All data were
reported as average values with error bars representing standard deviation (SD). All graphs were generated
using Prism 10 for MacOS. No data were excluded from the analyses. The experiments were not randomized.
The investigators were not blinded to allocation during experiments and outcome assessment.

Supplementary Figures

Supplementary Figure 1. Association between model perplexity and co-folding metrics.
Supplementary Figure 2. Evaluation of PepMLM-3B.
Supplementary Table 1. Settings and hyperparameters used to train PepMLM-650M.
Supplementary Table 2. Peptide sequences, PPL, and ipTM scores for AlphaFold-Multimer benchmarking.
Supplementary Table 3. Peptide sequences and PPL scores for uAb generation and experimental testing.
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Figure 1. Overview and evaluation of the PepMLM model. (A) The architecture of the PepMLM model.
Based on the fine-tuning of ESM-2, the model incorporates the target protein sequence along with a masked
binder region during the training phase. During the generation phase, the model can accept target protein
sequences and mask tokens to facilitate the creation of peptides of specified lengths. (B) Top-k sampling.
Specified k values are plotted in relation to perplexities calculated for target proteins in the test set, via
generation of 10 binders of the same length as the ground truth binder. (C) Perplexity distribution comparison.
The perplexity values were calculated for test and generated peptides, encompassing the target proteins in the
test set. (D) The density distribution visualization of the log perplexity values for target-peptide pairs,
encompassing test peptides, PepMLM-650M-generated peptides, ESM-2-650M-generated peptides, and
random peptides.



Figure 2. Benchmarking of PepMLM-generated peptides. (A) In silico hit-rate assessment. Utilizing
AlphaFold-Multimer, ipTM scores were computed for both the generated and test peptides in conjunction with
the target protein sequence. The entries are organized in accordance with the ipTM scores attributed to the
test set peptides. The hit rate is characterized by the generated peptides exhibiting ipTM scores ≥ those of the
test peptides. (B) AlphaFold-Multimer co-folding of specified target proteins from the PDB and sampled peptide
binders generated via PepMLM-650M, with the pLDDT values serving as the determinant for color coding.
ipTM scores indicate binding stability. (C) Architecture and mechanism of uAb degradation system. CHIPΔTPR
is fused to the C-terminus of PepMLM-designed target-specific peptides, and can thus tag endogenous target
proteins for ubiquitin-mediated degradation in the proteasome, post-plasmid transfection. (D) Degradation of
endogenous targets in protein extracts of A673 Ewing sarcoma cells analyzed via immunoblotting. Blots are
representative of independent transfection replicates (n = 3). Relative degradation activity was determined by
densitometry analysis of target protein signal normalized to sample-specific GAPDH signal.
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Supplementary Figure 1. Association between model perplexity and co-folding metrics. (A) Relationship
between ipTM and perplexity (PPL). The initial segment of Figure A presents a violin plot, categorizing
perplexity in 2-unit intervals. The subsequent segment delineates the raw data points, accompanied by a
regression analysis, indicating a slope of -0.30 (p < 0.001). (B) Negative correlation between PPL and pLDDT,
identified by a regression slope of -0.26 (p < 0.001). The violin plot underscores a marked decrement in
specific folding metrics, most pronounced in ipTM, commensurate with elevated perplexity levels.



Supplementary Figure 2. Evaluation of PepMLM-3B. (A) Perplexity distribution comparison. The perplexity
values were calculated for test and generated peptides, encompassing the target proteins in the test set. (B)
The density distribution visualization of the log perplexity values for target-peptide pairs, encompassing test
peptides, PepMLM-3B-generated peptides, ESM-2-3B-generated peptides, and random peptides. (C) In silico
hit-rate assessment. Utilizing AlphaFold-Multimer, the ipTM scores were computed for both the generated and
test peptides in conjunction with the target protein sequence. The entries are organized in accordance with the
ipTM scores attributed to the test set peptides. The hit rate is characterized by the generated peptides
exhibiting ipTM scores ≥ those of the test set peptides.



Supplementary Table 1. Settings and hyperparameters used to train PepMLM-650M.

Name Setting

Learning Rate 0.000798

Batch Size 16

Gradient Accumulation 2

Warm up steps 501

Number of training epochs 5

Optimizer AdamW (default)

Trainer Default HuggingFace Settings



Supplementary Table 2. Peptide sequences, PPL, and ipTM scores for AlphaFold-Multimer benchmarking.

Target Peptide Name Peptide Sequence PPL ipTM

4BPK-A 4BPK-C XWAREIGAXARRMADDLNAQYX N/A 0.93

4BPK-A PpC_4BPK-A_1 GASMMRELAEWLRKG 0.9991984963 0.41

4BPK-A PpC_4BPK-A_2 RSEIIQEMLGEAANEMF 0.9990072846 0.66

4BPK-A PpC_4BPK-A_3 LALETLRRVGDGVQRIHD 0.9968246818 0.78

4BPK-A PpC_4BPK-A_4 GRYIHDGLIYEMGKRLIA 0.9967900515 0.36

4BPK-A PpC_4BPK-A_5 LGEIDQELYKVVMYGEK 0.9960549474 0.36

4BPK-A PpC_4BPK-A_6 DELERAIRELAAREKG 0.9960279465 0.75

4BPK-A PpC_4BPK-A_7 VGLGVIDYLRRIGDQDK 0.9949992895 0.78

4BPK-A PpC_4BPK-A_8 GITPIKEMGREIHEILR 0.99496907 0.86

4BPK-A PpC_4BPK-A_9 TSPSYNPSCASYSSTSPR -0.6418320537 0.43

4BPK-A PpC_4BPK-A_10 THPTTTTATATTATSN -0.6186317205 0.45

4BPK-A PpC_4BPK-A_11 MHNTTTTTTATTATSN -0.6149728894 0.42

4BPK-A PpC_4BPK-A_12 PHPSPEWCPCARSGAGDA -0.6146063209 0.35

4BPK-A PpC_4BPK-A_13 CCNPNPCPWRCSAAEGL N/A 0.46

4BPK-A PpC_4BPK-A_14 EHQGQLDEIEKNPAHLDI N/A 0.41

4BPK-A PpC_4BPK-A_15 PCYIPADPLRWYKPI N/A 0.41

4BPK-A PpC_4BPK-A_16 MRACPQKPCYRRRRGP N/A 0.34

4BPK-A PpC_4BPK-A_17 VVTAQGVYELQHDDTD N/A 0.36

4BPK-A PpC_4BPK-A_18 GPAGEEGKRGARGERGDP N/A 0.39

4BPK-A PpC_4BPK-A_19 MPVGMANFNHEPNTD N/A 0.61

1LKL-A 1LKL-B XYEEG N/A 0.92

1LKL-A PpC_1LKL-A_1 GGIPVALPNVNDNYA 0.978949368 0.66

1LKL-A PpC_1LKL-A_2 PSVVDESNKELLYVK 0.976215899 0.71

1LKL-A PpC_1LKL-A_3 VGVCIYDKSQEQVPV 0.9750964642 0.83

1LKL-A PpC_1LKL-A_4 LKEYTLVEEQSQLNK 0.9683961868 0.34

1LKL-A PpC_1LKL-A_5 NPGIKYVENELESSM 0.967734158 0.82

1LKL-A PpC_1LKL-A_6 GCMGPAVELLGAPPKD 0.9665395617 0.56

1LKL-A PpC_1LKL-A_7 QEGCWPKEKEMLIAW 0.9599069357 0.33

1LKL-A PpC_1LKL-A_8 HIMDMKNPVQGCELGDPQ 0.9566709995 0.41

1LKL-A PpC_1LKL-A_9 MALSTLRRVLLGKQRNHR -0.8509562016 0.47



1LKL-A PpC_1LKL-A_10 KKDNPPRRPDMKPLKKDS -0.8466350436 0.67

1LKL-A PpC_1LKL-A_11 TKLNWTLRLYLSKKCRM -0.842817843 0.69

1LKL-A PpC_1LKL-A_12 MTYADHAASGRTSRRNAI -0.8424198627 0.51

1LKL-A PpC_1LKL-A_13 CCNPNPCPWRCSAAEGL N/A 0.4

1LKL-A PpC_1LKL-A_14 EHQGQLDEIEKNPAHLDI N/A 0.63

1LKL-A PpC_1LKL-A_15 PCYIPADPLRWYKPI N/A 0.68

1LKL-A PpC_1LKL-A_16 MRACPQKPCYRRRRGP N/A 0.35

1LKL-A PpC_1LKL-A_17 VVTAQGVYELQHDDTD N/A 0.75

1LKL-A PpC_1LKL-A_18 GPAGEEGKRGARGERGDP N/A 0.67

1LKL-A PpC_1LKL-A_19 MPVGMANFNHEPNTD N/A 0.33

1BHF-A 1BHF-I XFEEI N/A 0.93

1BHF-A PpC_1BHF-A_1 PSVVDESNKELLYVK 0.9817922711 0.66

1BHF-A PpC_1BHF-A_2 VGVCIYDKSQEQVPV 0.9799521565 0.85

1BHF-A PpC_1BHF-A_3 GGIPVALPNVNDNYA 0.9796469808 0.37

1BHF-A PpC_1BHF-A_4 NPGIKYVENELESSM 0.9780395627 0.7

1BHF-A PpC_1BHF-A_5 LKEYTLVEEQSQLNK 0.9759145379 0.81

1BHF-A PpC_1BHF-A_6 GCMGPAVELLGAPPKD 0.9717277288 0.53

1BHF-A PpC_1BHF-A_7 QEGCWPKEKEMLIAW 0.9664136767 0.33

1BHF-A PpC_1BHF-A_8 FVLMQKEAEDAEQLS 0.9625493884 0.33

1BHF-A PpC_1BHF-A_9 KKDNPPRRPDMKPLKKDS -0.8526343107 0.49

1BHF-A PpC_1BHF-A_10 MALSTLRRVLLGKQRNHR -0.8471319675 0.39

1BHF-A PpC_1BHF-A_11 MTYADHAASGRTSRRNAI -0.84048599 0.45

1BHF-A PpC_1BHF-A_12 TKLNWTLRLYLSKKCRM -0.8372011781 0.26

1BHF-A PpC_1BHF-A_13 CCNPNPCPWRCSAAEGL N/A 0.39

1BHF-A PpC_1BHF-A_14 EHQGQLDEIEKNPAHLDI N/A 0.64

1BHF-A PpC_1BHF-A_15 PCYIPADPLRWYKPI N/A 0.69

1BHF-A PpC_1BHF-A_16 MRACPQKPCYRRRRGP N/A 0.3

1BHF-A PpC_1BHF-A_17 VVTAQGVYELQHDDTD N/A 0.69

1BHF-A PpC_1BHF-A_18 GPAGEEGKRGARGERGDP N/A 0.47

1BHF-A PpC_1BHF-A_19 MPVGMANFNHEPNTD N/A 0.5

4OAJ-A 4OAJ-B NEKVSCV N/A 0.87

4OAJ-A PpC_4OAJ-A_1 MVHPFTEANSEYVFI 0.9954669476 0.82



4OAJ-A PpC_4OAJ-A_2 KNQSEYSIYSECVLHLSL 0.9948153496 0.48

4OAJ-A PpC_4OAJ-A_3 MAISEAKELEQVSAV 0.9942713976 00.86

4OAJ-A PpC_4OAJ-A_4 MWITSQVTSQTTWRR 0.9942292571 0.77

4OAJ-A PpC_4OAJ-A_5 MSKGLFMAAVPSLAS 0.9937303662 0.30

4OAJ-A PpC_4OAJ-A_6 MKESDVVWPRLPLLH 0.9924523234 0.29

4OAJ-A PpC_4OAJ-A_7 MLPAPQPPLPYGSDGS 0.992174983 0.28

4OAJ-A PpC_4OAJ-A_8 MQPLPQPLLPYSSGGS 0.9920607805 0.30

4OAJ-A PpC_4OAJ-A_9 MWEQAPPPPPWPPRP -0.8082128167 0.20

4OAJ-A PpC_4OAJ-A_10 AADEKEHKENKEEDHG -0.7744987607 0.33

4OAJ-A PpC_4OAJ-A_11 KAKEEKDEEQAKCQMEDA -0.7654567361 0.40

4OAJ-A PpC_4OAJ-A_12 MAAEEEKKDEKQLADSAA -0.7598571777 0.58

4OAJ-A PpC_4OAJ-A_13 CCNPNPCPWRCSAAEGL N/A 0.61

4OAJ-A PpC_4OAJ-A_14 EHQGQLDEIEKNPAHLDI N/A 0.49

4OAJ-A PpC_4OAJ-A_15 PCYIPADPLRWYKPI N/A 0.31

4OAJ-A PpC_4OAJ-A_16 MRACPQKPCYRRRRGP N/A 0.27

4OAJ-A PpC_4OAJ-A_17 VVTAQGVYELQHDDTD N/A 0.31

4OAJ-A PpC_4OAJ-A_18 GPAGEEGKRGARGERGDP N/A 0.27

4OAJ-A PpC_4OAJ-A_19 MPVGMANFNHEPNTD N/A 0.72

4CIM-B 4CIM-Q AADPLGQALRAIGDEFETRFR N/A 0.94

4CIM-B PpC_4CIM-B_1 QEMRKSECLRILDEHGR 0.983576715 0.41

4CIM-B PpC_4CIM-B_2 LALETLRRVGDGVQRIHD 0.9821183085 0.81

4CIM-B PpC_4CIM-B_3 LGEIDQELYKVVMYGEK 0.9809831977 0.35

4CIM-B PpC_4CIM-B_4 GITPIKEMGREIHEILR 0.9802325964 0.86

4CIM-B PpC_4CIM-B_5 GRYIHDGLIYEMGKRLIA 0.9797714353 0.37

4CIM-B PpC_4CIM-B_6 VGLGVIDYLRRIGDQDK 0.9785536528 0.65

4CIM-B PpC_4CIM-B_7 QIEYLAKQIVDNAIQQAK 0.9777933359 0.58

4CIM-B PpC_4CIM-B_8 RIEQEYETQWDNIIDQAK 0.9769710302 0.39

4CIM-B PpC_4CIM-B_9 LEGDHGSSGGNCSTPAI -0.6792706251 0.33

4CIM-B PpC_4CIM-B_10 MVTIMTVSNNASTTYKDK -0.6757205129 0.38

4CIM-B PpC_4CIM-B_11 TSPSYNPSCASYSSTSPR -0.6677196622 0.53

4CIM-B PpC_4CIM-B_12 MRYSAVYSSHPSSCGI -0.6657535434 0.8

4CIM-B PpC_4CIM-B_13 CCNPNPCPWRCSAAEGL N/A 0.51



4CIM-B PpC_4CIM-B_14 EHQGQLDEIEKNPAHLDI N/A 0.48

4CIM-B PpC_4CIM-B_15 PCYIPADPLRWYKPI N/A 0.46

4CIM-B PpC_4CIM-B_16 MRACPQKPCYRRRRGP N/A 0.33

4CIM-B PpC_4CIM-B_17 VVTAQGVYELQHDDTD N/A 0.35

4CIM-B PpC_4CIM-B_18 GPAGEEGKRGARGERGDP N/A 0.41

4CIM-B PpC_4CIM-B_19 MPVGMANFNHEPNTD N/A 0.55

3KF9-A 3KF9-B KRRWKKNFIAVSAANRFKKISS N/A 0.91

3KF9-A PpC_3KF9-A_1 KNRLQSLWMRLVKDFRL 0.9439585805 0.85

3KF9-A PpC_3KF9-A_2 KQKLILAERKRKLNTWML 0.9421902895 0.73

3KF9-A PpC_3KF9-A_3 MSKPKMPGHELIRRVIRR 0.9403369427 0.6

3KF9-A PpC_3KF9-A_4 MTYADAIASGREDRRSAI 0.9389324784 0.37

3KF9-A PpC_3KF9-A_5 MLEELREKQELIREKSNK 0.9374441504 0.32

3KF9-A PpC_3KF9-A_6 MLKLLKEVRVLLGRGQ 0.9370013475 0.47

3KF9-A PpC_3KF9-A_7 MRTRLKAAALERLAAR 0.9367336035 0.46

3KF9-A PpC_3KF9-A_8 KLDKKLVEINLRKSPEE 0.9363824129 0.5

3KF9-A PpC_3KF9-A_9 ADRCNNKQELKLVPA -0.9044314623 0.37

3KF9-A PpC_3KF9-A_10, HKQCAKLDRPGYNRP -0.896143198 0.42

3KF9-A PpC_3KF9-A_11 MELNNLLDGGAVAAP -0.8870944381 0.55

3KF9-A PpC_3KF9-A_12 MEDIGILNGAAVPAK -0.8820631504 0.42

3KF9-A PpC_3KF9-A_13 CCNPNPCPWRCSAAEGL N/A 0.46

3KF9-A PpC_3KF9-A_14 EHQGQLDEIEKNPAHLDI N/A 0.33

3KF9-A PpC_3KF9-A_15 PCYIPADPLRWYKPI N/A 0.28

3KF9-A PpC_3KF9-A_16 MRACPQKPCYRRRRGP N/A 0.28

3KF9-A PpC_3KF9-A_17 VVTAQGVYELQHDDTD N/A 0.35

3KF9-A PpC_3KF9-A_18 GPAGEEGKRGARGERGDP N/A 0.11

3KF9-A PpC_3KF9-A_19 MPVGMANFNHEPNTD N/A 0.4

6SEN-A 6SEN-L XVPMRKRQLPASFWEEPX N/A 0.94

6SEN-A PpC_6SEN-A_1 SEKEYVEMLDFLESKLG 0.9829846621 0.87

6SEN-A PpC_6SEN-A_2 EGDAMFRLGTDWPELHDR 0.9790226221 0.36

6SEN-A PpC_6SEN-A_3 DLLDNMPNTVCPISKSI 0.9768525958 0.35

6SEN-A PpC_6SEN-A_4 KRMRKTYNYVLLEKM 0.9756338 0.31

6SEN-A PpC_6SEN-A_5 RYETKQIRRFLRIDL 0.9753730297 0.36



6SEN-A PpC_6SEN-A_6 MSDKEYVEKLDRLYHKLQ 0.9751641154 0.34

6SEN-A PpC_6SEN-A_7 MRLYKLVEMFMDPKGK 0.9750229716 0.65

6SEN-A PpC_6SEN-A_8 MIEALRKQSLYLKFDPLL 0.9734063745 0.66

6SEN-A PpC_6SEN-A_9 TDCALFIAWWNLVRQKLD -0.8822892904 0.44

6SEN-A PpC_6SEN-A_10, ETLWATREVDVLDISYER -0.8517132401 0.35

6SEN-A PpC_6SEN-A_11 KTDFKVRLEEQYDIRFR -0.851116538 0.29

6SEN-A PpC_6SEN-A_12 ATFHDALPITLCDVQGLE -0.823202908 0.33

6SEN-A PpC_6SEN-A_13 CCNPNPCPWRCSAAEGL N/A 0.51

6SEN-A PpC_6SEN-A_14 EHQGQLDEIEKNPAHLDI N/A 0.48

6SEN-A PpC_6SEN-A_15 PCYIPADPLRWYKPI N/A 0.34

6SEN-A PpC_6SEN-A_16 MRACPQKPCYRRRRGP N/A 0.31

6SEN-A PpC_6SEN-A_17 VVTAQGVYELQHDDTD N/A 0.29

6SEN-A PpC_6SEN-A_18 GPAGEEGKRGARGERGDP N/A 0.35

6SEN-A PpC_6SEN-A_19 MPVGMANFNHEPNTD N/A 0.32



Supplementary Table 3. Peptide sequences and PPL scores for uAb generation and experimental testing.

Target UniProt ID uAb Name Peptide Sequence PPL

β-catenin P35222 pMLM_beta-catenin_1 KKALQL 4.541961

β-catenin P35222 pMLM_beta-catenin_2 GKTFQV 5.699396

β-catenin P35222 pMLM_beta-catenin_3 GKALQV 4.793907

β-catenin P35222 pMLM_beta-catenin_4 KATLKL 5.595168

EIF4EBP2 Q13542 pMLM_EIF4EBP2_1 DSTIVVQTK 5.365092

EIF4EBP2 Q13542 pMLM_EIF4EBP2_2 DSSIVVQTP 6.203168

EIF4EBP2 Q13542 pMLM_EIF4EBP2_3 ESTIVVTTP 6.035627

EIF4EBP2 Q13542 pMLM_EIF4EBP2_4 DDTLVVTTP 6.283843

H3 P68431 pMLM_H3_1 DEDY 2.653573

H3 P68431 pMLM_H3_2 DEEY 3.240149


