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Abstract

Visuospatial attention produces myriad effects on the activity and selectivity of cortical neurons. Spiking neuron models
capable of reproducing a wide variety of these effects remain elusive. We present a model called the Attentional Routing
Circuit (ARC) that provides a mechanistic description of selective attentional processing in cortex. The model is described
mathematically and implemented at the level of individual spiking neurons, with the computations for performing selective
attentional processing being mapped to specific neuron types and laminar circuitry. The model is used to simulate three
studies of attention in macaque, and is shown to quantitatively match several observed forms of attentional modulation.
Specifically, ARC demonstrates that with shifts of spatial attention, neurons may exhibit shifting and shrinking of receptive
fields; increases in responses without changes in selectivity for non-spatial features (i.e. response gain), and; that the effect
on contrast-response functions is better explained as a response-gain effect than as contrast-gain. Unlike past models, ARC
embodies a single mechanism that unifies the above forms of attentional modulation, is consistent with a wide array of
available data, and makes several specific and quantifiable predictions.
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Introduction

Several decades of physiology, imaging and psychophysics

research on attention have generated an enormous amount of data

describing myriad forms of attentional influence [1–5]. A similar

breadth of theoretical models have been proposed that attempt to

explain these effects in varying amounts of detail [3,6–10].

However, models that simultaneously are able to reproduce

attentional effects from multiple studies, and that provide a

neurally detailed mechanism are rare. Consequently, there

remains a need for neurally detailed mechanistic models, especially

those which provide experimentally testable predictions. The work

presented here aims to identify principles that underlie selective

attentional processing in cortex, and that are consistent with a

wide variety of neuroanatomical and neurophysiological con-

straints. Specifically, we describe a functional mechanism for

attentional routing in a large-scale hierarchical model, and

demonstrate the biological plausibility of the model by presenting

a spiking neuron implementation that accounts for five forms of

attentional effect. Specifically, we demonstrate that the model

exhibits shrinking and shifting, but not amplitude changes of

spatial receptive field (RF) profiles; an increase of tuning curve

gain without sharpening; and response gain effects in neuronal

contrast-response functions.

Several attempts have been made to explain multiple and

seemingly disparate forms of attentional modulation in a single

model, but each has significant limitations. The model presented

here, the Attentional Routing Circuit (ARC) overcomes limitations

of past models by providing a unified explanation of this set of

attentional effects, by being implemented in spiking neurons, by

defining the relationship of attentional modulation across multiple

cortical areas, by quantitatively comparing the model to physio-

logical data, and by making several detailed testable predictions.

The ARC is fully implemented in spiking neurons and specifies

how top-down feedback signals can be used to perform selective

routing of attended visual stimuli in cortex. The model defines this

process at multiple levels of abstraction, from a large scale network

comprising multiple hierarchical cortical areas, to the laminar

microcircuitry of cortical columns, and to the attentional

modulation of single cells.

Materials and Methods

We begin by describing, at the local level, a prototypical cortical

circuit for attentional routing in the ARC. The basic organiza-

tional unit used in the ARC is the cortical column, which we use to

refer to an assembly of neurons spanning the six laminae, and

located within close spatial proximity. Our usage of the cortical

column is for organizational convenience, and does not rely on

such columns having specific boundaries (c.f. [11,12]). Rather,

functionality can vary smoothly across columns having more

gradual horizontal boundaries. The model assumes that the

mechanisms for selective routing are the same for all columns in all

levels of the visual hierarchy. Thus, at the global or network level,

the control of selective attentional routing is governed by all

columns using a common cortical algorithm where, in aggregate,
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the individual columns all contribute to routing the target, as

specified by the global control signal. The global layout of these

columns for the ventral visual pathway is depicted in Figure 1.

The ARC divides the laminar anatomical distinctions along

functional lines as well [13,14]. The ARC proposes that neurons in

layers-V and -VI compute local control signals, while neurons in

layer-IV are involved in the selective gating of inputs based on

control signals from the deep layers, and neurons in layer-II/III

process the gated visual signals. The proposed physical and

functional organization of neurons in each cortical layer for a

single column is shown in Figure 2. Although other plausible

variations to this mapping may be found, this arrangement is

consistent with the most salient and well documented inter-

laminar connections [15–18], and requires minimal control

neurons and wiring. Ascribing a particular function to neurons

in a cortical layer places constraints on the possible computations

that may be performed due to the anatomical connectivity and

neuronal density of that layer. At a minimum, it permits assessing

the plausibility of the proposed functions being performed in

actual cortical circuits, by ensuring that the number of neurons

required by the model does not obviously exceed the number

found in the corresponding cortical area.

The ARC seeks to minimize the neuronal requirements for

routing in terms of the number of neurons and the length of their

axonal and dendritic processes, by having neural populations that

compute local control signals for all visually responsive neurons in

their column. The proposed arrangement permits the model to be

scaled to have significantly more neurons in each column that

encode a variety of visual features and receive feedforward inputs

from a spatially broad set of columns, while requiring a reasonably

small number of control calculations.

Computing Global Feedback
We now describe the network and methods for performing

selective attentional routing in cortex. We then briefly define the

methods for computing connection strengths for nonlinear

functions using the Neural Engineering Framework (NEF). We

will present the computations and connections of ARC by

describing and directly mapping them to their cortical counter-

parts. A central assumption of ARC that is shared with several

other models [6,10,14,19], is that the mechanisms by which

attentional routing is performed in cortex are consistent across

areas in the ventral and dorsal visual hierarchies. For example,

although cells in V4 and MT are selective for different stimuli,

they share many structural and morphological properties

[12,20,21], and ARC proposes that the mechanisms and

computations used for attentional routing of attended stimuli are

consistent between these areas.

Within each column, we distinguish two functional classes of

neurons: visually responsive neurons and control neurons. Layer-

II/III contains visually responsive neurons that encode visual

Figure 1. General architecture of the ARC. Each level has a columnar and retinotopic organization, where columns (large circles) are composed
of visually responsive neurons (not individually depicted) and control neurons (small circles). Large filled circles indicate columns representing an
example attentional target. Each column receives feedforward visual signals (gray lines) and a local attentional control signal from control neurons
(dashed lines), and these signals interact nonlinearly in the terminal dendrites of pyramidal cells (square boxes). The application of this architecture to
ventral stream processing is shown here. Global control signals from pulvinar are projected to PIT and then fed back to control neurons in lower
levels. Connectivity is highlighted for the rightmost columns only, although other columns in each level have similar connectivity.
doi:10.1371/journal.pcbi.1003577.g001

Author Summary

At a given moment, a tremendous amount of visual
information falls on the retinae, far more than the brain is
capable of processing. By directing attention to a spatial
location, stimuli at that position can be selectively
processed, while irrelevant information from non-attended
locations can be largely ignored. We present a detailed
model that describes the mechanisms by which visual
spatial attention may be implemented in the brain. Using
this model, we simulated three previous studies of spatial
attention in primates, and analysed the simulation data
using the same methods as in the original experiments.
Across these simulations, and without altering model
parameters, our model produces results that are statisti-
cally indistinguishable from those recorded in primates.
Unlike previous work, our model provides greater biolog-
ical detail of how the brain performs selective visual
processing, while also accurately demonstrating numerous
forms of selective attention. Our results suggest that these
seemingly different forms of attentional effects may result
from a single mechanism for selectively processing
attended stimuli.

Selective Attentional Processing in Cortex
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stimuli, while visually responsive cells in layer-IV having nonlinear

dendrites gate feedforward visual signals based on local control

signals (see Figure 2). Layers-V and VI contain control neurons

that compute and relay local control signals.

All neurons are modelled as LIF neurons [22], with refractory

periods of 2 ms, membrane time constants of 20 ms, and

maximum firing rates drawn from a uniform distribution in the

range [90, 120] Hz. For simplicity, neurons are responsive to a

single dimension for contrast, although including responsiveness to

additional feature dimensions is straightforward and does not

affect the model’s principles. However, it will increase the number

of neurons needed to reproduce the simulations described here.

The following equations define the computations for performing

selective routing between V4 and PIT, although identical

equations define all transformations between every other set of

adjacent levels in the circuit.

Selective routing in the ARC begins when pulvinar projects a

global control signal that coarsely encodes the size and position of

the attentional target (Tlen and Tpos) to cortical control neurons in

the top level of the hierarchy (PIT; see Figure 2). These pulvinar-

cortical projections utilize only a fraction of pulvinar connectivity

and computational capacity, and thus do not preclude its

involvement in other processes. The global control signal is

defined in terms of the number of V1 columns that the target

spans and its position with respect to the fovea. These global

control signals (Tlen and Tpos) specify the size and position of the

target for the entire network. Local control signals, satt and m are

computed based on the global control signals, and specify the

width and centre of the local Gaussian routing function for

individual columns. That is, global control signals are specified in

retinotopic coordinates and describe the spatial properties of the

entire object being attended, whereas the local control signals are

defined in terms of their RF position, and guide the routing of a

local portion of the attended object.

Feedback projections from higher cortical areas terminate in

layer-I upon the apical dendrites of layer-V intrinsically bursting

(IB) pyramidal cells that receive the global control signal Tlen. Such

neurons have large cell bodies and long apical dendrites that

spread widely in layer-I, providing them with access to the broadly

distributed signals from the area above [16,18]. These neurons

relay Tlen to dendrites in layer-I of the preceding area in the

hierarchy [15] and to the dendrites of nearby layer-VI pyramidal

cells in the same column [17].

The control neurons in layer-V of PIT first determine the size of

the target’s representation in V4. If the target’s size in V1 (Tlen) is

larger than the number of columns in V4 (sizeV4), then its

Figure 2. Laminar circuitry of attentional control in the ARC for a single column. Global attention signals that include the size (Tlen),
position (Tpos) and center of mass (h) are fed back from the next higher cortical level to layer-I where they ramify on apical dendrites of layer-V cells
(see Equations 1–5). Layer-V neurons relay this signal to the next lower area with collaterals projecting to control neurons in layer-VI of that column
where a sampling factor (sf ) and relative shift (rs) are computed (see Equations 1 and 4 respectively). These signals, along with feedforward visual
signals carrying image information bxjxj are received by layer-IV pyramidal cells where the routing function is computed in the dendrites and multiplied
with bxjxj . Cells in layer-II/III pool the activity of multiple layer-IV neurons and project the gated signal to the next higher level. See text for additional
details.
doi:10.1371/journal.pcbi.1003577.g002
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representation will span all columns in V4. Otherwise, the target’s

size in V1 will be maintained in V4. Typically the number of V4

columns encoding the target will exceed the total number of PIT

columns (sizePIT ), requiring its representation to be reduced

between V4 and PIT. This is accomplished by having each PIT

column selectively process information from V4 columns separat-

ed by a "sampling factor’’ sf :

sf ~
min(max(Tlen,sizePIT ),sizeV4){1

sizePIT{1
, ð1Þ

where sizePIT and sizeV4 are constant. The synaptic weights

between the layer-V and layer-VI neurons approximate the

function for computing sf (Equation 1). In short, these control

neurons determine an appropriate sampling factor for fitting the

target in V1 into PIT, via V4. The sampling factor, sf attempts to

minimize the loss of information by having as many columns

encode information from the target as possible, but not more than

encode the target in V1 (i.e. the target size, Tlen).

Other layer-V neurons with dendritic arbours in layer-I receive

feedback projections that encode Tpos and hV4. Here, hV4

represents the centre of mass of the target’s representation in

V4. These layer-V neurons have similar laminar connectivity to

those receiving Tlen, but instead use the global control signal Tpos

to compute the relative shift (rs) of the target’s representation from

the preceding level. Due to cortical magnification, wherein a

significantly greater proportion of neurons respond to foveal

stimuli than to peripheral stimuli [23], this calculation seeks to

have the target’s representation (hV4) as close to the centre of the

level as possible:

hV4~
0 if Tpos ƒ mPIT

Tpos{(sign(Tpos)|mPIT ) otherwise

�
ð2Þ

mPIT~(aPIT{1)=2zmV4 ð3Þ

where sign(Tpos)~1 if the target is in the right hemifield (Tpos§0)

and -1 otherwise, mPIT represents the maximum shift that can

occur for columns in PIT, and aPIT is the number of afferent V4

columns providing input to each PIT column. For a given network

architecture, m is constant in each level, and is defined as the sum

of half of the RF size for cells in that column ((a{1)=2) and the

maximum shift of the level below. Shifting the target’s represen-

tation to the centre of each level takes advantage of the Gaussian

sensitivity profile of visual cortical neurons [6], which is

particularly important for the large receptive fields in higher

cortical areas.

Having computed the position of the target’s representation in

V4 (hV4) and assuming an object-centred reference frame in PIT

(hPIT~0), the number of columns by which the centre of the

target’s representation is shifted between V4 and PIT is the

difference between the centre of the target’s representation in V4

and in PIT:

rsPIT~hV4{hPIT : ð4Þ

We note that the computations thus far are not unique to

particular columns in an area, but rather are the same values

throughout the level. The values for the sampling factor (sf ), target

position (h) and relative shift from the level below (rs) are the same

in all columns in the level. Although we have described these

calculations as being performed within each column, the strong

lateral connectivity of layer-V neurons [18] may allow the

calculations to be performed in a distributed and less redundant

manner, thereby requiring fewer total neurons to be involved.

Default and Selective Routing
Both hV4 and the global control signals Tlen and Tpos are fed

back from the layer-V cells in PIT to layer-I in V4. Depending on

the target’s size and position however, only some V4 columns will

switch from their default routing state to a selective routing state in

which they process the target. To determine the routing state for

neurons in a given column, each V4 column receiving the

feedback signals computes:

routing(xj)~

selective if Tlen w sizeV4 ,or

hV4{
Tlen{1

2
wxj whV4z

Tlen{1

2

default otherwise,

8><>: ð5Þ

where xj is the jth input column in the previous level (with x0 being

at the fovea and negative values being in the left hemifield) and

selective indicates that the column will perform selective routing.

V4 columns that are not selectively routing the target remain in

their default routing state, and the global attention signals are

blocked before they can influence the activity of that column or be

fed back to V2. In short, a given V4 column will perform selective

routing if the target spans more V1 columns (Tlen) than the number

of V4 columns (i.e. all columns in V4 will encode the target), or if

its position is within (Tlen{1)=2 columns of the target’s centre in

V4 (hV4).

Computing Local Control Signals
The control neurons involved in computing Equations 1 and 4

project sfPIT and rsPIT to visually responsive layer-IV neurons in

their column. The layer-IV neurons are modelled using a 2-layer

neuron model with nonlinear dendrites [25], where each layer-IV

neuron receives inputs from a single column in the preceding level.

Pyramidal cells with nonlinear dendrites have been found in

neocortex and hippocampus [26–29], and based on the morpho-

logical and electrochemical similarities of those cells and pyrami-

dal cells in visual cortex, it is proposed that such neurons may also

be found in visual cortex. Neurons with dendritic nonlinearities

offer a significant computational advantage over classical point

neuron models, since, in addition to the standard axosomatic

nonlinearity, they may also compute a second nonlinear function

of their inputs in the dendrites, thereby offering processing

capabilities similar to a two-layer artificial neural network [25]. As

a result, the number of neurons needed in each level is much less

than if linear dendrites are assumed. ARC’s dendritic integration

of feedback signals is highly consistent with the hypothesized

backpropagation activated calcium (BAC) spike firing. BAC firing

allows individual cortical pyramidal neurons process two individ-

ual information streams independently, then combine the

processed information to significantly increase their computational

power [30].

To reduce the computational demands of control neurons, the

ARC attempts to minimize the number of highly nonlinear

functions, as such functions tend to require more neurons in order

to be computed accurately. Further, in computing local control

signals, the linearly separable parts of the routing function are

distributed across different groups of neurons, allowing each

ensemble to compute a more tractable function. Combining these

components of the routing function together in the dendrites yields

the same result, while significantly reducing the neuronal

Selective Attentional Processing in Cortex
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requirements. To quantify the efficiency improvements of such an

approach, we found that dendritic nonlinearities can be exploited

to perform selective routing, with a decrease in the number of cells

needed by a factor of *5 as compared with a linear dendrite

model (see [31] for details).

The synaptic weights of the layer-IV nonlinear dendritic

subunits serve to approximate the routing function and determine

the RF location from which visual signals should be selectively

processed:

mi~sf |izrsPIT : ð6Þ

This value mi specifies the centre of the Gaussian-shaped routing

function defined over the RF of neurons in column i in PIT and

serves to modulate the gain of visual signals from input columns

throughout its RF according to the routing function:

f (mi,xj)~e

{(mi{xj )2

2s2
att ,

ð7Þ

where, as before, xj is a constant representing the spatial

position of the jth input column in V4 (Figure 3). That is, mi

specifies the location within the cell’s RF from which it should

selectively route information without attenuation, while stimuli

elsewhere in the RF are attenuated proportional to their distance

from mi.

If the number of V4 columns encoding the target exceeds the

total number of PIT columns, sf w1, then some V4 columns that

encode the target could be skipped over, and their visual

information may not be processed in PIT. To minimize the loss

of information from the target in such cases, the width of the

routing function, satt, is adjusted to cover such columns by

dividing sf by the full width at half maximum:

satt~sf =2:35: ð8Þ

With the routing function computed in the dendrites, the

product of f (m,xj) and bxjxj is then computed using the second

nonlinearity, where bxjxj is the signal carried by neurons in column

xj . The gated visual signals are projected to neurons in layer-II/

III, which pool gated visual signals from other layer-IV neurons

within their column. Cells in layer-II/III are thus primarily

encoding part of the target and can project this as feedforward

visual information to layer-IV cells in the next higher cortical area

[17].

The entire ARC model (Figure 1) uses these computations

between each level in an identical manner. However, the

underlying neurons implementing these computations are ran-

domly chosen from distributions reflecting the variety of neuro-

physiological properties found in visual cortex. Consequently, the

responses of the specific cells in a model vary in a biologically

plausible manner. In addition, neurons and neural ensembles in

each area are responding to and encoding different attributes of

sensory information. However, we emphasize that in simulating

different areas, (e.g. V4 vs MT), no changes are required to the

mechanisms used to perform selective routing, but only to the

distributions from which the cells preferred stimuli are drawn (e.g.

orientation vs motion direction). The simulations in this article

employ 1400 spiking neurons per column to compute all of the

described functions. As noted earlier, including cells selective to

more complex stimuli does not increase the number of control

neurons needed. As a result, the model is expected to scale well,

which we will examine in more detail in future work.

Neural Engineering Framework
The Neural Engineering Framework (NEF) [32] is used to

implement the signal processing described in Figure 2 in spiking

neurons. This framework has been used to model a wide variety of

neural circuits, including what is currently the largest available

functional brain model [33]. The NEF allows the mathematical

description of a dynamical system to be translated to a spiking

neuron model [34–36]. Details of this procedure and the

framework can be found in [31,32,37]. Here, we describe how

the NEF can be used to analytically derive the connection

strengths between populations that approximate the functions

necessary for attentional routing.

The first principle of the Neural Engineering Framework (NEF)

[32] is that the activity of a neural population "represents’’

information in an underlying vector space. Specifically, the neural

representation of the vector space is defined by the combination of

nonlinear encoding (e.g. neuron tuning curves and spiking) and

weighted linear decoding over neural populations and time. The

tuning curve determines the cell’s encoding of the vector space and

may be expressed as

ai(x)~Gi aiSx:~wwiTnzJbias
i

h i
zgi(t), ð9Þ

where ai is gain, x is the vector space, ~wwi is the preferred direction

vector, Jbias
i is the bias term corresponding to background activity,

S:T is the inner product of the n dimensional vectors, Gi is the

output nonlinearity that transforms somatic current to spiking

activity, and g is a noise term. In all of the simulations presented in

this article, Gi represents the standard leaky integrate-and-fire

(LIF) nonlinearity [22], although other neuron models may be

Figure 3. Selective routing for a single PIT column. The Gaussian
routing function f (mi ,xj) is centred on input column xj~0 (mi~0), and
control neurons in the PIT column project the local control signal to the
dendritic subunits of layer-IV neurons in that column. The gain of visual
signals from each column is scaled by the corresponding value
produced by the routing function.
doi:10.1371/journal.pcbi.1003577.g003
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used. The LIF neuron model is used as it provides a suitable trade-

off between biological realism and computational efficiency. The

particular choice of neuron model that is used (e.g. adapting-LIF,

Hodgkin-Huxley, etc.), does not affect the principles of the NEF.

Nor does it influence the neural coding in the model, as the NEF

does not depend on how the spikes are generated, but only on the

statistics of the spike generation [32, pp. 89]. Thus, future work

may replace the LIF neurons presently used with a more

biologically detailed neuron model to investigate issues related to

spike timing, synchrony, and oscillations.

The output activity ai(x) represents the neural response in terms of

firing patterns, and this value is greatest when the input x is aligned

with the neuron’s preferred direction vector, ~wwi. With spiking neurons,

the activity of neuron i is defined as a sum of action potentials:

ai(x,t)~
P

n

d(t{tin), ð10Þ

where d is an impulse representing a spike, t represents time, and tin is

the time of the nth spike produced by neuron i.

Decoding in the NEF is a linear operation, determined as a

weighted sum of the neuronal activity:

x̂x~
P

i

ai(x)wi, ð11Þ

where wi is the decoding vector and x̂x is the decoded estimate of x.

To analytically derive the decoding vectors wi, we minimize the

error between the decoded estimate and the actual value of x as:

E ~
1

2

ð1

{1

x{
XN

i~1

ai(x)wi

" #2

dx

~
1

2
S x{

XN

i~1

ai(x)wi

" #2

T
x
,

ð12Þ

where S:Tx is the integral over x. Solving for the decoders wi gives:

w~C{1U ð13Þ

Cij~Sai(x)aj(x)Tx ð14Þ

Uj~Saj(x)xTx ð15Þ

The temporal decoding of the neural spikes is mapped to the

post-synaptic temporal responses of receiving cells as captured by

the post-synaptic current (PSC). For present purposes, the PSC is

modeled as a decaying exponential with a time constant

determined by the receptors at the relevant synapse, i.e.,

ai(t)~
X

n

h(t) � d(t{tin) ð16Þ

~
X

n

h(t{tin) ð17Þ

where h(t)~e{t=tPSC . Consequently, the overall population

temporal decoder for NEF representation is:

x̂x~
X
i,n

ai(x,t)wi(t) ð18Þ

where wi(t)~wih(t), and ai is defined by Equation 10.

Using this characterization of representation, we can directly

compute the connection weights of a communication channel

between presynaptic neuron i in population A and postsynaptic

neuron j in population B by computing the product of their

encoding and decoding vectors, scaled by a gain term:

vij~ajS~wwjwiTn
, ð19Þ

where ~wwj is the encoding vector of neuron j specifying its preferred

direction, wi is the decoding vector of neuron ai and aj is the gain.

These weights are found by substituting the decoding equation

(Equation 11) into the encoding equation for population B

(Equation 9). Thus, the activity of post synaptic neuron bj is

found as:

bj(x)~Gj

PN
i~1

vijai(x)zJbias
j

� �
: ð20Þ

A communication channel is equivalent to computing the

identity function between populations A and B. This same method

can be extended to computing an arbitrary function f (x) between

these populations, as described by the second principle of the NEF.

Specifically, the same methods for deriving the decoders wj for a

communication channel can be used to find the decoders wf (x)
by

substituting f (x) for x in Equation 12. Substituting these decoders

into Equation 19 then provides the weights for approximating the

function f (x) in the computation that occurs between populations

A and B. The third principle of the NEF, describing the

implementation of arbitrary dynamical systems in spiking circuits,

is not used in this work, and so not described here.

Results

To assess the plausibility and accuracy of the model, we use it to

directly simulate electrophysiological studies. After showing that

the model captures the experimental data, we then provide several

experimentally testable predictions that, when tested, will either

either validate the model, or highlight where it is wrong and needs

to be adjusted.

Each of the three studies simulated here describes seemingly

different forms of attentional modulation, although the ARC is

able to reproduce each effect using the same neural mechanism for

selective routing. That each of these effects can be demonstrated

using the same routing mechanisms in a biologically detailed

model, and without adjusting parameters, suggests that the

ostensibly different forms of modulation may in fact be a

consequence of a common underlying routing principle.

Attentional Effects on Receptive Field Profiles
Womelsdorf et al. [3] measured receptive field (RF) profiles in

macaque area MT while two random dot pattern (RDP) stimuli

were presented in the RF (S1 and S2), and one RDP stimulus was

outside the RF (S3). While maintaining fixation, one of the three

RDP stimuli was cued, and the animal covertly attended the cued

stimulus to detect a transient change in motion direction (see

Figure 4). For each attentional condition, higher contrast probe

Selective Attentional Processing in Cortex
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stimuli were presented in and around the RF and responses to the

probes were fit with a Gaussian to construct a RF profile. They

found that attending to a RF target resulted in the Gaussian RF

peak shifting toward the target, while the width shrunk, without

any significant change in peak activity.

The experiment was simulated using the ARC as shown in

Figure 5. This implementation can be thought of as part of the

large-scale ARC (Figure 1), demonstrating how selective routing

may be performed between two adjacent cortical areas. We

described the ARC in the context of the ventral stream to indicate

its application to a multi-level hierarchy, and here we apply it to a

single level in the dorsal stream to address the available empirical

evidence. As noted earlier, in spatial attention tasks, the

mechanisms for routing in ARC are the same in MT and V4,

although the preferred stimuli of cells in those areas are drawn

from different distributions. The two level network used to

simulate this and all subsequent experiments is composed of a

single MT column containing 100 layer-VI control neurons, 100

layer-II/III neurons, and 9|50 layer-IV pyramidal neurons each

having 30 nonlinear dendritic subunits. The RF of cells in the MT

column covers nine V1 columns containing 100 layer-II/III

neurons that provide feedforward visual signals. Connection

strengths between V1 and MT are set with a Gaussian profile

with mv~0 and sv~1 (see Materials and Methods).

Layer-II/III MT neurons have maximum firing rates drawn

from a uniform distribution in the range [90, 120] Hz, and

respond more strongly to higher contrast stimuli. 100 cortical

control neurons in MT also project to the terminal dendrites of

layer-IV MT cells, a local control signal that indicates the target’s

position within the RF (m). In the dendrites of the layer-IV MT

pyramidal cells, the feedforward visual signals (bxjxj ) and local control

signal (m) interact according to Equation 7. Layer-IV neurons then

project the gated visual signals to 100 layer-II/III pyramidal cells,

from which the spiking activity was recorded and used for analysis.

For space reasons, we limit our analysis to only the layer-II/III

neurons, and will investigate cells in other layers in future work.

The input to the MT column are visual stimuli from V1 and a

top-down spatial attentional signal presented to the control

neurons (capturing the cuing of attention in the experiment).

The attentional signal specifies only the target’s centre of mass and

width. Two non-preferred reference stimuli with a contrast of 0.25

from the range [0, 1] were positioned at identical eccentricity in

the RF, with all other inputs set to zero. Preferred probe stimuli

with a contrast of 0.5 were then presented at each of the seven

remaining V1 columns while the activity of all 100 layer-II/III

MT neurons was recorded. The local control signal focused

attention on the left stimulus (S1; m~{0:75) or right stimulus (S2;

m~0:75; Figure 5). For the "attend-out’’ condition, the attentional

control signal for the MT column is set to m~0 (S3). In [3], the

peak of the RF in the attend-out condition occurs at a point that is

approximately equidistant between S1 and S2. Directing attention

to S3 corresponds to neurons operating in a default routing state

where the width of the routing function (Equation 7) is set to

satt~1, while for the attend-in conditions, satt is set to 0.75. The

value for satt in the attend-in condition was not selected by

parameter fitting, but rather as being a number smaller than in the

default routing/attend-out conditions. To further underscore that

the model does not depend on particular parameter values, these

same parameter values are used for the simulations of all three

studies presented here.

Following the same analysis methods used in [3], the average

response to each of the seven probes was calculated with the

baseline activity subtracted, and these data were fit by a Gaussian.

All analysis of effects are identical to those in [3].

For statistical power and to demonstrate the robustness of the

general architecture, 100 different simulated monkeys were used.

Here, we use the term "simulated monkey’’ to refer to a single

instantiation of the ARC model in the NEF. This term allows us to

distinguish the ARC in general, from a single instance of the ARC

that has particular neuronal ensembles and connectivity. Param-

eters describing neuron tuning curves were randomly selected for

each simulated monkey according to the distributions described in

Materials and Methods; consequently, the connection weights for

each simulated monkey are different. The data were bootstrapped

(n~3000), and used to compute 95% confidence intervals for each

test.

Across the 100 simulated monkeys, on average, 30.34 of 100

neurons were discarded using the same criterion as in [3]. Of the

remaining neurons, the median r2 value of the fit was 96.43%.

Following Womelsdorf et al. [3], neurons having an r2 value from

the Gaussian fit greater than the median for all three attentional

conditions are referred to as "selected pairs.’’ When all neuron

pairs are examined, we refer to this as the entire sample.

The first attentional effect examined is a change in RF

amplitude, calculated as (
in{out

out
), where in and out are the gain

terms from the RF fits of the attend-in and attend-out conditions

respectively. The distribution of activity changes for individual

neurons was highly non-normal for both the selected pairs and

entire sample (pv0:001, Jarque-Berra test), so the data were

aggregated by taking the mean amplitude changes from each

simulated monkey. The change in amplitude for the entire sample

was non-significant (pw0:001, one sample t-test, n~200), with an

mean change of 20.343% (CI = [21.485%, 0.797%]). The

change for the selected pairs was also non-significant (pw0:001,

one sample t-test, n~200), with a mean of 20.583% (CI =

[21.733%, 0.577%]). Both values from the simulations overlap

with the 95% confidence intervals of the experimental data, and

cannot be statistically distinguished. Consequently, the model

shows the same lack of change in RF amplitude.

We then measured RF shift as (xattended
R {xR)=(xAtt{xR),

where xattended
R is the mean of the Gaussian fit with attention

directed to a RF stimulus, xR is the mean of the Gaussian fit in the

attend-out condition, and xAtt is the position of the local control

signal, m. As with the amplitude change, the data were not

normally distributed (pv0:001, Jarque-Berra test). Using the

aggregated mean change in RF position from the entire sample

showed a statistically significant shift (pv0:001, one sample t-test,

n~200), with a mean of 33.231% (95% CI = [32.864%,

33.620%]). The RFs of the selected pairs also significantly shifted

(pv0:001, one sample t-test, n~200), with a mean of 33.407%

(95% CI = [33.037%, 33.776%]). These results, as well as those

obtained using individual neurons rather than the aggregated

Figure 4. Experimental method used in Womelsdorf et al. [3].
See text for details.
doi:10.1371/journal.pcbi.1003577.g004
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means, are within the 95% confidence interval of the original

experimental data (data not shown).

Changes in RF size were then quantified by measuring the

change in width of the Gaussian fits between the attend-out (sR)

and attend-in (sattended
R ) conditions, as (sattended

R =sR){1. Using the

aggregated mean of the entire sample from each simulated

monkey, the RF size significantly decreased (pv0:001), on average

by 213.567% (CI = [214.425%, 212.694%]). For the selected

pairs, there was also a significant decrease in RF size (pv0:001),

with a mean change of 216.193% (CI = [217.190%,

215.183%]). The analysis of using all individual neurons are

consistent with those obtained with analysis of the aggregate data.

As with the previous two attentional effects, the simulation data

cannot be statistically distinguished from the experimental data.

Figure 6 summarizes the changes in RF properties from the

simulation data (dashed lines) and experimental data (solid lines),

for both the selected pairs (upper bars) and entire sample (lower

bars). Asterisks indicate the mean change with 95% confidence

intervals. Across these three measurements, there is no statistical

difference between the simulation data and the experimental data.

These results show that the ARC’s mechanism for selectively

processing visual stimuli produces neural activity modulation

that is statistically indistinguishable from the results recorded

in macaque by Womelsdorf et al. [3]. Specifically, directing

spatial attention to a RF target can reduce the width and

shift the position of receptive fields without altering the

amplitude.

Several studies have reported that attention can alter the tuning

and selectivity of cortical neurons as well [2,8,38–40], and in the

following section, we investigate this phenomenon by examining

the effects of spatial attention on neuronal tuning curves.

Attentional Effects on Feature Tuning
Treue and Martinez-Trujillo [2] recorded from macaque area

MT while the monkeys covertly attended one of two RF stimuli or

a stimulus placed at the fixation point. Stimuli were two RDPs,

one moving in the cell’s anti-preferred direction (Pattern A), and

the other moving in one of 12 directions (Pattern B). On each trial,

either stimulus was designated the attentional target, and the

monkey had to detect a change in target speed or direction.

Tuning curves were constructed for each cell by fitting the

responses to the 12 stimulus directions in each condition with a

Gaussian.

They found that attending the variable motion stimulus

produced an increase in response gain, whereas attending the

anti-preferred stimulus produced a reduction in gain, with an

intermediate response when attending the neutral stimulus.

Significantly, they also demonstrated that the width of these

curves did not change between attentional conditions, but rather

the responses were similarly multiplicatively scaled for all motion

directions. Whereas Womelsdorf et al. [3] examined the impact of

spatial attention on spatial RF profiles, Treue and Martinez-

Trujillo [2] examined the impact of spatial attention on tuning

curves.

To simulate the study, 100 simulated monkeys were used, with

each having the same model configuration, but with neuronal and

connection weight properties varying randomly, as in the previous

simulations. As before, for the attend-in conditions, the local

Figure 5. ARC model used for simulations. A single MT column contains 450 visually responsive layer-IV neurons (small white circles), and
control neurons (small gray circle) that project a local control signal (m) to enable selective attentional processing. Nine V1 columns constitute the
receptive field of the MT column and provide feedforward visual signals. The spatial position of V1 columns is indicated inside the V1 columns and
the magnitude of the visual signals encoded by each column is shown at the bottom of the figure. Attentional targets for simulations of [3] are shown
as arrows (S1, S2, S3), with S3 corresponding to the attend-out/default routing condition.
doi:10.1371/journal.pcbi.1003577.g005
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control signals were centred on the stimuli, while in the neutral

condition, the control signal was m~0 to reflect the default routing

state. As in the previous simulations, sv and satt were again

set to 1.

Following [2], we measured the change in gain and width when

attention is directed to Pattern B as an attentional index (AI):

Ai(dirGain)~
(dirGainb{dirGaina)

(dirGainbzdirGaina)
ð21Þ

Ai(width)~
(widthb{widtha)

(widthbzwidtha)
, ð22Þ

where Xa and Xb indicate attention being directed to Pattern A or

B respectively.

Across the simulated monkeys and attentional conditions, the

mean r2 value of fitting the tuning curves with a Gaussian was

0.9847.

As with the previous simulations, the mean change across the

population of cells in each simulated monkey were aggregated.

When attention was directed to the variable direction stimulus

(Pattern B), there was a significant increase in the attentional index

for gain (pv0:001), with a mean of 0.1564 (95% CI = [0.1529,

0.1597], corresponding to an increase of 137.39% (95% CI =

[136.41%, 138.32%]). Consistent results were obtained when

individual neurons were analysed (data not shown).

Further, when attending Pattern B, the width of the tuning

curve did not significantly change (pw0:001), with an average

attentional index of 20.00018 (95% CI = [20.0033, 0.0031]),

corresponding to a change of 100.2% (95% CI = [99.58%,

100.86%]).

From the histograms in the original article, (Figure 4 in [2]),

confidence intervals of the mean can be estimated by taking

the number of cells in each histogram bin, and assigning to

these points, the value corresponding to the centre of the

histogram bin. This estimated data set was then bootstrapped

(n~3000) and used to estimate confidence intervals. For

directional gain, this yields an average AI of 0.2125 (95% CI

= [0.1518, 0.2768], and an average AI for width of 0.0357 (CI

= [20.0179, 0.0821]).

Figure 7 shows that the ARC captures the attentional effects

reported in [2], with a consistent change in gain, but no change in

width. That is, our simulation data are statistically indistinguish-

able from the original experimental data.

These results distinguish the ARC from previous models.

Specifically, the biased competition [8] and normalization model

[10] predict that attending to the variable motion stimulus will

produce a sharpening of the neuron’s orientation tuning curve.

However, the experimental data demonstrate that the tuning

curve width is unaffected by directing spatial attention to different

RF targets, and is discussed further in DISCUSSION.

The ARC predicts that visuospatial attention affects the

processing of information based on its retinal or RF location,

independent of the feature information from a given location.

Note that although the spatial width of the RF may change with

shifts of attention, as was shown in the previous simulations, the

range of features to which the neurons respond do not. In short,

although shifts of spatial attention alter the spatial profile of RFs,

Figure 6. Summary of attentional effects (mean and 95% CI) for 100 simulated monkeys (dashed lines) and results reported by [3]
(solid lines). Bars on the top for each effect are selected pairs and the lower below are from the entire sample.
doi:10.1371/journal.pcbi.1003577.g006
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spatial attention does not alter neuronal selectivity for other

features.

This prediction of the ARC, that spatial attention similarly

modulates all features, is further explored in the following section

where we examine the effects of spatial attention on contrast

selectivity.

Attentional Effects on Contrast-Response Functions
Lee and Maunsell [5] recorded from macaque area MT while

two Gabor stimuli with equal contrasts were presented in the RF.

One stimulus moved in the cell’s preferred direction, and the other

in a non-preferred direction. The task was to detect the

appearance of a Gabor at the cued location having a slightly

faster drift speed. They found that the effect of spatial attention on

contrast response curves was significantly better explained by a

response gain effect than by contrast gain. Of the numerous

studies examining attentional effects on contrast-response func-

tions [40–42], the experiments of Lee and Maunsell were selected

as they directly compare both response gain and contrast gain, and

avoid possible analytic confounds of previous studies (see [5] for

details).

To simulate this experiment in the ARC, we used the same

network as before, with the following three extensions. First, as the

feature of interest is contrast, for which neurons have specific

sensitivity [13,43], this property was included by having the 200

layer-II/III MT neurons begin responding above baseline to

contrast values drawn from a uniform distribution in the range [0,

10%]. This extension does not alter the results of the previous two

simulations, as it does not influence the information being

processed or encoded by the cells, but only the manner in which

the information is encoded.

Second, two sources of variability were introduced. Noise was

added by injecting the soma of the layer-II/III MT neurons with a

random amount of current drawn from a uniform distribution in

the range [{22:5mA, 22:5mA] at each time step. As well, to

increase the variability introduced by neurons below MT, V1

signals were scaled by a factor randomly chosen from a uniform

distribution in the range [75%, 125%]. Although this has the

potential to introduce a considerable amount of noise in the input

signals, as shown below, its effects on neural activity are less

apparent when the activity is averaged across 36 repetitions. This

second extension also does not alter the previous results, as it only

serves to increase the response variability across trials, without

influencing the mechanism by which visual signals are gated or

processed.

Third, to capture the high contrast sensitivity of MT neurons,

the gain of layer-II/III neurons in V1 and MT was reduced to

produce saturation for contrasts greater than 30%. Such neurons

Figure 7. Summary of attentional effects on neural selectivity reported by [2] (solid lines) and from simulations using the ARC
(dashed lines). The 95% confidence intervals of the simulation and experimental data overlap, with both showing a significant increase in gain, but
no change in width.
doi:10.1371/journal.pcbi.1003577.g007
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are able to well represent signals having values within the expected

contrast range, although values beyond this range result in

saturation of spiking activity, as well as of the estimate of the

signals represented by that activity. As with the first extension, this

does not affect the previous simulations, as the visual signals are

selectively routed based on their spatial position and not the

information carried by the neural activity. Thus, the extensions do

not alter the ARC’s mechanism for selective routing, but only

affect the visual signals that are presented to the model; all signals

are selectively routed in the same manner, based on the spatial

position of the signals and not their content.

Following the same methods as in [5], the mean responses

across the 36 repetitions for each attentional condition and

contrast value were first fit with a hyperbolic ratio function

[43]:

R~Rmax
cn

cnzcn
50

� �
zm, ð23Þ

where Rmax is the maximum firing rate, c is contrast, n is the

steepness of the function, and m is the baseline activity.

Figure 8 shows the average activity of the entire population

when fit with the hyperbolic ratio function (Equation 23). For all

200 neurons, the median variance explained was 99.7% with

attention directed to the preferred stimulus and 99.8% for

attending to the non-preferred stimulus.

Following [5], to assess whether the data were better explained

by a response gain or contrast gain, the mean responses from each

attentional condition were fit with modified contrast response

functions that model either a pure response gain or pure contrast

gain. The response gain model incorporates an additional term, a,

that scales the contrast-response function:

R~aRmax
cn

cnzcn
50

� �
zm, ð24Þ

and the contrast gain model is given by:

R~Rmax
cn

cnz(ac50)n

� �
zm: ð25Þ

For both models, a was fixed at 1 when attention is directed to

the non-preferred stimulus and varied freely when attention was

directed to the preferred stimulus.

The partial correlation was then calculated using the correlation

between the data and each model’s fit, and Fisher’s r-to-Z

transformation was applied to each partial correlation coefficient

Figure 8. Population average contrast-response functions for 200 model neurons. Vertical scaling of responses with attention to the
preferred stimulus show a predominately response gain effect (See Fig. 2C in [5]). The solid and dashed lines are the best fitting function when
attention was directed to the preferred and non-preferred stimulus respectively. Error bars are SE values.
doi:10.1371/journal.pcbi.1003577.g008
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to produce a Z score. The transformed values were then divided by

the standard error (
ffiffiffiffiffiffiffiffiffiffiffiffi
df {3

p
), where df ~16 is the number of data

points, with 8 contrast values in the two attentional conditions.

Figure 9 shows a scatter plot of the Z-transformed correlations

for the contrast-gain and response-gain models from the simula-

tion data. Filled circles represent neurons that were significantly

better fit by the response-gain model, and open circles are neurons

for which neither model provided a statistically significantly better

fit. Dotted lines mark the statistical criterion of 1.645, correspond-

ing to a p-value of 0.05.

Of the 200 model neurons, only one could not be distinguished

as being better fit by either model, with the remaining 199 being

significantly better explained by response gain (Figure 9). As with

the simulation data from the ARC, the vast majority of cells in the

experimental data (Fig. 3A in [5]) were better explained by a

response gain.

The simulations demonstrate that, were the data only assessed

using a contrast gain model, it could be concluded that contrast

gain provides an excellent explanation of the phenomena.

However, closer inspection of the data by quantitatively compar-

ing both contrast-gain and response-gain models, reveals that the

data are significantly better explained by a response-gain model.

As with the results of the previous two simulations, the

distribution of the simulation data was significantly narrower than

the experimental data, despite a similar number of repetitions

being performed (the experiment performed 36 trials on average,

and the simulations used exactly 36 trials), and the same analysis

methods being used. Qualitatively consistent results were obtained

without the inclusion of noise at the input level, although there was

significantly less variability across repetitions. Several possible

sources of trial to trial variability may have influenced the

experimental recordings that are not present in the model, such as

measurement error, stimulus processing effects, changes in the

Figure 9. Z-transformed partial correlations between simulation data and curve fitting. Black circles are neurons having fits that are
significantly better described by the response gain model. Dotted lines indicate the threshold for statistical significance. For the majority of neurons
in both the model and experimental data (See Fig. 3A in [5]), the attentional effect on contrast-response functions is significantly better explained by
response gain.
doi:10.1371/journal.pcbi.1003577.g009
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animal’s cognitive state and alertness, and involvement of different

cell assemblies. Given the paucity of data that can inform the

selection of the most appropriate method for modelling this

variability, the simple approach used here provides a suitable

approximation.

Discussion

The ARC was used to simulate three experiments of attentional

processing. Because the model is fully spiking, with each

simulation, the model data was analyzed using the same methods

as in the original experiment, and was shown to be quantitatively

consistent with the experimental results. We now discuss how the

ARC’s mechanism for attentional routing provides a unifying

explanation for three seemingly different forms of attentional

modulation.

In Womelsdorf et al. [3], it was demonstrated that spatial

attention alters the spatial width and position of cortical RFs, but

not the gain. By and large, our results are also consistent with those

of Anton-Erxleben et al. [44], which reinforces several of the

findings reported in Womelsdorf et al. [3]. Specifically, as with

Womelsdorf et al. and ARC, Anton-Erxleben et al. report changes

in the size and width, but not amplitude of the classical receptive

field (cRF; the excitatory centre of the receptive field) with shifts of

spatial attention. However, whereas Womelsdorf et al. [3] and

ARC only consider the cRF, Anton-Erxleben et al. further

examine the changes in the RF surround, finding a non-

multiplicative push-pull modulation of the receptive field’s

center-surround. To model this study using ARC, the feedforward

connection weights would need to be extended from the presently

used Gaussian connectivity pattern, to a difference of Gaussians

(DoG) that better captures the RF surround, beyond the cRF we

have used here. This extension would also better align ARC for

simulations of a recent study by Niebergall et al. [45], which found

similar changes in RF sizes with attention. While it remains to be

demonstrated that utilizing a DoG connectivity profile would

allow ARC to reproduce Niebergall et al.’s finding of a seemingly

discrete and divided attentional focus, we believe that, with the

above extension, ARC would be consistent with their reports of an

RF expansion with shifts of spatial attention.

Both Treue and Martinez-Trujillo [2] and Lee and Maunsell

[5] show that spatial attention imposes a multiplicative scaling of

responses across all stimulus values, without affecting selectivity. In

Treue and Martinez-Trujillo [2], this effect was seen as an increase

in tuning curve gain without sharpening, and in Lee and Maunsell

[5], as a response gain across all contrast values, without a

disproportionate increase of responses to lower contrasts. That is,

in both studies, neuronal responses were similarly scaled for all

stimulus values, without a preferential scaling of values distant

from the peak of the tuning curve.

We note that a subsequent study by Martinez-Trujillo and

Treue [46] that examined feature-based attention rather than

spatial attention, found that the tuning curves for motion direction

exhibited sharpening as a function of the motion direction being

attended. The ARC suggests that this sharpening in feature-based

attention is equivalent to the sharpening (i.e. shrinking) of spatial

receptive fields in spatial attention. As such, in the Lee and

Maunsell [5] study of spatial attention, the absence of changes in

tuning curve width for contrast (i.e. response gain), is consistent

with our proposal that the sharpening of tuning curves occurs for

the feature being attended, be it motion, contrast, or the spatial

dimension.

Many studies of attentional effects on contrast response

functions have been conducted, and now we discuss a few of the

more prominent studies showing contrast-gain. A recent study by

Khayat et al. [47] measured responses in MT in a feature- and

spatial-based attention task, and examined whether the data were

better explained by a contrast or response gain models, concluding

that contrast gain better fits the data. However, that study required

the animals to shift both feature- and spatial-based attention, and

as noted by Herrmann et al. [48], the interaction of attention

signals may have contributed to the response increase when

attending fixation and suppressed responses when attending to the

distant moving stimulus pair.

An earlier study by Martinez-Trujillo and Treue [41] reported

attentional modulation in MT cells that is consistent with contrast-

gain. However, this study presented each stimulus for 1000 ms and

analysed the average activity from 200–1000 ms following stimulus

onset. Such long stimulus presentations may provide sufficient

time for adaptation to low contrast stimuli, which may also

obscure this effect. Although [41] reports a contrast gain effect,

response gain was also found to provide a good fit to the data, as

the correlation coefficients for both models were greater than 0.82

across neurons.

An early study by Reynolds et al. [40] also reported contrast

gain between attend-out and attend-in conditions with a single

receptive field stimulus, although that study did not quantitatively

test whether the data were better fit by a response gain or contrast

gain model. As noted by Lee and Maunsell [5], only a small

number of cells in the Reynolds et al. study could not be explained

by response gain; rather, the data reported by Reynolds et al.

suggest that, were a quantitative analysis performed, the response

gain model would also provide a suitable description of the

modulation effect.

In addition to the stimulus and task design, the discrepancies

between these studies may arise from the different analysis

methods being used. Reynolds et al. [40], as well as a study in

superior colliculus by Li and Basso [49], both report attentional

effects that were consistent with contrast gain. However, both

analyzed examined neural responses using a receiver operator

characteristic (ROC), which compresses differences at higher

contrast values, where the effects of response gain are most evident

[42]. Using a similar experimental method to that of Reynolds et

al. [40], Williford and Maunsell [42] found that most of the

attentional effects could be marginally better explained by

response gain or activity gain than by contrast gain.

However, using a single model, with only sv~1 and satt~1 set

as parameters, these seemingly different forms of attentional

modulation were reproduced by the ARC using the same

mechanisms. This kind of unification, particularly in a detailed

spiking implementation as provided by the ARC, is presently not

found in other attention models.

Comparison to Other Models
Related to the ARC is the gain field model by Salinas and

Abbott [7], which also employs a Gaussian gain field to modulate

feedforward visual signals. While their model was shown to be

qualitatively consistent with reports of RF shifts, it is not

implemented in spiking neurons, is not defined for an entire

cortical area or more than two layers of connectivity, and has not

been quantitatively compared to specific physiological results.

Consequently, this model has not been shown to provide a

mechanism that can explain the diversity of results captured by the

ARC.

The ARC is closely related to the shifter circuit [6], which

provides a high level account of selective routing throughout the

visual hierarchy. The ARC incorporates several elements of the

shifter circuit, but addresses some of its limitations, namely: 1) its
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non-spiking implementation that precludes making quantitative

comparisons to physiology studies; 2) its requirement of highly

specific long range pulvinar projections for transmitting local

control signals; and 3) its reliance on fast synaptic weight changes

to perform selective routing. Specifically, the ARC is a spiking

model, and does not share assumptions 2) and 3) with the shifter

circuit. With regard to assumption 2) in particular, while ARC

does not require control signals with the specificity of those used in

the shifter circuit, it does require a structured control signal input.

The primary differences are that in ARC, a single, and

comparably simple global control signal (i.e. target size and

position) exists for a given attentional target and is utilized across

cortical areas. For the purposes of the studies modelled here, we

found that 100 neurons were sufficient to encode and transmit

these control signals with suitable precision. With regard to its

application to the dorsal stream, ARC only requires that the global

control signal be broadly distributed to the top level of the visual

hierarchy, such as PIT, or dorsally to VIP/LIP. Neurons in VIP/

LIP have suitable connectivity with pulvinar, sufficiently large RFs

that are capable of encoding visual information from a large

portion of the visual field, and can propagate the control signals

downward through the hierarchy [16,50]

ARC is also distinct from other non-spiking models, including

SAIM [19], Compte and Wang [9], Montijn et. al [51], biased

competition [8] and normalization models [10] that cannot be

directly quantitatively compared to physiology data. More

critically, the biased competition and normalization models

predict that in the Treue and Martinez-Trujillo [2] experiment,

directing spatial attention to a preferred RF stimulus will produce

a sharpening of non-spatial tuning curves for motion direction.

However, this is in direct conflict with the experimental data of

Treue and Martinez-Trujillo [2] and simulation data from ARC.

Reynolds and Heeger [10] suggest that this experimental result is

not inconsistent with the model, as a later study by Martinez-

Trujillo and Treue [46] demonstrated tuning curve sharpening.

Crucially, the later study by Martinez-Trujillo and Treue

specifically examined feature-based attention rather than spatial

attention, and thus the results of these two studies are not

necessarily "in conflict’’ with each other. Rather, the earlier study

clearly demonstrates that spatial attention does not affect the

selectivity for motion direction (i.e. the cells exhibit response gain

but not tuning curve sharpening), whereas the later study

concludes that attending to motion direction does affect the

selectivity for motion direction.

Further, ARC is distinguished from the normalization model, as

the latter can use highly focused and spatially narrow local

modulations. Simulations using spiking neurons in the ARC found

that while the ensembles of cells in layer-IV are able to perform

accurate routing with wider routing functions, they had limited

ability to compute and apply narrow routing functions. Specifi-

cally, early experimentation using a Laplace routing function

rather than a Gaussian (Equation 7) revealed that the small

populations of cells were unable to approximate the function with

sufficient accuracy. Similar effects are anticipated with very small

values of hatt in the current model, and merit further investigation.

However, it remains to be shown that, were the normalization

model to be implemented in spiking neurons, the model could

accurately compute the such narrow functions within biological

constraints.

Predictions
The most direct, quantitative prediction of the model is that the

narrower confidence intervals in Figures 6 and 7 reflect how these

distributions would change with additional experimental trials.

The smoother and narrower distributions of data in the

simulations result from the recording of significantly more neurons

than the original experiments, with *7000 simulated neurons

versus 78 in Womelsdorf et al. [3], 8500 versus 56 in Treue and

Martinez-Trujillo [2], and 200 versus 56 in Lee and Maunsell [5].

A second prediction of the model is that the effects of spatial

attentional on contrast response functions are independent of

target size; that is, the size of the target will not cause cells to

differentially exhibit response gain or contrast gain effects. The

ARC’s mechanisms for selective routing predict that spatial

attention only affects neural spatial selectivity, without altering

selectivity for other feature dimensions, a prediction that

distinguishes the ARC from the normalization model [10].

More qualitatively, the primary prediction of the ARC is that

the seemingly different forms of attentional modulation are

consequences of a single mechanism for selective attentional

routing. Specifically, the model suggests that attending a particular

feature dimension imposes a Gaussian shaped multiplicative gain

term defined over the dimension being attended, and centred on

the target feature. In the case of spatial attention, the gain term is

defined spatially, and centred on the target’s RF position. This

same mechanism is equally well-defined over any other feature

dimension. Although not explored in detail here, this is consistent

with the observation of tuning curve sharpening with feature-

based attention [46].

A fourth qualitative prediction relates to the timing of

attentional modulation in different cortical areas, where higher

cortical levels are affected earlier than lower levels [4,52,53]. The

ARC proposes that this effect results from attentional control

signals being fed back through the visual hierarchy, where they

influence neuronal activity at each area in turn (see Figure 1). As

the control signals are computed, applied and fed back at each

level, the effects of attention will be observed propagating back

through the visual hierarchy. Depending on the amount of spatial

detail required, successful recognition of the target may be

performed without needing to propagate the control signal down

through the entire hierarchy, which may explain the lack of

attentional effects being observed in lower areas when simple tasks

are used [1,38,39].

A fifth prediction comes from consideration of the sv parameter

in the model. In each simulation, for simplicity, the connection

strengths across the RFs had a Gaussian profile with mv~0 and

sv~1. If a smaller value for sv were used instead, the inputs at

the RF edges would be more strongly attenuated. With a smaller

value for sv in the Womelsdorf et al. experiment, the model

predicts that directing attention to a stimulus at the RF edge will

result in a decreased amplitude of the RF fits, and thus a reduction

in gain. A more accurate estimate of sv in ARC could be

established by repeating the Womelsdorf et al. experiment and

systematically shifting the target positions toward the RF edge. If

the RF gain is reduced as a function of target position, the

amounts by which the RF size changes can be used to construct an

estimate for sv.

The sixth qualitative observation from the model, for which

there is some support already [4,53], is that an increasing

proportion of neurons at each higher cortical level will show

attentional modulation, as a result of neurons in these areas

switching from their default routing state to a selective routing

state during attentionally demanding tasks. The ARC further

predicts that the magnitude of modulation will increase in higher

cortical areas.

A final observation of model performance, is that neurons

operate in a "default’’ routing state, both prior to the target being

known, and when they are not encoding information from the

Selective Attentional Processing in Cortex
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target (i.e., when they are not tuned to the features being attended,

or when their RF does not contain the target). This aspect of the

model can be tested by evaluating the following three predictions:

1) default state neurons will on average have a larger RF when

their RF does not contain a target; 2) in the Womelsdorf task,

neurons with peripheral RFs will on average respond more

strongly to probe stimuli on the side of their RF that is more

distant from the fovea; and 3) in the Womelsdorf task, when two

stimuli are presented in the RF, there will be a larger shift on

average when attention is directed to the target closer to the fovea

than when attending the other RF target.

While these predictions and observations are of varying degrees

of specificity, they are each empirically testable. The most clearly

testable are those suggesting specific distributions of neuron

response functions, which are direct extensions of the experiments

reproduced here. As well, observations five and seven can be tested

without varying the setup of the Womelsdorf et al. task, and so are

perhaps the best combination of novel and practical. Predictions

four and six can be tested by simultaneously recording single cells

from multiple cortical areas (e.g. V2, V4, and PIT) while the

animal performs a spatial attention task, and measuring the

proportion of cells in each area showing modulation, the strength

of modulation, and the temporal onset of attentional effects.

Predictions two and five are clearly more qualitative and so will

require several different experiments to be performed.

Conclusions

We have presented a model of visual attention that provides a

mechanistic description of selective attentional processing in

cortex. The model is fully implemented in spiking neurons, and

the computations for performing selective attentional processing

have been mapped to specific neuron types and laminar circuitry.

Using this model, we simulated three studies of attention in

macaque, and demonstrated that the model, without need for

parameter tuning, produces quantitatively consistent results for all

three studies.

The ability to capture this diverse data within a single model

arises from a central tenet of the ARC, namely that the effect of

spatial attention on a cell’s activity is independent of the cell’s

preferred visual feature: pure spatial attention modulates the

influence of visual inputs to a neuron based on their spatial

position, and does not directly influence the cell’s selectivity for

other features.

It is this effect that is shown by the Womelsdorf et al. study: the

spatial selectivity changes, but not the selectivity for its preferred

feature. That is, the RF amplitude does not change, but the RF

position and width does. This is further shown by Treue and

Martinez-Trujillo [2], where the cell’s feature tuning does not

change (i.e. no sharpening), but rather, spatial attention modulates

all feature values equally and affects their gain based on their

spatial position. Finally, this same effect is demonstrated in the Lee

and Maunsell study, where shifting spatial attention does not alter

the cell’s selectivity, as would be the case were there a contrast gain

effect, but rather scales all responses based on their spatial

position. We further believe that the mechanism proposed by

ARC for routing information under spatial attention, can be

mapped directly to feature-based attention, where attending to a

given feature produces sharpening of the tuning curve around that

feature value, analogous to a spatial location, but does not affect

selectivity to other features.

Because ARC is defined in greater anatomical detail than many

current models, it provides an opportunity to test the above

proposal, as well as those listed in Predictions. As computational

power increases, we envision extending the model to two spatial

dimensions, using more complex stimuli, and simultaneously

simulating additional hierarchical levels. As a consequence, ARC

provides new opportunities for exploring the underlying basis of

visual attention in a more biologically detailed, scalable and

quantifiably testable model than previously available.
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