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Recent investigations on neurological tissues preserved in Cambrian fossils
have clarified the phylogenetic affinities and head segmentation in pivotal
members of stem-group Euarthropoda. However, palaeoneuroanatomical fea-
tures are often incomplete or described from single exceptional specimens,
raising concerns about themorphological interpretation of fossilized neurologi-
cal structures and their significance for early euarthropod evolution. Here, we
describe the central nervous system (CNS) of the short great-appendage
euarthropod Alalcomenaeus based on material from two Cambrian Burgess
Shale-type deposits of the American Great Basin, the Pioche Formation
(Stage 4) and the Marjum Formation (Drumian). The specimens reveal
complementary ventral and lateral views of the CNS, preserved as a dark car-
bonaceous compression throughout the body. The head features a dorsal brain
connected to four stalked ventral eyes, and four pairs of segmental nerves. The
first to seventh trunk tergites overlie a ventral nerve cord with seven ganglia,
each associated with paired sets of segmental nerve bundles. Posteriorly, the
nerve cord features elongate thread-like connectives. The Great Basin fossils
strengthen the original description—and broader evolutionary implications—
of the CNS in Alalcomenaeus from the early Cambrian (Stage 3) Chengjiang
deposit of South China. The spatio-temporal recurrence of fossilized neural
tissues in Cambrian Konservat-Lagerstätten across North America (Pioche,
Burgess Shale, Marjum) and South China (Chengjiang, Xiaoshiba) indicates
that their preservation is consistent with the mechanism of Burgess Shale-
type fossilization, without the need to invoke alternative taphonomic pathways
or the presence of microbial biofilms.
1. Introduction
The Cambrian fossil record has produced fundamental insights into the
morphology and initial diversification of animal phyla, with euarthropod evol-
ution standing as a prime example of the impact of palaeontological data
towards reconstructing the origin of major extant groups [1–3]. Our current
understanding of the early history of euarthropods is made possible by the unu-
sual abundance of exceptionally preserved biotas in Cambrian deposits [4–8],
which capture details of the non-biomineralized anatomy that would normally
be lost to decay, even under other pathways for exceptional preservation [9,10].
In addition to limbs [11,12], eyes [13,14], guts [15,16], muscles [17,18] and circula-
tory systems [19,20], recent studies have also reported the preservation of
neurological tissues including the condensed dorsal brain, optic neuropils and
the ventral nerve cord (VNC) with segmental nerves [21–30]. These discoveries
directly impact hypotheses concerning the ancestral organization of the brain in
extant euarthropods, and more broadly, the evolution of the head and nervous
systems in Panarthropoda [31–33]. However, the preservation potential of
nervous tissues inCambrian fossils has also comeunder intense scrutiny, as actua-
listic taphonomic experiments demonstrate that the ecdysozoan nervous system is
prone to rapid decay, relative to other tissues, under controlled laboratory
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Figure 1. Nervous system preservation in Alalcomenaeus sp. from the Stage 4 Pioche Formation. (a) MCZ IP-197956a, part with preserved soft tissues. (b) Detail of
CNS in the head and trunk. (c) Detail of trunk exopods with marginal setae. (d ) MCZ IP-197956b, counterpart with well-preserved paddle-shaped tailspine and
marginal setae. cn, connectives; ey, stalked eye; exp, trunk exopod; hs, head shield; ms, marginal setae; of, oesophageal foramen; sgn, segmental ganglia; Tn, trunk
tergites; VNC, ventral nerve cord. (Online version in colour.)
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conditions [34,35]. Although the presence of bilateral sym-
metry and morphological complexity are regarded as key
requisites for the valid recognition of fossilized nervous
systems preserved as carbonaceous films [22–29], a reappraisal
of the variability of dark organic compressions in exceptional
fossils has also challenged this approach. A recent study
re-interpreted putative neurological structures in the stem-
group euarthropod Fuxianhuia protensa as microbial films that
had propagated through body cavities produced by the
decay of internal organs, concluding that morphology alone
does not permit to unequivocally identify fossilized nervous
tissues [36]. Lastly, a substantial criticism focuses on a
perceived lack of reproducibility because nervous tissue pre-
servation is extremely rare and often described from
single specimens (e.g. [22,23]; but see counter-examples in
[24,25,27,37,38]). Given these concerns, the input of additional
fossil material from a variety of exceptional deposits could pro-
vide an effective test of the proclivity of nervous tissue
preservation in Cambrian fossils. Here, we describe the
nervous system in the leanchoiliid Alalcomenaeus from two
Cambrian sites of the western USA, namely, the Stage 4
Pioche Formation and the Drumian Marjum Formation,
and explore the broader implications for the preservation of
neurological tissues in Burgess Shale-type deposits.
2. Material and methods
Studied specimens are deposited at the Harvard University
Museum of Comparative Zoology (MCZ), the Kansas University
Museumof InvertebratePaleontology (KUMIP) and the Invertebrate
Paleontology collections at the Smithsonian Institution (USNM).
Specimens were photographed wet with crossed-polarized light
using a Nikon D3X digital camera equipped with a Micro-Nikkor
AF 60 mm f/2.8 D macro lens, or with normal light using a Leica
IC80 HD camera mounted on a Leica M80 microscope or in a
DSX110 Olympus digital microscope. Series of images were taken
by manually focusing at different focal planes, and subsequently
stacking and assembling in Adobe PHOTOSHOP CS6. Backscatter elec-
tron microscopy was conducted on a Quanta-650F, with a voltage
of 10 kV and a working distance of 14.6 mm under low vacuum.
Schematic diagrams were produced with INKSCAPE.
3. Results
(a) Alalcomenaeus from the Pioche Formation
Specimen MCZ IP-197956 represents a completely articulated
individual preserved in oblique-lateral view, with a total
length (sag.) of 22 mm (figure 1). The dorsal exoskeleton
consists of a head shield, a trunk with 11 tergites and a
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tailspine. The head shield corresponds to ca 25% of the body
length (sag.) and has an elongate isosceles-like subtrape-
zoidal outline with a distinctively straight anterior margin
(figures 1a,d and 3a). The trunk includes 11 overlapping
and freely articulating tergites with well-developed pleurae;
MCZ IP-197956a demonstrates that the pleural tips on the
left side of the body are strongly bent downwards owing to
the burial orientation of the specimen (figure 1a). The trunk
is widest (trans.) close to the head shield and tapers towards
the posterior end of the body. The trunk tergites are of subeq-
ual length (sag.) on the anterior half of the body, but become
slightly shorter posteriorly (figure 1d ). Remains of the trunk
appendages include traces of flat, oval-shaped exopods
fringed with elongate marginal setae (figure 1c) and can
only be directly observed in the last three trunk segments
(figure 1a); other limbs are covered by the dorsal exoskeleton
as suggested by regular impressions on the posterior trunk,
or probably concealed within the rock matrix. The tailspine
is paddle-shaped with a suboval outline, has a rounded pos-
terior margin and bears acuminate setae along the margin of
its distal half (figures 1a,d and 3a,b).

MCZ IP-197956 preserves various details of the internal
anatomy (figures 1 and 3). The head shield covers two sets
of paired ventral eyes with short but robust stalks that are
connected proximally to a prominent and continuous tract-
like structure that extends throughout most of the body
(figure 1a,b,d). The morphological complexity of the tract-like
structure, coupledwith the regular repetition of its components
and the direct connection with the eyes, suggests that it most
likely represents the fossilized central nervous system (CNS)
preserved as a carbonaceous film. Backscatter electron
microscopy corroborates that the dark-compression tract
is composed of a lighter material than the surrounding
aluminosilicate matrix, as expected with Burgess Shale-type
preservation [39,40] (electronic supplementary material,
figure S1). There are four ventral eyes in total: two are located
close to the midline and preserved in MCZ IP-197956a only,
whereas the others occupy more abaxial positions as observed
in MCZ IP-197956b (figures 1 and 3; electronic supplementary
material, figure S2). Behind the eyes, the CNS tract splits
into two branches and meets again posteriorly resulting in a
prominent medial gap. This organization is consistent with
the oesophageal foramen that accommodates the ventrally
directed foregut and mouth opening in extant euarthropods
(figure 1b) [22,32,41]. The presence of a well-defined gap
within the dark compression also argues against its identity
as remains of the gut tract, as no comparable foregut organiz-
ation is known for extant or extinct euarthropods [15,16,42].
Within the trunk, the CNS tract is consolidated into a VNC
that incorporates evenly spaced lateral extensions that correlate
directly with the first to seventh trunk tergites, and which we
interpret as the nerve bundles associated with segmental
ganglia (figures 1a,b,d and 3a,b). Each of the first to seventh
sets of nerve bundles have an irregular appearance individu-
ally and occasionally overlap each other, as observed under
the first and second trunk tergites (figures 1b and 3a,b); such
observations argue against an alternative interpretation of
these structures as potential gut diverticulae, which typically
exhibit a well-defined shape and a regular distribution in
Cambrian euarthropods, and are particularly well known
in leanchoiliids [15,16,42,43]. At the level of the seventh tergite,
the VNC terminates in paired thread-like connectives that
extend posteriorly (figures 1a,b,d and 3a,b). There is no clear
indication of connectives beyond the 10th tergite, although
this is probably owing to incomplete preservation rather than
a legitimate biological signal.

The morphology of MCZ IP-197956 allows a confident
assignment to the leanchoiliid genusAlalcomenaeus, previously
only known from the Cambrian Stage 3 Chengjiang in South
China [22] and the Wuliuan Burgess Shale in British Columbia
[44]. The unique combination of characters supporting this
identification includes the presence of a straight anterior
head shield margin, four ventral eyes and a paddle-shaped
tailspine fringed with marginal setae distally (sag.) [22,44,45].
The preserved internal anatomy of MCZ IP-197956 further
strengthens this identification, as the CNS organization bears
close similarities with that of Alalcomenaeus from Chengjiang
[22] (see Discussion).
(b) Alalcomenaeus from the Marjum Formation
Specimen KUMIP 204782 is an articulated individual pre-
served in ventral view, with a length of 60 mm (sag.) and a
maximum width of 24 mm (trans.) (figures 2 and 3c). The
dorsal exoskeleton includes the isosceles-like subtrapezoidal
head shield with a straight anterior margin (figure 2a) and an
incomplete trunk. The ventral orientation of KUMIP 204782
is evidenced by the occurrence of a small, sclerotized hypos-
tome close to the anterior cephalic margin (figures 2b and
3c), whose posteriormargin indicates the approximate position
of the mouth [32]. The trunk includes at least seven freely
articulating tergites of subequal length (sag.), displaying
well-developed pleurae that progressively increase in curva-
ture rearwards. The body termination is not preserved, any
additional tergites are indistinctly expressed, and there are no
discernible traces of the tailspine or ventral appendages.

KUMIP 204782 preserves exceptional details of the internal
anatomy as a prominent tract-like dark compression that
dominates the axial body region (figure 2). The tract consists
of a large median band associated with pairs of segmentally
arranged lateral extensions, five in the cephalic region and
seven in the trunk region (figures 2 and 3c). The extensions
composing the anteriormost pair run towards paired eyes pre-
served as dark ovoid compressions and thus are interpreted
as optic nerves (figure 2b). Each optic nerve splits into two
branches distally. The adaxial branches are connected with
the adaxially located eyes, as observed on the right side of
KUMIP 204782. The abaxial branches run towards the antero-
lateral corners of the hypostome, which probably conceal more
medially positioned eyes (figures 2 and 3c). The four additional
cephalic pairs of lateral extensions are interpreted as paired
segmental nerve bundles that innervate the ventral appen-
dages. Similarly, each of the seven trunk tergites is associated
with a single segmental nerve pair (figures 2 and 3c). The
interpretation of these remains as parts of the VNC is sup-
ported by the regular spacing and bilaterally symmetrical
organization of the lateral extensions, their thread-like mor-
phology and their relationships to the eyes. However, a
differential coloration of some parts of the axial tract suggests
that in addition to the nervous system, it also includes some
remains of the gut (figures 2 and 3c). The gut tract displays a
lighter colour and preserves some degree of three dimensional-
ity, as revealed by low angle illumination [46], whereas the
surrounding neurological tissues are preserved as dark com-
pressions (figure 2a). An ovoid lighter-coloured area
positioned between the optic nerves and the anteriormost
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three pairs of segmental nerves is tentatively regarded as the
oesophageal foramen. Its location, size and outline correlate
well with those of the oesophageal foramen in MCZ IP-
197956 (figure 1) and Alalcomenaeus from Chengjiang [22].

Despite the incomplete preservation of the posterior region
and the absence of appendicular data, KUMIP 204782 can be
assigned to Alalcomenaeus based on the distinctively straight
anterior margin of its subtrapezoidal head shield [44,46].
The detailed organization of the CNS further supports this
interpretation [22], particularly the dichotomous optic nerves
that suggest the presence of four ventral eyes, and the presence
of four segmental nerve bundles in the head that would corre-
spond to the deutocerebral and three post-oral limb pairs
(figures 2b and 3c). The last major morphological revision of
Alalcomenaeus cambricus suggested the presence of only three
cephalic limb pairs, namely, the great appendages and two
sets of biramous limbs [44]. However, laterally preserved
Alalcomenaeus specimens from Chengjiang demonstrate the
occurrence of an additional—but reduced—biramous limb
pair behind the great appendages, similar to the closely related
genus Leanchoilia from the Burgess Shale (see [47], figure 3b)
and Chengjiang (see [22], figure 3; [48]). The presence of four
cephalic nerve bundles behind the optic nerves in KUMIP
204782 is therefore consistent with the known appendicular
cephalic organization of Alalcomenaeus and other members
of Leanchoiliidae.
4. Discussion
(a) New occurrence of Alalcomenaeus in North America
The newdiscovery ofAlalcomenaeus from the Pioche Formation
(figure 1), and confirmation of its presence in the Marjum For-
mation (figure 2) [46], extend the geographical distribution of
this leanchoiliid genus into the western USA and stratigraphi-
cally into the Drumian. Besides the type species A. cambricus
from the Wuliuan Burgess Shale in British Columbia [44],
the genus was previously only known from the Stage 3
Chengjiang in South China. In the absence of a formal descrip-
tion, whether the Chinese material represents a new species
remains uncertain [22]. These findings demonstrate thatAlalco-
menaeus and Leanchoilia, the most speciose megacheiran genus,
have comparable stratigraphic and palaeogeographic ranges,
the latter taxon being known from Cambrian Stage 3—Dru-
mian strata of South China [45,48,49], Canada [47,50,51] and
USA [45,52,53]. By contrast, other megacheiran genera are
either endemic to their type localities (e.g. [54–57]) or are
known from two different deposits at most (e.g. Tanglangia
[58], Yohoia [59–61]). Finally, the presence of neurological tis-
sues in Alalcomenaeus from the Marjum Formation makes this
the stratigraphically youngest example to date of CNS preser-
vation in a Cambrian Konservat-Lagerstätte (figures 4 and 5).

(b) Consistent central nervous system morphology
across space and time

The CNS of Alalcomenaeus from the Pioche and Marjum For-
mations share fundamental characteristics despite their
different burial orientations in oblique and ventral views,
respectively (figures 1 and 2). MCZ IP-197956 and KUMIP
204782 demonstrate the presence of four stalked ventral
eyes and/or optic nerves, an oesophageal foramen and seg-
mentally arranged nerve bundles associated with the trunk
tergites. The specimens mainly differ by virtue of their com-
pleteness. Whereas KUMIP 204782 informs the number of
cephalic nerve bundles behind the eyes, these details are
absent from MCZ IP-197956. Conversely, MCZ IP-197956
indicates that the VNC features consist of elongate paired
connectives only in the posterior trunk region, but this part
of the body is missing in KUMIP 204782. Our most signifi-
cant finding is that the CNS morphology of Alalcomenaeus
from the Pioche and Marjum Formations closely replicates
the neurological organization described from Chengjiang
[22] (figure 4). Complex structures including the number of
ventral eyes with their respective optic nerves, oesophageal
foramen, number of segmental nerve bundles in the head
and trunk and the sole presence of connectives in the pos-
terior body region are congruent between the specimens
(electronic supplementary material, table S1), with the only
observable discrepancies stemming from different degrees
of taphonomic alteration. Our study represents, to our knowl-
edge, the first case of consistent anatomical organization of
the exceptionally preserved CNS of a Cambrian euarthropod
(Alalcomenaeus) in three Burgess Shale-type deposits (Cheng-
jiang, Pioche, Marjum) from two different palaeocontinents
(Laurentia, South China) and three different ages (Cambrian
Stage 3, Stage 4, Drumian) (figure 5; electronic supplemen-
tary material, table S1). These findings illustrate the
impressive stability of the skeletal and internal anatomy of
this taxon over a period of approximately 15 Myr.

(c) Implications for taphonomy of Cambrian nervous
tissues

TheCNSofAlalcomenaeusdemonstrates that Burgess Shale-type
preservation can reproduce detailed and congruent neuro-
anatomical information in a non-biomineralizing Cambrian
euarthropod, despite different physical and chemical settings
in the respective palaeoenvironments at the time of deposition
and subsequent taphonomic histories. The availability of three
specimens of Alalcomenaeus indicates that preservation of the
CNS in this taxon is indeed repeatable, as also exemplified by
the presence of multiple individuals with nervous tissues
in Odaraia alata [24] and Waptia fieldensis [28–30] from the
Burgess Shale, Fuxianhuia protensa from Chengjiang [25], and
Chengjiangocaris kunmingensis from the Xiaoshiba biota [27]).

The criticism of bilaterally symmetrical dark compressions
exhibited by some Burgess Shale-type fossils is based on the
argument that these compressions are not internal organs,
but instead the remains of decay-related microbial films
within body cavities [36]. The propagation of gut microbes
within decaying carcasses has been thoroughly documented
by laboratory experiments on the brine shrimp Artemia [62],
which adequately explains the regularly spaced, paired sub-
triangular features repeatedly observed in the trunk of some
Burgess Shale taxa, such as Opabinia [62,63], Surusicaris [57],
Waptia [30] and Yawunik [54]. Given its rich microbiota, the
digestive tract represents a focal point for the early stages of
decay and the production of biofilms that, upon rupture of
the gutwall, propagatewithin themain body and the proximal
parts of the appendages [35,62]. Opabinia illustrates this
phenomenon with exemplary clarity [64]. Well-preserved
specimens display an axial dark band composed of a narrow,
clearly defined, axial black stripe—most likely the gut tract
replicated as a carbonaceous film—which is surrounded by a
lighter-coloured material forming regularly spaced, paired
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subtriangular lateral extensions throughout the trunk ([63,65];
figure 5). Although these lateral extensions have been inter-
preted as possible gut diverticulae [66], a more convincing
explanation is that they are ventral limbs whose internal cav-
ities have been partially filled with microbial films during
early decay [62–64].

Although the microbial film hypothesis [36] offers a plaus-
ible alternative to the interpretation of problematic internal
features observed in exceptionally preserved fossils, its ability
to closely replicate delicate and complex structures should
not be overestimated. In taphonomic experiments of ecdysozo-
ans, decay microbes propagate within the cavities of the
carcass, ultimately filling most of the loosened cuticular sac
[34,35,62]. The only documented mechanism in which
microbes have been involved in the fine replication of a labile
tissue or organ is by directly and indirectly triggering the pre-
cipitation of authigenic minerals [67–69]. The decay products
observed during taphonomic experiments [34,35,62] argue
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against the biofilm origin of the internal structures preserved in
Alalcomenaeus, as the latter is highly symmetrical, replicate the
morphology with high fidelity and is too delicate compared
to the size of the body cavity to be the result of an amorphous
microbial mass. This conclusion is further strengthened
when considering the spatial relationships of the internal struc-
tures relative to other anatomical features. The axial dark
compression of Alalcomenaeus does not fill the whole cephalic
region like a biofilm would be expected to do, given its
non-specific propagation. Instead, the compressions in
Alalcomenaeus branch anteriorly to connect with the stalked
eyes, which are fundamental components of the euarthropod
CNS [14,32,41] and form a foramen more posteriorly that
would allow the passage of the foregut (figures 1–3; electronic
supplementary material, figure S2). No known internal or
exoskeletal structures or cavities in the euarthropod head
could have guided the propagation of microbes in a way that
would fortuitously replicate the complex shape and precise
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relationships of the anterior CNS. The presence of thread-
like connectives in the posterior third of the trunk in two
Alalcomenaeus specimens (figure 1a,d) [22] is also difficult to
reconcile with the microbial film hypothesis for the same
reason, especially because decay microbes first invade and
proliferate indiscriminately in the posterior region of the
body in Artemia [62]. Ultimately, the morphological organiz-
ation, carbonaceous composition, topographical position and
relationship to other body parts can be used as criteria to
confidently rule out a microbial origin for organic dark com-
pressions in Burgess Shale-type fossils and instead support
their interpretation as remains of the internal anatomy.

Burgess Shale-type fossils that contain features produced
by microbial activity also reveal fundamental differences
with legitimate internal anatomical structures. For example,
the axial dark compression ofOpabinia is restricted to the vicin-
ity of the gut tract and the ventral limbs and terminates at the
approximate level of the mouth opening (figure 6), whereas
that of Alalcomenaeus is directly connected with the stalked
eyes anteriorly (figures 1–3; electronic supplementarymaterial,
figure S4). Opabinia fossils do not show a continuation of
the axial tract with the anterior head [63,64,66], and similar
observations also hold true for other Burgess Shale taxa with
preserved guts and eyes but no direct connection between
them [30,53,70]. Furthermore, Opabinia demonstrates that
even a fossilized microbe-filled gut tract retains an important
degree of morphological fidelity, for example, the presence of
a J-shaped anterior curvature [63–65] (figure 6), which rules
out the potential misinterpretation with neurological features
such as the oesophageal foramen. These comparisons
strengthen the interpretation that Alalcomenaeus from the
Pioche and Marjum Formations, and by inference also Cheng-
jiang [22], contain legitimate remains of the CNS whose
complex morphology cannot be explained as the result of
microbial activity within the body cavity (sensu [36,62]).

It, of course, remains of paramount importance to acknowl-
edge the detrimental effect of decay in the quality of anatomical
information available from even the most exceptional of fossils,
and experimental taphonomy will continue playing a critical
role in this endeavour [9,10,34,35]. However, it is also time to
gravitate away from the preconception that nervous tissues
are too labile to become fossilized, as evidence keeps accumulat-
ing that neurological preservation is possible through
carbonaceous compressions [71], as well as authigenic mineral-
ization [72], and even in laboratory conditions [73]. Our data
demonstrate that by applying the criteria of bilateral symmetry,
morphological fidelity, carbonaceous preservation, position
relative to other anatomical features and congruence between
multiple specimens and even localities, it is possible to identify
with increasing confidence remains of the nervous system in
Cambrian fossils and continue to explore their profound impli-
cations for the early evolutionary historyof animals. Our results
are directly relevant to euarthropod fossils, but these con-
clusions are also broadly applicable to other organisms from
Burgess Shale-type deposits with neurological features such as
the priapulidOttoia prolifica [26] and the annelidCanadia spinosa
[38]. Contrary to recent claims that the preservation of neuro-
logical tissues may require alternative taphonomic models
[34,36], early and middle Cambrian Konservat-Lagerstätten
from South China [21–23,25–27], North Greenland [37] and
North America ([24,29,30,38], this study) consistently show
CNS expressed as carbonaceous films (figure 5), in accordance
with the proposed mechanism of Burgess Shale-type preser-
vation of labile tissues [39,73]. Instead, we may seek to further
refine our knowledge of how the conditions that produce
Burgess Shale-type fossils contribute to the stabilization of
non-biomineralizing tissues in Cambrian deposits in order to
better understand the limits of exceptional preservation [74–76].
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