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Abstract 

We introduce mirTarRnaSeq, an R/Bioconductor package for quantitative assessment of miRNA-mRNA relationships 
within sample cohorts. mirTarRnaSeq is a statistical package to explore predicted or pre-hypothesized miRNA-mRNA 
relationships following target prediction.

We present two use cases applying mirTarRnaSeq. First, to identify miRNA targets, we examined EBV miRNAs for inter-
action with human and virus transcriptomes of stomach adenocarcinoma. This revealed enrichment of mRNA targets 
highly expressed in CD105+ endothelial cells, monocytes, CD4+ T cells, NK cells, CD19+ B cells, and CD34 cells. Next, 
to investigate miRNA-mRNA relationships in SARS-CoV-2 (COVID-19) infection across time, we used paired miRNA 
and RNA sequenced datasets of SARS-CoV-2 infected lung epithelial cells across three time points (4, 12, and 24 hours 
post-infection). mirTarRnaSeq identified evidence for human miRNAs targeting cytokine signaling and neutrophil 
regulation immune pathways from 4 to 24 hours after SARS-CoV-2 infection. Confirming the clinical relevance of these 
predictions, three of the immune specific mRNA-miRNA relationships identified in human lung epithelial cells after 
SARS-CoV-2 infection were also observed to be differentially expressed in blood from patients with COVID-19. Overall, 
mirTarRnaSeq is a robust tool that can address a wide-range of biological questions providing improved prediction of 
miRNA-mRNA interactions.
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Introduction
Non-coding RNAs (ncRNAs) are important for the main-
tenance of homeostasis in many organisms [1]. micro-
RNAs (miRNAs) are a class of ncRNAs that are single 
stranded and 18-22 nucleotide bases in length, which can 
alter messenger RNA (mRNA) expression [2]. miRNAs, 

in general, primarily downregulate mRNA expression 
through translational repression during initiation or 
elongation, or via mRNA degradation through cleavage 
by the RNA-induced silencing complex through argonaut 
(AGO) proteins (more commonly observed in plants, and 
viruses) or by interfering with PABPC-EIF4G interac-
tions, facilitating translational repression and deadenyla-
tion [3–5]. Full or partial matching in the seed region 
(nucleotide 2-8) of the 5′ end of miRNA with the tar-
get mRNAs 3’UTR sequence leads to sequence-specific 
miRNA-mRNA interactions [6]. However, the presence 
of potential binding interactions are not sufficient to pre-
dict in vivo mRNA regulation by miRNAs as many pre-
dicted interactions are not observed in cell-based assays.
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miRNAs robustly regulate mRNA expression during 
developmental or pathological processes such as cell pro-
liferation, metabolism, immunity, and organism devel-
opment by targeting multiple relevant biological levels/
pathways simultaneously [7]. miRNAs also have roles in 
both host response to infection and viral suppression of 
the host immune response, as has been recently exempli-
fied by Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2/COVID-19) [8–10]. Notably many viruses, 
in particular herpes viruses, express viral miRNAs to 
regulate both the host and viral mRNA expression [11]. 
For example, Epstein Barr Virus (EBV), the causal agent 
for mononucleosis, is associated with multiple cancers 
which express high levels of EBV miRNA and mRNA [12, 
13]. These miRNAs regulate immunological processes in 
the host such as the WNT signaling pathway, interleukin 
(IL) inflammatory response or promote cell growth or 
inhibit apoptosis in various cancers [12].

There are several computational algorithms which pre-
dict the targets of human and viral miRNAs. Algorithms 
such as miRanda, TargetScan or VIRmiRNA database 
(db) generally predict miRNA-mRNA interactions based 
on 6-8mer seed matching, free energy estimated for each 
miRNA-mRNA target pair, evolutionary conservation of 
the 3′ UTR sequence. In the case for miRanda in general 
a predicted target can be ranked high (high score) in the 
results by either obtaining a high individual score or by 
having multiple predicted sites [13]. TargetScan ranks 
predicted targets by either targeting efficacy or the prob-
ability or conservation [14]. Tools such as VIRmiRNA db, 
report on either experimentally verified miRNA-mRNA 
interactions or primarily reports on miRNA seed con-
servation amongst viral and cellular miRNAs [15]. FilTar 
and other modeling methods have been used successfully 
for predicting potential miRNAs-mRNA targeting [16–
18]. However, these tools are mainly presented as online 
databases and designed for host or viral miRNAs predic-
tion of potential mRNA targets limited to specific organ-
isms [19]. There is a need for computational packages to 
assess downstream miRNA-mRNA predictions leverag-
ing the expression data from high throughput sequencing 
analyses of experimental data in a statistical framework 
while testing or accounting for various phenotypes of 
interest of eukaryotic and viral miRNAs.

Here, we have developed mirTarRnaSeq, an R/Biocon-
ductor package which can measure statistical relation-
ships between miRNAs and mRNAs. Our methods are 
split into three parts. Part 1: Regression analysis (uni-
variate and multivariate modeling). The main question 
we aim to answer in this section is, if there is statisti-
cal evidence for miRNA-mRNA relationship across the 
matched cohort. Part 2: Correlation and sparse partial 
correlation analysis. Assessing the correlation between 

miRNAs and mRNAs across three or more time points. 
Part 3: Differential fold-change analysis. Assessing the 
miRNA and mRNA interactions at two time points. 
Pre-processed miRanda miRNA-mRNA prediction files 
for four species (human, mouse, fly and Caebirhabdi-
tis elegans (c-elegans)) and three viruses (EBV, human 
cytomegalovirus, and Kaposi sarcoma herpes virus) are 
included in the package; users can supply mirRanda data 
(or any other miRNA-mRNA prediction method com-
patible with mirTarRnaSeq) for additional organisms of 
interest to be able to use mirTarRnaSeq. As a proof of 
concept, we applied mirTarRnaSeq to three datasets dem-
onstrating the utility and providing novel results for gas-
tric adenocarcinoma and SARS-CoV-2. The first dataset 
contains 25 matching miRNA and mRNA stomach ade-
nocarcinoma (STAD) samples from The Cancer Genome 
Atlas (TCGA) reported to have highly-expressed EBV 
miRNAs [20]. For Part 2 and 3 we leverage paired mRNA 
and miRNA libraries from lung epithelial cells sampled 
at 4, 12 and 24 hours after infection with SARS-CoV-2. 
We report miRNA-mRNA regulation during viral infec-
tion, both previously established as well as novel inter-
actions. We identify miRNA-mRNA interactions during 
host response to EBV infection in stomach adenocarci-
noma and predict EBV self-regulation by viral miRNAs. 
Further, we identify miRNAs predicted to regulate tar-
gets involving interleukin and interferon pathways during 
the host response to SARS-CoV-2. We further validate 
the miRNA-mRNA interactions in Part 3 by comparing 
a dataset of four acute COVID-19 infections as compared 
to four control individual blood samples and find con-
vergence in miRNA-mRNA targeting between the two 
experiments. Here we demonstrate the utility of tools 
detecting both previously validated interactions as well 
as potential novel ones including host response pathways 
in EBV-positive stomach adenocarcinoma and inflamma-
tory response in interleukin and interferon pathways in 
the context of SARS-CoV-2 infection.

Materials and Methods
Host‑virus interactions (Part 1. regression)
Sample selection and analysis
Matching miRNA and mRNA samples for 50 tumors 
were downloaded from The Cancer Genome Atlas (25 
EBV positive and 25 EBV negative) (TCGA, http:// 
cance rgeno me. nih. gov/) accessed through the Cancer 
Genomic Hub (https://gdc.cancer.gov/) (Supplemental 
Table S1) [20]. Currently, TCGA does not provide tran-
script information for viral miRNA and mRNAs, hence 
for consistency with previous work, we estimated the 
number of viral transcripts in the dataset using the pipe-
line described previously [21].

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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Viral miRNA and mRNA detection
TCGA identifiers for samples with high and no expressed 
EBV miRNAs are listed in Supplemental Table S1. Down-
loaded binary alignment map (bam) files were converted 
to fastq files using bedtools bam2fastq (V2.29.2) [22]. 
Concatenated EBV reference (NC_007605) and human 
(hg19) genome were used to detect best placement for 
viral miRNA as previously described [21]. The miRNA 
alignment was done with recommended miRNA align-
ment parameters; zero mismatch for 8 base pair seeds 
using Burrows-Wheeler Aligner (bwa-0.7.17). To remove 
human contaminated cross mapping of viral and human 
miRNAs, we extracted uniquely aligned miRNAs using 
samtools (V0.1.19), to EBV (NC_007605) reference 
genome. miRNA fragments were then quantified based 
on their defined genomic locations (miRBase version 22) 
as counts per million (CPM) using bedtools and in-house 
parsing scripts [22, 23]. For consistency with previous 
methods on detecting EBV transcripts, for EBV mRNA 
alignment TopHat2 [24] was used and for viral miRNA 
alignment Burrows-Wheeler Aligner (bwa-0.7.17) was uti-
lized. mRNA fragments were extracted as reads per mil-
lion (RPM) using bedtools and in-house parsing scripts 
[22, 23]. For human mRNA, fastq files were aligned to 
the hg19 (GRCh37.p13) reference genome with TopHat2 
using default settings [24]. Gene expression was quanti-
fied using the Cufflinks (V2.2.0) using default settings and 
the transcript annotation was obtained from Gencode. 
The assembled transcripts were merged using Cuffmerge 
(V2.2.1) and differential expression was performed using 
Cuffdiff (V2.2.1) to identify the differentially expressed 
genes between the high and unexpressed EBV miRNA 
samples [24, 25].

Differential interactions of mRNA‑miRNA predictions 
across groups or time (Part 2 and Part 3): sample selection 
and analysis
miRNA and mRNA counts in dataset GSE148729 from 
human lung epithelial cells infected with SARS-CoV-2 
or uninfected control cells were download from Gene 
Expression Omnibus at NCBI (https:// www. ncbi. nlm. 
nih. gov/ geo). The dataset included technical duplicates, 
resulting in a total of 12 SARS-CoV-2 infected and 12 
uninfected samples. We performed differential expres-
sion analysis with DESeq2 [26]. For Part 2, differential 
expression for mRNA and miRNAs were determined for 
SARS-CoV-2 compared to uninfected control samples at 
four hours (h), 12 h and 24 h after infection after remov-
ing all genes with at least one count in fewer than two 
of the six samples. For Part 3, differential expression for 
mRNA and miRNAs were determined for SARS-CoV-2 
infected samples at 4 h versus (vs) 12 h, 4 h vs 24 h, and 
12 h vs 24 h after removing all genes with at least one 

count in fewer than seven of the 12 samples. For assess-
ment of predicted mRNA-miRNA relationships in Part 
3 during COVID infection RNA sequencing files were 
aligned to hg38 reference genome (GRCh38, assembly 
accession GCA_000001405.27) utilizing STAR  (2.7.9a) 
[27]. RSEM (v1.3.2) was used for mRNA transcript quan-
tification and DESeq2 was utilized for differential expres-
sion for mRNA [28, 29]. The miRNA alignment was 
done with recommended miRNA alignment parameters; 
zero mismatch for eight base pair seeds using Burrows-
Wheeler Aligner (bwa-0.7.17). miRNA fragments were 
then quantified based on their defined genomic locations 
(miRBase version 22) as counts per million (CPM) using 
bedtools and in-house parsing scripts (24, 27).

COVID‑19 Sample collection
Confirmatory COVID-19 data was generated through 
the Penn state PRIDE program. Blood samples had dif-
ferent collection and/or transportation requirements 
depending upon their research needs and were collected 
and transported according to PRIDE Program BioReposi-
tory standard operating procedures (procedure for EDTA 
blood and serum attached). Routinely, PRIDE Program 
blood samples were obtained during clinically ordered 
blood draws as extra tubes following collection of the 
clinically ordered tubes. Orders for the extra research 
tubes were entered as an electronic lab order or ordered 
manually and contained instructions for the phleboto-
mist for the collection of additional tubes of blood (less 
than 30 ml total volume).

RNA extraction
Blood samples were collected from a total of eight 
patients (four COVID-19 infection patients and four 
patients without infection). RNA was extracted from 
shield samples using TRIzol™ LS Reagent (Invitrogen, 
10,296,010) and Direct-zol™ RNA MiniPrep Plus kit 
(Zymo Research, R2072). Briefly, samples were lysed by 
adding 750 μl or 1.5 mL of TRIzol™ LS Reagent into 250 μl 
or 750 μl (RNALater preserved samples) of each sample 
then extraction was completed following the manufactur-
er’s protocol with the DNase I treatment. The collected 
RNA was used for miRNA and mRNA sequencing.

RNA sequencing
For RNA sequencing, ribosomal RNA was depleted 
with Ribocop rRNA and Globin Depletion Kit Human/
Mouse/Rat (Lexogen, 145) and libraries were prepped 
with theCORALL Total RNA Library Prep Kit (Lexo-
gen, 119) following the manufacturer’s protocol using 
10-150 ng of RNA... The libraries were quantified by size 
and quality-checked (QC) on an Agilent Technologies 

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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2100 Bioanalyzer. Libraries were then pooled to four nM, 
diluted and sequenced on the NovaSeq 6000 using the S2 
flow cell with 2 × 100 reads aiming for 25 million reads 
per sample.

miRNA sequencing
For miRNA sequencing QIAseq® miRNA Library Kit 
(Qiagen, Germany) was utilized following the manufac-
turer’s protocol. Briefly, 3′, followed by 5′ ligation was 
performed on the RNA followed by reverse transcrip-
tion followed by library prep with amplification. QC 
and size quantification was performed for all samples 
on an Agilent Technologies 2100 Bioanalyzer. Librar-
ies were then pooled to four nM and sequenced on the 
NovaSeq 6000 using the S2 flow cell with 2 × 100 reads 
aiming for 10 million reads per sample.

Resource: miRanda target prediction for multiple 
organisms
As a resource for users, we have processed and pro-
vided multiple organisms miRanda target predictions 
included in the package. All miRNA sequence files 
were obtained from miRBase version 22. miRanda was 
used for miRNA target prediction across 3′ UTR or 
across genome of Homo sapiens (hg19), Mus musculus 
(mm10), Drosophila melanogaster (dm6), Caebirhab-
ditis elegans (c-elegans)(WBcel235), Epstein barr virus 
(EBV) (NC_007605), Human cytomegalovirus (HCMV) 
(NC_00627) and Kaposi sarcoma herpes virus (KSHV) 
(NC_009333.1) build. The final results included total 
miRanda score, folding energy, seed match score, 
and alignment characteristics score. These results are 
accessible as organism-specific options though the 
mirTarRnaSeq package. To analyze data from addi-
tional organisms, the user can either run their own 
miRanda prediction or contact the authors for assis-
tance. The actual code for mirTarRnaSeq is compatible 
with any organism as long as the users provide com-
patible miRanda files for their organism, if not already 
included in the package. Other predictive models of 
miRNA-mRNA targeting such as TargetScan can also 
be used as input. In this analysis we demonstrate the 
package using human and EBV miRNAs with matching 
RNAseq.

Tools used for statistical analysis and graphical purposes
The scripts for all analyses are available at: https:// github. 
com/ DataS cienc eGeno mics/mirTarRnaSeq_Paper.git . 
The included vignettes also provide a clear description 
of the tool capabilities, inputs, outputs and analyses of 
each step. All plots were generated using ggplot2. Cell 

type deconvolution was performed by Gene Expression 
Deconvolution Interactive Tool (GEDIT) [30]. Euclidean 
distance was measured for hierarchical clustering using 
the pheatmap package (v 1.0.12). vizNetwork (v 2.0.9) was 
used for visualization and distance estimation of network 
plots. “http:// biore nder. com/” was used for the cover fig-
ure’s sequencer image.

Results
Overview of mirTarRnaSeq
mirTarRnaSeq is an R package for statistical quantita-
tive assessment of miRNA-mRNA expression relation-
ships within the same sample. A user can simply identify 
if there is enough statistical evidence of the predicted 
interactions between miRNA-mRNA actually occurring, 
through flexible p-value and adjusted p-value assignment 
(not constrained to P < 0.05) and by using the appropri-
ate model of analysis tailored to their dataset and bio-
logical question. A summary of the methods, inputs, and 
results from mirTarRnaSeq is provided in Supplemental 
Table S2. The investigated relationships between miRNA-
mRNA could be predetermined (known or evaluated 
through other packages) by the user choice or they could 
be unknown (and evaluated by mirTarRnaSeq) across 
datasets. mirTarRnaSeq is also useful for predicting other 
non-coding RNA (ncRNA) relationships with miRNAs 
for example in cases where circular RNAs (circRNAs) 
function as sponges, miRNAs increase can positively 
correlate with circRNA expression. The flexibility of 
mirTarRnaSeq for detecting not only negative but posi-
tive relationships allows for this type of analysis. mirTar-
RnaSeq requires (inputs) count, count/transcripts per 
million (C/TPM) or reads per kilobase of transcript per 
million mapped reads (RPKM) matrix for both miRNA 
and mRNA samples (if TPM and RPKM are used we sug-
gest using the scale parameter for regression) (Supple-
mental Table S2).

For time point or phenotypic differential expres-
sion (DE) data we recommend using fold change (FC). 
Therefore any experimental approach that can be used 
to generate FC data, such as next-generation sequencing 
or microarrays, can be analyzed in Parts 2 or 3. If there 
are multiple timepoints for comparison, each interval 
can be compared pairwise. As an option, based on the 
organism of interest, the mRNA gene list can be filtered 
based on the presence of previously reported miRNA-
mRNA interactions predicted by miRanda (prediction 
by miRNA-mRNA folding energy, miRNA-mRNA length 
of interaction, evolutionary conservation of the miRNA 
and overall miRanda Scoring). In the current package we 
have already run and support four eukaryotic organisms 
(human, mouse, Drosophila, and c-elegans) and three 
viruses (EBV, HCMV, KSHV) interaction with their own 

https://github.com/DataScienceGenomics/mirTarRnaSeq_Paper.git
https://github.com/DataScienceGenomics/mirTarRnaSeq_Paper.git
http://biorender.com/
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genome and human genome). mirTarRnaSeq is compat-
ible with any organism as long as the user provides com-
patible miRanda / TargetScan predictions. For input file 
guidance and functionality of each part of the analysis 
please refer to (Supplemental Table S2).

mirTarRnaSeq can assess the miRNA-mRNA rela-
tionships using several statistical models. These models 
are either Gaussian, negative binomial, Poisson, zero-
inflated Poisson, zero-inflated negative binomial, or 
the user can choose the multi-model function, where 
across samples, the best fit model for every miRNA-
mRNA relationship is selected. The latter is done 
through comparison of Akaike information criterion 
(AIC) for model selection [31]. After determining the 
appropriate model, and depending on the method of 
analysis, the package can make statistical predictions 
and report significant miRNA-mRNA relationships/
correlations across miRNA and mRNA datasets (Fig. 1).

To predict miRNA-mRNA relationships, mirTar-
RnaSeq employs four models based on the user’s pro-
posed biological question.

Univariate model Y  =  β0 + β1 χ1  +  ε. ⋅
Multivariate model Y  =  β0 + β1 χ1  +  β2 χ2  +  ε⋅
Interaction/Synergistic model Y  =  β0  +  β1 χ1  +  

β2 χ2  +  β3 χ1 χ2  +  ε⋅
The first method (Part 1) determines the miRNA-

mRNA relationship using three types of regression anal-
yses depending on the biological question. Regression 
analyses can be performed for each transcript. A. If the 
user is interested in univariate relationships between one 
specific miRNA and one specific mRNA across samples, 
or relationship of all miRNAs in regards to all mRNAs 
of interest (one to one relationship across samples) the 
package will first perform a univariate regression analy-
sis, where Y is the mRNA expression count/CPM/TPM/
RPKM (dependent variable), x1 is the miRNA expression 

Fig. 1 Overall pipeline for mirTarRnaSeq. Part 1: In order to assess miRNA-mRNA relationship across samples, count, transcript/count per million 
(T/CPM) or read per kilobase per million (RPKM) matrix for miRNA/mRNA sequencing are used as input. The user should do an initial modeling 
of the data to pick the best regression mode matching their dataset based on the Akaike information criterion (AIC) score. After choosing the 
appropriate regression model, and organism of interest (for miRanda comparison), the user can now run their model and get a report of the 
significant miRNA-mRNA relationships to observe if the dataset reflects statistical evidence for the latter relationship. Part 2 (correlation) investigates 
if there is miRNA-mRNA relationship across time points (T1, T2, T3, ...) or conditions (eg. miRNA-mRNA relationship in high temperature versus cold 
temperature, verus medium temperature) through correlation. After initial correlation on miRNA-mRNA fold change, a background distribution is 
estimated through sampling and P value is estimated by ranking of the miRNA-mRNA relationship correlation across the background distribution 
correlation. Part 3 (interrelation) investigates if there is a miRNA-mRNA relationship between two time points (T1 and/or a control and condition. 
For this we estimate the difference between the miRNA-mRNA fold change. We then form a background distribution for random differences in fold 
chance and then rank our difference values against the background distribution to get P value, FDR and test-statistics estimates
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count/CPM/TPM, β1 is the association of miRNA and 
mRNA, β0 is the intercept and ε represents the random 
error for the model. The package then reports on the sig-
nificant miRNA-mRNA relationships based on the model 
p-values. B. If the user is investigating miRNA-mRNA 
relationships in the presence of another miRNA of inter-
est a multivariate model can be employed, where β2  x2 
represents the secondary miRNA weight of association 
with mRNA for the independent variable (miRNA 2). 
C. In the cases where the user is interested in identify-
ing the synergistic relationship between miRNA-mRNAs 
of interest they can use the interaction mode for their 
model analysis, where β3x1 x2 is the interaction term and 
β3 represents the association of the interaction term with 
the independent variable (mRNA).

In the multivariate and interaction models of Part 1 
mirTarRnaSeq, the user can choose to run all miRNA-
mRNA relationships; however this option limits the user 
to investigating relationships two miRNAs at a time. The 
user can also investigate more than two miRNA-mRNA 
relationships individually with the option for testing pos-
itive or negative miRNA-mRNA relationships (Fig. 1). D. 
Finally, for sparse partial correlation miRNA-mRNA pre-
dictions, we have made mirTarRnaSeq compatible with 
the SPONGE elastic regularized linear regression model 
algorithm [32]. We recommend the users to choose this 
option if they have a large number of samples > 50.
r =

Σ( xi−x) ( yi−ȳ )
√

Σ( xi−x)2 Σ( yi−ȳ)
2

The second method of analysis, Part 2 (correlation), 
estimates if there is a significant miRNA-mRNA correla-
tion in three or more time points with or without repli-
cates across samples to estimate the correlation between 
miRNA and mRNAs of interest across time. The esti-
mated fold-change result of differential expression analy-
sis on miRNA and RNA sequencing is used for analysis. x 
is a vector that contains pair-wise fold change of miRNAs 
between all time points, and y is a vector containing pair-
wise fold change of mRNAs between all time points. 
Where r is the correlation coefficient for the relationship 
between a specific miRNA and specific mRNA across 
time points in the sample set, xi is miRNA FC between 
two time points, x

_
 is mean of miRNA fold change across 

time points, yi is the mRNA fold-change in one between 
two time points and y

_

 is the mean of mRNA fold-change 

across time points. We then estimate the p-value by com-
paring r to a background null distribution generated by 
calculating correlations for randomly selected miRNA-
mRNA relationships across the sample set (default 100 
permutations) (Fig. 1).

d = | x − y

The third method (interrelation) (Part 3) is for estimat-
ing the miRNA-mRNA interactions between two time 
points. In this scenario the absolute difference between 
miRNA-mRNA is d, and is estimated between the two 
points. x is the fold change for an individual miRNA and 
y is the fold change for an mRNA. We then estimated 
p-value by comparing d to a randomly selected back-
ground distribution of miRNA-mRNA differences across 
the sample set and ranking (Fig. 1).

Implementation and availability
mirTarRnaSeq is an open source freely available package 
on Bioconductor DOI: https:// doi. org/ 10. 18129/ B9. bioc. 
mirTa rRnaS eq. Users can install the package using Bioc-
Manager 3.14 or higher:

if (!requireNamespace(“BiocManager”, quietly = TRUE))
install.packages(“BiocManager”)
BiocManager::install(“mirTarRnaSeq”)
The vignette provides an example walk through of the 

different types of analyses. In short, there are three main 
biological questions in regards to miRNA-mRNA rela-
tionships that mirTarRnaSeq analysis enables the users 
to answer. The required input for mirTarRnaSeq use is 
(a) matching miRNA/mRNA sequencing datasets (one 
miRNA and one mRNA file) and (b) miRNA-mRNA 
prediction file. The default compatible file for this is a 
miRanda prediction file, but users may adapt outputs 
from TargetScan.

For details on the specific biological questions for 
miRNA-mRNA relationships and details on functions 
and input files used for every section the vignette, Sup-
plemental Table S2 and Fig. 1 can be accessed.

Part 1. mirTarRnaSeq analysis of 25 samples with high EBV 
miRNA expression
We applied mirTarRnaSeq to TCGA samples from 
25 matching miRNA and mRNA sequencing samples 
from patients with stomach adenocarcinoma with high 
levels of EBV miRNA expression and 25 patients with 
no EBV miRNA expression (Supplemental Table S1). 
EBVGC forms 8-16% of STAD [21]. EBV presence in 
the epithelial cells of gastric cells has been associated 
with mucosal damage and the presence of viral genes 
such as BARF1 has been shown to promote cell pro-
liferation [33]. It has been shown that in TCGA data 
~%8 of gastric adenocarcinoma samples express high 
levels (>  104 CPM) of EBV miRNAs and 23% show no 
traces of EBV miRNA or mRNA [21]. We took advan-
tage of the fact that 8% of gastric carcinoma samples 
found in TCGA have high expression of EBV to ana-
lyze this data using mirTarRnaSeq and computationally 
decipher the potential targets of EBV miRNAs in this 
matching miRNA-mRNA dataset. In addition to the 

https://doi.org/10.18129/B9.bioc.mirTarRnaSeq
https://doi.org/10.18129/B9.bioc.mirTarRnaSeq
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matching 25 EBV positive samples we downloaded 25 
gastric adenocarcinoma EBV negative matching mRNA 
and miRNA sequencing samples from TCGA (Supple-
mental Table S1). The average EBV miRNA expression 
in the high group was 7615.75 TPM (median = 313.69 
TPM) (Supplementary Fig. S1A). In order to predict the 
human genes that are targeted by EBV miRNAs in the 
high samples in comparison to those samples with no 
detected EBV miRNA expression we performed a differ-
ential mRNA expression analysis between EBV positive 
and EBV negative samples (Supplementary Fig. S1B and 
S1C). Since no EBV mRNA was expressed in the sec-
ond set of samples, we included all the expressed EBV 
mRNAs in the EBV high group to identify targets of 
EBV miRNAs on the EBV genome (Supplementary Fig. 
S1C). We first modeled the miRNA-mRNA relation-
ship using Gaussian, Poisson, negative binomial, zero 
inflated Poisson and the zero inflated negative binomial 
models available in the package. The Gaussian assump-
tion yielded the smallest AIC, implying this was the 
most appropriate distribution for analysis (Fig. 1A, Sup-
plementary Fig. S2A).

Epstein Barr virus miRNAs targeting human genes
We applied mirTarRnaSeq to investigate if potential 
miRNA-mRNA interaction predicted by tools such as 
miRanda were differentially regulated. We observed 
120 genes with evidence of EBV miRNA human target 
mRNA regulations (supplementary Table S3). Thirty-
seven targets were differentially regulated in our univari-
ate miRNA-mRNA analysis, 58 genes from a multivariate 
regulation analysis, and 32 from an interaction regulation 

analysis (Fig.  2A, supplementary Table S2). One gene, 
MMP7, a molecule previously shown to be regulated by 
EBV presence, was shown to be the target of EBV miR-
NAs through all three regression models (Fig.  2B, Sup-
plementary Fig. S2B & S2C )[34]. The PCG gene was 
shown to have miRNA-mRNA regulation through both a 
univariate and interaction model while the EGR2, CES1, 
APCDD1, and CRABP2 were regulated by both univari-
ate and interaction models across the dataset. Of these 
120 human genes, 88 were concurrently predicted by 
miRanda to be potential targets of these miRNAs as well 

Fig. 2 mirTarRnaSeq estimation of Epstein barr (EBV) miRNA targets on human 3′ UTR. A. Assessment of the miRNA-mRNA relationships across 
our sample cohort utilizing poisson (P), Gaussian (G), negative binomial (NB), zero inflated poisson (ZIP), and zero inflated negative binomial (ZNB) 
modes and comparing the AIC of these models. Note lower AICs generally report better performance. B. Univariate regression model estimation for 
MMP7 and ebv-mir-bart18-3p. Each dot represents a sample, y -axis denoted scaled (X10) TPM of miRNA expression and the x-axis represents the 
MMP7 mRNA RPKM

Table 1 Overall Model Results for EBV miRNAs Targeting Human 
and EBV Genomes. # represents the number of miRNAs or 
mRNAs. “_Human” denotes EBV miRNAs targeting human 3’UTR 
and “_EBV” emphasizes EBV miRNAs Targeting EBV genome. 
CoPredicted_miRanda defines those miRNA-mRNA regression 
models detected to have a significant relationship (< 0.05 
adjusted p value) by mirTarRnaSeq as well as miRanda prediction

Model #miRNAs #mRNA #CoPredicted_
miRanda

% miRanda_
Co‑Prediction

Univariate_
Human

37 37 28 62.16

multivari‑
ate_Human

19 58 16 81.03

Interaction_
Human

32 32 29 71.88

Univariate_
EBV

17 5 6 60

multivari‑
ate_EBV

19 11 6 45.45

Interaction_
EBV

25 20 23 65
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(miRanda score > =140, N of potentially predicted targets 
by miRanda = 23,346 potential targets) (supplementary 
Table S2). Table 1 demonstrates the details of the results 
of each model with the number of potential miRNA and 
genes regulated predicted by each. We then estimated the 
R 2 value across the samples for miRNA-mRNA relation-
ship to ensure the results of our predictions with another 
measure (Fig.  3A). We identified negative correlation 
for all univariate miRNA-mRNA models and at least 
one negative correlation for miRNA-mRNA multivari-
ate and interaction models when run in a combination 
of two (Fig. 3A). Our univariate analysis identified mul-
tiple miRNAs targeting the same mRNA supporting the 

previous observation that more than one miRNA might 
be required for repression/downregulation of a gene [18]. 
Pathway analysis, with Reactome, revealed that targets of 
the genes are involved in the immune regulation (n = 22), 
cell envelope formation or trafficking (n = 16), or vari-
ous other cellular functions (n = 50) (Fig. 3A and Supple-
mental Table S3 )[35]. We next performed human mRNA 
expression deconvolution to further investigate specific 
cell type transcripts that EBV miRNA target [30]. We 
found high levels of targeting on the CD105+ endothelial 
cells, monocyte, CD4+ T cells, NK cells, smooth mus-
cle cells, CD19+ B cells and CD34+ cells across samples 
(Fig. 3B).

Fig. 3 Targets of Epstein barr (EBV) miRNAs across human 3’UTR and EBV genome. A. Correlation heatmap for significant targets of EBV miRNAs 
on human 3’UTR. X-axis represents the human mRNA transcript names and the y-axis represents the viral miRNA names. Model type denotes 
the specific type of model which was used to make the prediction. Regulation annotation is obtained either through Reactome pathway 
prediction or specific literature on the gene in correlation with EBV or immune system regulation. Further details on the regulation can be found 
on Supplemental Tables S2 and S3. B. Heatmap of cell-type deconvolution for targets of EBV miRNAs on the human 3′ UTRs shown across the 25 
samples. X-axis represents the sample names and Y-axis represent the cell type identified with genes targeted by miRNAs. C. Correlation heatmap 
for significant targets of EBV miRNAs across EBV genome. Model type denotes the specific type of model which was used to make the prediction. 
Regulation annotation is obtained through literature search. X-axis represents EBV mRNA names, and Y-axis represent EBV miRNA names
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Epstein Barr virus miRNA targeting its own genes
In order to identify the targets of EBV miRNA on its own 
genome, we first modeled the miRNA-mRNA relation-
ships and the Gaussian model again yielded the lowest 
estimated AIC (Supplementary Fig. S2A). We found 29 
unique mRNAs predicted to be targeted by EBV miRNAs 
(Supplemental Table S4). Of these, 17 mRNAs were also 
predicted to be targets of EBV miRNAs by miRanda while 
12 were uniquely identified by mirTarRnaSeq (Table  1). 
BILF1 gene was the only gene which was predicted to be 

an miRNA target by both the univariate and the interac-
tion model (Supplemental Table S4). Concordant with 
the results obtained from EBV miRNAs targeting of host 
mRNAs, most of the viral mRNAs identified as potential 
targets were targeted by other multiple EBV miRNAs 
(Fig.  3C). The one gene not induced by viral lytic acti-
vation was EBNA1, which is expressed at both lytic and 
latent phase. However, it is known that high levels of this 
transcript induce a lytic state hence downregulation of 
this gene is still consistent with repression of a persistent 

Fig. 4 Predicted miRNA-mRNA correlations following SARS-CoV-2 infection of lung epithelial cells using mirTarRnaSeq. A. Distribution plot of 
miRNA and MRNA log fold changes (LFC) of SARS-CoV-2 infected across the three time points versus uninfected control cells. The red dots represent 
the correlations which are significant between the miRNAs and mRNA predicted by mirTarRnaSeq and miRanda (p < 0.05). B. Box plot of mean 
fold changes across three time SARS-CoV-2 infected versus uninfected control cells for all genes belonging to a specific pathway characterized by 
Reactome (p < 0.05). C. Network of targets and enriched pathways predicted to be correlated with miRNA expression predicted by both miRanda 
and mirTarRnaSeq significantly and Reactome respectively. Each node represents a gene, subpathway and pathway respectively, the edge distance 
is estimated by Barnes Hut simulation for gene-pathway connection. The color represents the pathways the targets belong to, predicted by 
Reactome (P mirTarRnaSeq and Reactome < 0.05) (Supplemetal_File 1). D. Network plot of all the targets of miRNAs involved in “Immune System”. 
Each node represents a gene, subpathway and pathway respectively, the edge distance is estimated by Barnes Hut simulation for gene-pathway 
connection. The color represents the pathway the targets belong to predicted by Reactome (Cytokine Signaling, innate and adaptive immunity)
(Supplemetal_File 2)
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lytic state by EBV miRNAs to aid in viral latency [36]. 
This lytic to latent transition and regulation through 
EBV miRNAs has been previously reported, as EBVGC 
is known to go between latencies (I and II) expressing 
only EBERs in addition to LMP2A and miR-BARTs [37]
(Fig. 3C and Supplementary Fig. S2A, S2D and S2E).

Part 2. mirTarRnaSeq time course analysis of SARS‑CoV‑2 
infected human lung epithelial cells (correlation)
Human mRNA targets of human miRNAs were 
predicted in triplicate Calu-3 lung epithelial cells 
collected 4 h, 12, and 24 h after infection with SARS-
CoV-2 or uninfected control cells. DESeq2 was used 
to calculate differential expression for mRNA and 
miRNAs for SARS-CoV-2 infected versus uninfected 
control cells at each timepoint (Supplementary Fig. 
S3A,S3B,S3C,S3D,S3E and S3F). Across the three 
timepoints, 11,627 mRNAs and 687 miRNAs were 
included in the miRNA-mRNA correlation analysis, 
leading to 7,987,749 potential mRNA-miRNA inter-
actions (Fig.  4A), including 37,519 with a miRanda 
interaction score greater than the 99th percentile of 
all miRanda interaction scores (miRanda score > 168). 
With a significance threshold of p <  0.05, 447,666 
mRNA-miRNA correlations were significant, of which 
2189 had a miRanda score > 168 (red dots in Fig. 4A). 
Non-significant interactions had a broader range of 
miRNA-mRNA correlation values than significant 
pairs (Supplementary Figure  4A). Reactome analy-
sis of 1350 unique genes predicted to be regulated 
by miRNAs identified a complex network with 2416 
nodes and 10,582 edges potentially regulated/involved 
with host miRNAs. Reactome pathway analysis of the 

differentially expressed genes identified 156 immune 
system genes with increased expression at 24 h after 
infection (Fig. 4B). Comparing those correlations with 
miRanda score above the 99th percentile (miRanda 
score > 168) to the entire input, there was enrich-
ment for mRNAs involved in functions related to 
synaptic transmission and Fc-gamma receptor sign-
aling involved in phagocytosis (Supplementary Fig-
ure  4B). When both input genes and selected genes 
are subset to those associated with the gene ontology 
term “immune response”, selected genes are enriched 
for functions related to Fc receptor signaling (FcRs) 
(Fig.  4C). A total of 7665 significant miRNA-mRNA 
interactions with a correlation of at least − 0.85 (Sup-
plemental Table S5). Four hundred and forty-six of 
these interactions intersected with miRanda binding 
predictions. Reactome analysis of the 416 total inter-
actions identified enrichment for biological functions 
including signal transduction, gene transcription, and 
metabolism of proteins (Fig.  4C). The use of both 
miRanda and TargetScan scores subset this list further, 
highlighting the potential to use multiple binding pre-
dictions in this package (Fig.  4D). Six miRNA-mRNA 
pairs had a miRanda score > 168, differential expres-
sion p-values < 0.05, and mirTarRnaSeq p-value < 0.05 
(Table  2). Those pairings included miR-93-5p and 
MAPK1, a previously hypothesized regulatory pairing, 
and miR-23c and ABL2, and 5 of the 6 were also pre-
dicted as targets for miRNAs by TargetScan [14, 39–
41]. When subsetted on the reactome term “Immune 
System”, functional enrichment was identified for 
cytokine signaling, innate immune system, and adap-
tive immune system (Fig. 4D).

Table 2 miRNA-mRNA Correlations Predicted by mirTarRnaSeq and Significantly Differentially Expressed in SARS-CoV-2 Infected 
vs Uninfected Controls Across 3 Time Points. Significant correlations between miRNA-mRNA for SARS-CoV-2 infected vs uninfected 
control cells differentially miRNA and mRNA expression (P < 0.05). Pink cell color signifies previously known miRNA-mRNA interactions 
(Tarbase v8), and green cell color represents known associated with endothelial damage due to SARS-CoV-2 infection [38]. Correlation 
value is the level of inverse correlation of miRNA and mRNA regulation estimated by mirTarRnaSeq observed in the dataset (− 1,0), 
where − 1 is at the most inverse correlation observed in the dataset). Target scan CSP represents context score percentile (between 1 
and 100, where 100 is the highest score possible). mirTarRnaSeq p value calculation is described in the results section, the DE p value is 
estimated from differential expression analysis performed using DESeq2. NA represents a site not predicted as the target of miRNA by 
TargetScan

miRNA Gene Symbol Correlation Value miRanda Score TargetScan 
CSP

mirTarRnaSeq 
p value

p value mRNA DE p value miRNA DE

hsa-miR-17-5p SSH1 −0.99 169 94 0.01807 0.001407784 0.00074288

hsa-miR-93-5p MAPK1 −0.99 169 96 0.0005 0.038078634 0.001500608

hsa-miR-93-5p HOMER2 −0.99 169 NA 0.00293 0.028214162 0.001500608

hsa-miR-23c ABL2 −0.99 173 74 0.00136 0.027869177 0.0258363

hsa-miR-374a-5p LARP1 −0.99 171 65 0.03374 0.01177344 4.25E-11

hsa-miR-429 LONRF2 −0.99 169 68 0.02127 0.018978845 1.01E-05
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Part 3. mirTarRnaSeq time course analysis of SARS‑CoV‑2 
infected human lung epithelial cells for two time points 
(Interrelation)
In order to identify differences in miRNA-mRNA 
relationships between two timepoints, we calculated 
differential expression for mRNA and miRNAs for 
SARS-CoV-2 at 4 h versus (vs) 12 h, 4 h vs 24 h, and 12 h 
vs 24 h (Supplemental Fig.  5). Across the three inter-
vals, a total of 11,721 mRNAs and 725 miRNAs were 

included for at least one time interval analysis. Using 
significance threshold of p < 0.01 and a miRanda inter-
action score greater than the 99th percentile of all 
scores (miRanda score > 168), there were 222 significant 
correlations at 4 h vs 12 h, 187 significant correlations 
at 4 h vs 24 h, and 498 at 12 h vs 24 h.. miR-155-3p was 
predicted to target 3 different mRNAs during the 12 h 
vs 24 h interval (Fig. 5A). During the 4 h vs 12 h interval, 
miR-483-3p was predicted to target 5 mRNAs (Fig. 5B) 

Fig. 5 Predicted Targets of human miRNAs across time following SARS-CoV-2 infection of lung epithelial cells identified by mirTarRnaSeq through 
interrelation analysis. Interrelation heatmap representing significant (mirTarRnaSeq adjusted p < 0.1 and miranda score 169, for miRNA and mRNA 
differential expression (DeSEq2 adjusted p < 0.1) and mirTarRnaSeq predictions) miRNAs and mRNAs at A 4 to 12 hrs, CHEK1 is also a predicted 
target of hsa-miR-155-3p based on TargetScan algorithm. B 12-24 hours C. 4 vs 24 hrs heatmap of all significant miRNA-mRNA interrelations 
predicted by both mirTarRnaSeq and miRanda. The heatmap units are the absolute difference between miRNA and mRNA fold changes (FC); gray 
color represents no significant interrelation identified by mirTarRnaSeq. For all heatmaps, columns represent the significantly differentially expressed 
miRNAs, vs the mRNA targets shown in rows identified by mirTarRnaSeq. D GO enrichment analysis for all the targeted genes in part C which are 
targets of human miRNAs in 4-24 hrs time point interval. E Comparison of mirTarRnaSeq miRNA-mRNA interrelations analysis with miRanda and 
Target scan filtering step predictions. F Gene ontology enrichment for all mRNAs predicted to be miRNA targets by mirTarRnaSeq (any miRanda 
score). G Heatmap of all miRNA-mRNA interrelations predicted by mirTarRnaSeq and miRanda in patient blood after COVID-19 infection (n = 8, 
4 with COVID-19, 4 without COVID-19). The heatmap units are the absolute difference between miRNA and mRNA fold changes (FC); gray color 
represents no significant interrelation identified by mirTarRnaSeq
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Table 3 miRNA-mRNA Interrelation Involving Cytokine Immune Response Genes for 4-12 and 12-24 hours. Immune gene specific 
mirTarRnaSeq p-value significant predictions (adjusted p < 0.05) with above 169 miRanda binding prediction for part 2 (miRNA-mRNA 
correlation) with mRNA differentially significantly differentially expressed. Fold change (FC) adjusted p value (padj) are from DESeq2 
predictions. Interactions with at least mRNA padj significance are shown. Immune_pathway prediction is through reactome pathway 
enrichment analysis. mirTarRnaSeq provides the option to choose the type of miRNA-mRNA relationship as demonstrated by Type_
Putative_miRNA Regulation. Target scan CSP represents context score percentile (between 50 and 100, where 100 is the highest score 
possible)

a Indicates mRNA/miRNA that is also differentially expressed in blood from patients with COVID-19.  

Symbol miRNA log2FC_mRNA padj_mRNA log2FC_miRNA padj_miRNA Type_Putative_
miRNA Regulation

TargetScan CSP Time Point

GBP4 hsa-miR-224-5p −6.875a 0 −0.628a 0.09 Coregulation 
(increase)

62 4-24

IFNAR1 hsa-miR − 4726-5p 0.414a 0.0915 5.17 0.28 Coregulation 
(increase)

72 4-24

IL10RA hsa-miR-940 −4.67a 7.96E-17 1.119 0.41 Inverse Regulation 84 4-24

IL10RA hsa-miR-548d-3p -4.67a 7.96E-17 1.08 0.99 Inverse Regulation 77 4-24

IST1 hsa-miR-4726-5p −0.306a 0.0478 5.17 0.18 Inverse Regulation 89 4-24

ZC3HAV1 hsa-let-7i-3p −4.34 0 0.45a 0.06 Inverse Regulation 81 4-24

NLRP3 hsa-miR-1226-5p −2.82 0.02 0.79 0.99 Inverse Regulation 47 4-24

RBPJL hsa-miR-1180-5p −6.8 0.07E-2 1.08 0.41 Inverse Regulation 71 4-24

TNFSF13B hsa-miR-30d-3p −5.96a 8.15E-20 −0.41 0.39 Coregulation 
(reduction)

99 4-24

CD38 hsa-miR-548o-3p −5.08 2.84E-07 0.03 0.99 Inverse Regulation 80 4-24

CD38 hsa-miR-3173-3p −5.08 2.84E−07 -0.69a 0.55 Coregulation 
(reduction)

98 4-24

CD38 hsa-miR-939-5p −5.08 2.84E-07 0.82a 0.99 Inverse Regulation 88 4-24

APO3 hsa-miR-6735 − 5p -5.41a 3.86E-44 −1.12a 0.99 Coregulation 
(reduction)

81 4-24

ZC3HAV1 hsa-miR-589-3p −4.34 0 0.38a 0.99 Inverse Regulation 30 4-24

HLA-DOB hsa-miR-6886-3p −6.69 8.95E-16 0.79 0.99 Inverse Regulation 48 4-24

CD40 hsa-miR-873-3p −2.77 7.19E-22 0.96 0.99 Inverse Regulation 73 4-24

CSF1 hsa-miR-6763-5p −3.85 5.42E−42 0.16 0.99 Inverse Regulation 76 4-24

TRAF1 hsa-miR-3605-5p -4.92a 2.19E-16 −0.47 0.99 Coregulation 
(reduction)

39 4-24

LIF hsa-miR-4726-5p −0.22 0.1 5.17 0.27 Inverse Regulation 68 4-24

NFKBIA hsa-miR − 378a-5p -3.95a 5.16E-251 0.3 0.99 Inverse Regulation 98 4-24

IFIT2 hsa-miR-4436b-3p −7.01a 0 1.06 0.51 Inverse Regulation 84 4-24

CXCL1 hsa-miR-4640-3p −4.14 8.34E-150 0.26 0.99 Inverse Regulation 61 4-24

HLA-E hsa-miR-6734-5p −1.21 0 3.22 0.28 Inverse Regulation 94 4-12

IFI44L hsa-miR-1262 −2.46 8.05E-63 0.74 0.6 Inverse Regulation 79 4-12

IFI44L hsa-miR-330-5p −2.46 8.05E-63 −0.17a 0.6 Coregulation 
(reduction)

57 4-12

NFKBIA hsa-miR-378a-5p −3.16 2.27E-217 0.1 0.48 Inverse Regulation 98 4-12

NLRC5 hsa-miR − 331 − 3p -3.95a 4.14E-98 0.27a 0.24 Inverse Regulation 58 4-12

OAS1 hsa-miR-423-5p -3.13a 3.10E253 0.18a 0.01 Inverse Regulation 98 4-12

PML hsa-miR-7845-5p −2.6 2.06E-85 3.22 0.28 Inverse Regulation 65 4-12

TAP2 hsa-miR-7113-3p −1.66 1.22E-55 2.44 0.51 Inverse Regulation 89 4-12

TRIM22 hsa-miR-199a/b-3p −4.97 3.47E-269 1.54 0.36 Inverse Regulation 73/93 4-12

TRIM22 hsa-miR-3617 −4.97 3.47E-269 0.79 0.81 Inverse Regulation 94 4-12

TRIM5 hsa-miR-30b-3p −2.45 1.62E-82 0.50 0.19 Inverse Regulation 86 4-12

LGALS9 hsa-miR-483-3p 1.027 5.75E-17 4.26a 8.36E-10 Coregulation 
(increase)

91 12-24

IL7R hsa-miR-6747-3p 3.38a 1.05E-06 0.19a 0.99 Coregulation 
(increase)

98 12-24
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Over the 4 h vs 24 h interval, 10 miRNAs were predicted 
to target 94 unique mRNAs, 15 of which are identified 
by Reactome as having a function in the immune sys-
tem (Fig. 5C). Three miRNAs were predicted to target 
GBP4, which is an interferon-stimulated gene. Treat-
ment of SARS-CoV-2-infected lung epithelial cells with 
anti-inflammatory JAK-1/2 inhibitor Ruxolitinib led to 
decreased expression of GBP4, consistent with coregu-
lation of GBP4 mRNA by host miRNAs as a potential 
anti-inflammatory signal [42]. miR-4726-5p was pre-
dicted to target 45 mRNAs over that interval and all 
but three of the miRNAs were predicted to target more 
than one mRNA. We categorize the miRNA-mRNA 
interactions in four different terms: negative regula-
tions, where the miRNA is significantly upregulated 
and mRNA is downregulated; inverse regulation, where 
the miRNA is significantly downregulated and the 
mRNA is upregulated; coregulation (increase), where 
both the miRNA and mRNA are upregulated; and 
coregulation (decrease), where both the miRNA and 
mRNA are downregulated. Significant miRNA-mRNA 
correlations which included an mRNA gene in the gene 
ontology term “immune response” were predominantly 
involved in interferon response and cytokine signal-
ing, and the majority were inverse regulation (Table 3). 
Eighteen immune genes predicted to be targeted by 
miRNAs were differentially expressed at the 4 h vs 
24 h interval, nine at the 4 h vs 12 h interval, and only 
LAGLS9 was predicted to be targeted at the 12 h vs 
24 h interval (Table  3). At the 4 h vs 24 h interval, 331 
miRNAs were differentially expressed with an adjusted 
p-value < 0.05. At both the latter two intervals, as very 
few miRNA were differentially expressed: miR-155-3p 
and miR-4485-3p at 4 h vs. 12 h; miR-12,136, miR-4284, 
miR-4463, miR-4485-3p, miR-483-3p, and miR-6891-5p 
at 12 h vs. 24 h. miR-483-3p was predicted to target 
CREBBP, which has roles in both cytokine and inter-
feron signaling (Supplemental Tables S6, S7 and S8).

Assessment of predicted mRNA‑miRNA relationships 
during COVID‑19 infection (interrelation)
To determine if miRNA-mRNA relationships observed 
in human lung epithelial cells were relevant to clini-
cal COVID-19 infection, we repeated our analysis using 
paired mRNA and miRNA libraries which were prepared 
from blood samples of 4 patients with COVID-19 acute 
infection and 4 participants without COVID-19 infection 
(control). We performed the interrelation analysis (Part 
3) using mirTarRnaSeq, with an adjusted p-value thresh-
old of 0.05 and found 2871 mRNAs and 314 miRNAs 
with differential expression p-value based on COVID-19 

status (Supplemental Fig.  6). Twenty-five miRNAs were 
predicted to target 49 mRNAs (Fig.  5G). miR-1291 was 
predicted to target 22 different mRNAs. There was no 
functional enrichment among mRNAs predicted to 
be targets with miRanda score > 168, but among pre-
dicted targets with any miRanda score (range [140-189]), 
mRNAs were enriched for functions related to neutrophil 
response and catabolic state (Fig. 5F). Next, we identified 
shared miRNA-mRNA relationships obtained from the 
latter clinical COVID-19 infection versus control blood 
samples, and the lung epithelial COVID-19 infected cell 
experiment (Supplemental Table S9-11). Using a signifi-
cance threshold of adjusted p-value < 0.1 and a miRanda 
interaction score greater than the 99th percentile of all 
scores (miRanda score > 168), there were 54 significant 
interrelations observed in both experiments (Supplemen-
tal Table S9). miRNA and mRNA relationships identi-
fied in both experiments include IL7R, a marker of naive 
T-cells which has been identified as a marker of T-cell 
trajectories after severe COVID-19 infection [43], was 
predicted to be targeted by hsa-miR-6747-3p in both lung 
epithelial cells and patient’s blood. Hsa-miR-6735-5p and 
its target APOL3, a gene downstream of tumor necrosis 
factor alpha and involved in cytokine signaling, showed 
interrelation in both datasets predicted by mirTarRnaSeq 
[44]. LGALS9, the gene encoding Galactin 9, was identi-
fied as a target in both experiments, and has been impli-
cated in the severe cytokine response associated with 
COVID-19 [45]. CREBBP, a gene known to be altered in 
response to COVID-19 infection, and hsa-miR-483-3p 
were not only differentially expressed in patients with 
COVID-19 but also had an inverse interrelation using 
mirTarRnaSeq (adjusted p value = 0.03 and miRanda 
score 173 (range [140 -189]) concordant with the results 
obtained from the lung covid infection experiment [46].

Finally, to determine if the cytokine specific miRNA-
mRNA relationships observed in human lung epithe-
lial cells were relevant to clinical COVID-19 infection, 
we assessed shared patterns of differential miRNA and 
mRNA expression in the blood of these patients. Of the 33 
unique cytokine related miRNA-mRNA pairs predicted 
during SARS-CoV-2 infection of human lung epithe-
lial cells (Table  3 & Supplemental Table S9-11), 28 pairs 
had both the mRNA and miRNA differentially expressed 
in the blood during COVID-19 infection. Of those, 11 
also had differential mRNA expression associated with 
COVID-19 infection while 10 had differential miRNA 
expression. Three of the 27 mRNA-miRNA pairs had dif-
ferential expression of both the miRNA and mRNA: hsa-
miR-224-5p and GBP4, hsa-miR-331-3p and NLRC5, and 
hsa-miR-423-5p and OAS1 (Table 3, see asterisk).
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Discussion
microRNAs are known to have important roles in post-
transcriptional regulation of genes and in turn protein 
production across various eukaryotic and viral genomes. 
These regulatory functions are mainly dependent on 
base-pairing which influences the translation or statibil-
ity of the target mRNA molecule [6]. We demonstrated 
mirTarRnaSeq’s utility in identifying miRNA-mRNA 
relationships using publicly available datasets in TCGA 
(EBV gastric adenocarcinoma) and SRA (SARS-CoV-2 
infected epithelial lung cell lines) and found evidence 
of various known and potentially novel miRNA-mRNA 
relationships. Multiple miRNA-mRNA relationships cor-
roborated in a new dataset of blood acute COVID-19 
infection as compared to control patients.

Given the prevalence and association of EBV with vari-
ous autoimmunity, cancer and infectious diseases [47], 
we investigate the role of EBV miRNAs in regulating the 
host and its own genome’s transcription in 25 matching 
miRNA and mRNA stomach adenocarcinoma sequenc-
ing samples with high EBV infection levels [21] using 
mirTarRNASeq. Using various regression (univariate, 
multivariate and interaction/synergistic models) based 
options to identify miRNA-mRNA relationships avail-
able we unveiled previously identified and potentially 
novel EBV miRNA host mRNA interactions that could 
give insight into cell type specificity of miRNA-mRNA 
targeting in the host and EBV life cycle predictions. We 
identified multiple instances of several EBV miRNAs tar-
geting a single mRNA, which could lead to better regu-
lation of the target of interest as previously described. 
Notably, we find evidence for two novel instances of the 
EBV miRNA, ebv-mir-bart14-3p and ebv-mir-bart5-3p, 
targeting the interleukin 2 receptor subunit beta (IL2RB). 
IL2RB is well known to be a regulator of interleukin path-
ways and recently it has been reported that mutations in 
this gene result in susceptibility to EBV and CMV infec-
tions in addition to autoimmune disease [48]. We found 
evidence that a gene previously shown to associate with 
EBV infected gastric adenocarcinoma, SPP1, a member 
of the interferon gamma pathway, was targeted by two 
EBV miRNAs ebv-mir-bart15 and ebv-mir-bart5 [49]. 
Further, we report evidence for high levels of EBV miR-
NAs in CD105+ endothelial cells, monocytes, CD4+ T 
cells, NK cells, smooth muscle cells, CD1 + 9 B cells and 
CD34+ cells. Previous studies have reported deregula-
tions of aforementioned pathways in EBV infections 
[50–55]. By evaluating the EBV miRNA host and viral 
mRNA interactions, there was strong evidence for a tran-
sition from viral lytic to latent cycle in these cells. A vast 
number of EBV lytic mRNAs potentially targeted by EBV 
miRNAs across this sample cohort conferring a lytic to 
latent transition in the majority of the samples (24/25). 

Five different EBV miRNAs were identified with three 
different regression models to target the MMP7 gene 
(Supplemental Table S3). MMP1, is upregulated by the 
EBV proteins LMP1 and Zta and upregulation of MMP1 
has been shown to confer the invasive properties of EBV 
associated cancers [34]. As Zta is a lytic gene [56] and we 
observe an overall trend in lytic to latency in the stomach 
adenocarcinoma cells, we confirm that EBV miRNA are 
involved in maintaining EBV latency through regulation 
of the host and their own transcripts. Leveraging various 
regression methods (Part 1) provided in mirTarRnaSeq 
we found evidence for novel, potentially important rela-
tionships for EBV miRNAs and host and viral transcripts 
through various regression models, which warrant fur-
ther in vitro and potentially other in vivo investigations.

Part 2 and Part 3 analyzed SARS-CoV-2 infection from 
two perspectives using time point miRNA-mRNA corre-
lation analysis: viral effect at 3 time points after infection 
and viral effect across 3 time intervals, respectively. The 
analysis is agnostic to the specific times selected, so for 
some experiments it may be that more comparisons over 
longer periods may be beneficial. Part 2 allows for pre-
diction of miRNA-mRNA correlations based on inversely 
correlated expressions in all included time points. Rela-
tionships predicted with high confidence (high score) 
by miRanda were enriched for strongly negative correla-
tions in Part 2, supporting the plausibility of the miRNA-
mRNA binding. Immune-relevant mRNAs that were 
predicted targets of miRNAs during SARS-CoV-2 infec-
tion were primarily those related to innate immunity and 
cytokines (Fig. 4). It has been argued that differences in 
the innate immune response are responsible for the het-
erogeneity of outcomes after SARS-CoV-2 infection [57]. 
Our analysis identified many potential miRNA regulators 
of cytokine signaling and endothelial response to inflam-
mation following infection with SARS-CoV-2. Genes 
predicted to be targets include MAPK1 and ABL2, both 
of which have been implicated in the pathogenic host 
inflammatory response to SARS-CoV-2 disease [38, 58]. 
MAPK1 is also a predicted target of SARS-CoV-2 viral 
miRNAs [59]. Since miRNA mimics can be delivered 
therapeutically, further research to establish the clinical 
relevance of miR-93-5p and miR-23c is warranted [60]. 
mirTarRnaSeq is only able to perform pairwise miRNA-
mRNA interaction analyses for data collected longitudi-
nally and is not able to perform spline based longitudinal 
modeling.

In contrast, Part 3 identified miRNA-mRNA interre-
lation by comparing the observed distribution of paired 
expression changes across individual time intervals to 
background expectation. This analysis provides tem-
poral specificity to miRNA-mRNA predictions which 
could be useful for assessing relevance to cellular 
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phenotypes or stages of disease. In the 24 h after SARS-
CoV-2 infection there was significant enrichment for 
miRNA targeting of mRNAs involved in cytokine, inter-
feron and interleukin signaling in lung epithelial cells 
(Table  3). Clinical relevance of the predicted relation-
ships was further supported by demonstration of differ-
ential expression in blood of patients with COVID-19 
among 3 of the 27 miRNA-mRNA pairs predicted in 
the cell culture experiments. High levels of cytokines 
have been detected from airway and blood samples of 
patients with COVID-19 and drive the cytokine storm 
of severe COVID-19 [61–64]. As with other hyperin-
flammatory disorders, inflammatory mediators such as 
interleukin-1 and interleukin-6 have been therapeutic 
targets in COVID-19 clinical trials with varying suc-
cess [65, 66]. Characterizing the miRNAs which medi-
ate host hyperinflammatory response to SARS-CoV-2 
could be useful for prognostication, and potentially as 
adjunctive therapeutic targets.

We also utilized the interrelation model (Part 3) of 
mirTarRnaSeq to characterize miRNA and mRNA rela-
tionships in blood from patients with COVID-19. Over-
all, 36 mRNA-miRNA relationships found in both lung 
epithelial cells and patient blood datasets (Supplemen-
tal Table S9). Some of these miRNAs are potentially rel-
evant to the host response to SARS-CoV-2, including 
hsa-miR-6747-3p, hsa-miR-483-3p, miR-4726-5p and 
miR-4728-5p. Replication of these analyses in a dataset 
that includes a pre-infection sample as baseline could 
improve sensitivity to identify potential therapeu-
tic roles for miRNAs in COVID-19 infection. Further, 
modeling in Part 3 allows detection of a greater range 
of regulatory interactions including coeregulation, 
which would not be detected by Part 2. miR-4726-5p 
was predicted to have 5 co-regulatory interactions 
with immune genes, where both miR-4726-5p and 
its target mRNA had decreased expression following 
SARS-CoV-2 infection. Modulation of these individual 
miRNAs in COVID-19 models could identify key regu-
lators that mediate these miRNA-mRNA relationships. 
As many previous models of miRNA-mRNA interac-
tions selected only inverse regulatory interactions, new 
associations may be uncovered using this more flexible 
analysis.

In summary, mirTarRnaSeq implements statistical tests 
for identifying miRNA-mRNA relationships within high 
throughput datasets. mirTarRnaSeq can investigate these 
relationships in multiple eukaryotic and viral organisms 
and is not restricted to the analysis of human miRNAs. 
mirTarRnaSeq is freely available on a well maintained 
platform, Bioconductor, which provides easy access and 
clear vignettes and support for users of the package. With 
the current progress in RNA research, development of 

packages such as mirTaraRnaSeq are crucial to compre-
hend the extent of roles of non-coding RNAs in various 
organisms.
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