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Anthropogenic Pb contribution 
in soils of Southeast China 
estimated by Pb isotopic ratios
Jianwu Li1*, Guoshuang Hao3, Xudong Wang1, Li Ruan2,4* & Jinjie Zhou5

Isotopic ratios were used to identify the source of Lead (Pb) contamination in rural soils from 
Southeast China. Enrichment of Pb in surface soils was detected from three sampling locations, 
with the 206Pb/207Pb ratio indicating recent anthropogenic input. The 206Pb/207Pb ratio from deeper 
soil profiles reflected the ratio from parent basalt. Mass fractions of anthropogenic-derived Pb 
for soil samples in the upper profiles was as high as 50%, implying that surface soils in the current 
study were impacted by anthropogenic activity. The 206Pb/207Pb and 208Pb/206Pb ratios were similar 
to anthropogenic sources including the combustion of coal, which has been common practice in the 
region for 2500 years. Considering the relatively short history of petroleum use in this area and the 
rural location of soils, anthropogenic Pb source from coal burning was considered to be the main cause 
of lead pollution.

Heavy metals, such as Cu, Zn, Ni, Cd, Cr and Pb, can be major contaminants in the soil  environment1–7. Lead 
(Pb) is one of the most widely studied metals in the soil environment due to its toxicity and widespread  use8,9. 
Globally, soils receive and store anthropogenic Pb from sources including industrial wastes and emissions, 
motor vehicle emissions from Pb containing fuels and mining  activities10–13. Pb is highly persistent in the envi-
ronment and due to its toxicity, is of particular concern to human  health14,15. Pb can be absorbed via ingestion 
of  soil16 and water through inhalation of dust and dermal  contact17,18, and consumption of vegetables grown in 
contaminated  soil19. Pb biomagnifies through the food  chain16,18,20, thus it is of concern in both developed and 
developing  countries14,20–22. Soil Pb contamination, through the various exposure pathways, has been shown to 
result in elevated human blood Pb  levels23–25. Literature supports the notion that children are more susceptible 
to elevated blood Pb concentrations, with inhibition of neurobehavioral performance, including a lower intel-
ligence quotient (IQ), deficits in verbal memory and attention, learning failure and reading  disabilities26. Due 
to the great toxicity of lead to the environment and ecology, many researchers have carried out studies of Pb 
pollution and  remediation27–29.

Isotope methodologies have been increasingly applied to environmental studies of Pb contamination of air, 
soils, sediments and  plants30–33. Pb in the environment has four isotopic forms, 204Pb, 206Pb, 207Pb and 208Pb34. 
The isotopic composition of Pb is fundamentally controlled by geological properties, and is not fractionated by 
weathering, transportation or biological processes. Thus, the use of Pb isotopic signatures can assist in the 
identification and quantification of Pb  sources35–38. Therefore, assessing Pb isotopes allows us to understand 
anthropogenic lead pools and earth surface processes related to regolith  development39,40.

While there is a sound body of research globally on the distribution of Pb in soil, the source of the Pb is not 
always well described. This is particularly the case in Southeast China where anthropogenic contributions to soil 
Pb content have not been thoroughly examined. As one of the well-developed regions of China, our study area 
has been undergoing rapid industrialization and urbanization, thus the need to better understand the risks of 
Pb in the soils, as well as understanding where the main sources of contamination  arise13,15,21,22,41. The objective 
of this study was therefore to analyze Pb concentrations and isotopic compositions of three subtropical soils in 
Southeast China to examine the isotopic composition of Pb through the soil profile, identify likely sources for 
the contamination, and to calculate the relative contribution of natural and anthropogenic Pb sources.
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Results
Properties of studied soil profiles. Physicochemical characteristics of the soils are shown in Table 1. 
The pH ranged from 5.77 to 6.42 (Table 1) and generally increased with depth across all 3 sites. The bulk density 
was lower in the A horizon (0.95–0.98 g cm−3) than in C horizon (1.03–1.09 g cm−3) for each soil profile. The 
soil organic matter shows a decreasing trend with depth, with maximum values up to 44.2 g kg−1, 35.4 g kg−1 
and 32.3 g kg−1 in the A horizon of ZSJ, ZCR and ZAJ profiles, respectively. The ZSJ, ZCR and ZAJ soil profiles 
represented for Sanjie, Chongren and Anjishan of Zhejiang province, respectively (Table 1).

Lead elemental and isotopic geochemistry. Lead concentration of soils and basalt is shown in Table 2. 
Pb concentrations of soil samples were higher than the parent bedrock (2.2 mg kg−1). Pb concentrations were 
up to 17.3 mg kg−1, 15.6 mg kg−1 and 15.5 mg kg−1 of the A horizons for ZSJ, ZCR and ZAJ, respectively. Pb 
concentrations decreased with increasing soil depth. The results clearly demonstrate an enrichment of surface 
soil Pb concentrations.

For the deep soils, the 206Pb/207Pb ratios (Table 2) of the ZSJ, ZCR and ZAJ profiles (> 60 cm) are closer to 
basalt, implying an influence from the parent material with little anthropogenic Pb at depth. However, for the top 
soils, the Pb isotopic compositions were distinct from the parent material. The 208Pb/206Pb ratios of surface soil 
samples were higher than the parent material (2.079; Table 2). But the 206Pb/207Pb ratios of surface soil samples 
were much lower than the basalt (1.196) and increase with depth. The significantly low radiogenic 206Pb/207Pb 
ratio (1.175; n = 12) of the soils in the top 0–10 cm is close to anthropogenic Pb from fly ash in  China42. Therefore 
evidence is provided here that the surface soils have been substantially influenced by anthropogenic Pb inputs.

Discussion
Characterizing anthropogenic Pb in soils. The ratio of 206Pb/207Pb was plotted against depth in com-
parison with Pb content (Fig.  1) illustrating that where higher Pb concentrations were detected (i.e. surface 
soils), there was a correspondingly lower 206Pb/207Pb ratio. The 206Pb/207Pb ratios decreased approximately with 
the increase of Pb concentration in soils (Fig. 1), suggesting an anthropogenic contribution to soil Pb concentra-
tions. In order to help locate the source of Pb (i.e. naturally occurring from parent material, or anthropogenic), 
206Pb/207Pb versus 208Pb/206Pb of soils, basalt and anthropogenic Pb sources were plotted (Fig. 2). The influence 
factors of human activities on Pb pollution mainly included smelting, automobile exhaust, coal combustion and 

Table 1.  Selected physicochemical properties of the studied soil profiles.

Profile Location Horizon Depth (cm) pH  (H2O) Dry bulk density (g  cm−3) SOM (g  kg−3)

ZSJ Sanjie, Shengzhou (29° 47′ N, 120° 51′ E)

A 0–10 5.99 0.98 44.2

B 10–25 5.95 1.02 21.2

BC 25–35 6.02 1.05 8.5

C 35–65 6.39 1.07 4.3

ZCR Chongren, Shengzhou (29° 39′ N, 120° 
47′ E)

A 0–15 5.97 0.95 35.4

B 15–65 5.86 0.99 19.8

C 65– 6.42 1.03 2.9

ZAJ Anjishan, Xinchang (29° 27′ N, 121° 
02′ E)

A 0–10 5.83 0.98 32.3

B 10–30 5.77 1.07 22.8

C 30–65 6.23 1.09 5.9

Table 2.  Lead concentrations and isotopic composition in soils.

Profiles Horizon
Sample 
numbers Pb (mg  kg−1) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 208Pb/206Pb 206Pb/207Pb

ZSJ

A 4 16.2 ± 0.5 18.342 ± 0.009 15.595 ± 0.008 38.503 ± 0.011 2.099 ± 0.006 1.176 ± 0.004

B 3 8.9 ± 0.3 18.428 ± 0.008 15.624 ± 0.005 38.717 ± 0.015 2.101 ± 0.003 1.179 ± 0.002

BC 2 5.4 ± 0.2 18.529 ± 0.007 15.630 ± 0.007 38.831 ± 0.009 2.096 ± 0.002 1.185 ± 0.002

C 4 6.7 ± 0.2 18.392 ± 0.005 15.597 ± 0.009 38.640 ± 0.012 2.101 ± 0.005 1.179 ± 0.003

ZCR

A 4 15.1 ± 0.5 18.410 ± 0.006 15.610 ± 0.010 38.585 ± 0.010 2.096 ± 0.004 1.179 ± 0.004

B 6 8.6 ± 0.4 18.517 ± 0.009 15.597 ± 0.006 38.698 ± 0.008 2.090 ± 0.002 1.187 ± 0.003

C 5 2.5 ± 0.1 18.511 ± 0.008 15.611 ± 0.009 38.770 ± 0.011 2.094 ± 0.003 1.186 ± 0.001

ZAJ

A 4 15.2 ± 0.6 18.445 ± 0.006 15.680 ± 0.007 38.806 ± 0.009 2.104 ± 0.004 1.176 ± 0.002

B 5 5.9 ± 0.2 18.515 ± 0.009 15.618 ± 0.009 38.768 ± 0.013 2.094 ± 0.006 1.185 ± 0.005

C 4 3.2 ± 0.1 18.637 ± 0.008 15.718 ± 0.008 39.138 ± 0.008 2.100 ± 0.005 1.186 ± 0.002

Basalt Parent rocks 3 2.2 ± 0.1 18.630 ± 0.007 15.572 ± 0.007 38.733 ± 0.009 2.079 ± 0.003 1.196 ± 0.001
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so on. Firstly, the early Pb pollution was caused by emissions from the crude smelting technologies in copper 
production in Europe and  China43. With the improvement of smelting technology and strict control of industrial 
pollution discharge, the contribution of smelting Pb to it is relatively small. Meanwhile, our research areas were 
remote from industrial areas, so smelting is not the main anthropogenic source of lead. Secondly, the anthropo-
genic Pb derived from the combustion of leaded petrol, often occurred in urban  environments44, rather than in 
the rural areas. Our sample sites were far away from urban areas, so the effect of gasoline lead on it is relatively 
small. In addition, considering the shorter time usage of petroleum in China and the lower 206Pb/207Pb ratios 
for petroleum combustion (~ 1.11), its contribution to the change in soil Pb isotope ratios from ZSJ, ZCR and 
ZAJ could be considered as  negligible20,45,46. Importantly, Pb ores from north China were different from the 
values of ZSJ, ZCR and ZAJ soils, with much higher 208Pb/206Pb ratios (2.15–2.33) and lower 206Pb/207Pb ratios 
(1.03–1.13)47,48. However, coal has been used in China for more than 2500 years. Coal combustion may be an 
important source of lead pollution in soil. The emission indicators of flue gas can be used to prove the conjecture 

Figure 1.  Pb content and 206Pb/207Pb ratios for soils in Southeast China.

Figure 2.  208Pb/206Pb vs. 206Pb/207Pb ratios. The ZSJ, ZCR and ZAJ soil profiles were represented for Sanjie, 
Chongren and Anjishan of Zhejiang province, respectively.
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of the source of Pb pollution. Recent studies have shown that the atmospheric lead emission from coal burning 
in China exceeded 10,000 t  a−1 from 2001 to 2005, and the annual growth rate is 14.5%49. The highest average 
amount of lead discharged was in North China and the Shanxi, Shandong and Jiangsu province ranked the top 
three in terms of Pb discharge intensity. Lead emissions from these areas will be deposited in the study area 
along with the northeast  monsoon50. Mukai et al.48 and Komárek et al.51 showed that the combustion of coal has 
an impact on aerosol Pb isotope ratios. The lower 206Pb/207Pb values in soil samples strongly indicate the coal 
combustion was the main cause of lead pollution in studied area. As shown in Fig. 2, the 208Pb/206Pb ratios are 
from 2.090 to 2.104, which were between basalt (2.079) and anthropogenic source from coal combustion (2.114); 
while the 206Pb/207Pb ratios range from 1.176 to 1.187, which are lower than their parent rocks (1.196) but higher 
than anthropogenic source from coal combustion in south China (1.162)41. After comprehensive consideration, 
we chose the average Pb isotope ratios of anthropogenic sources from coal combustion in Jiangsu-Zhejiang 
region to be 206Pb/207Pb = 1.162, and 208Pb/206Pb = 2.114. 

Calculation of anthropogenic Pb pools in soils of Southeast China. During thousands of years, 
different sources of anthropogenic Pb have been deposited on the surface of the soils. A two end-member model 
based on the isotope mass balance has been developed to calculate the percentage contribution of anthropo-
genic and natural Pb sources to total Pb in  soils13. The Pb isotope ratio of basalts and anthropogenic  source41 is 
206Pb/207Pb = 1.196 and 206Pb/207Pb = 1.16, respectively.

where f Pbanthropogenic represented the percentage contribution of anthropogenic Pb source in soils, and the Rsoil
Pb  , 

R
anthropogenic
Pb  and Rbasalt

Pb  are the Pb isotope ratios of soils, anthropogenic-derived and basalt-derived, respectively.
Soils developed on the basalt from the study area are significantly influenced by contributions of anthro-

pogenic Pb sources. The mass fraction (Fig. 3) of anthropogenic Pb ( f Pbanthropogenic ) from the ZSJ, ZCR and 
ZAJ profiles ranged from 25.78 to 55.20%, 24.33 to 46.26% and 29.24% to 54.71%, respectively. Moreover, the 
f Pbanthropogenic values showed a prominent increase from the lower horizon to the surface horizon for all profiles 
tested. For the lower horizon (C horizon), the f Pbanthropogenic values are lower, which indicates a primary influence 
from parent material. In contrast, for the topsoil (especially the A horizon), contributions of anthropogenic Pb 
were high (> 50%), implying large anthropogenic Pb addition to the soils in Southeast China.

Because the relatively short history of petroleum use in this area and the rural location of ZSJ, ZCR and ZAJ, 
with little vehicular access, local anthropogenic Pb source from gasoline are likely to have only a very minor 
influence on soil contamination. However, coal usage had long history in China. Ancient mining and utilization 
of coal were begun at Spring and Autumn and Warring States (470 B.C.), especially in the Sui and Tang Dynasties, 
the scale of coal mining and utilization was further  expanded52. Large coal mines distribution include Hancheng 
(Shaanxi Province), Taiyuan and Changzhi (Shanxi Province), Yangzhou (Jiangsu Province) and Huainan and 
Huaibei (Anhui Province). In addition, as the largest coal mine in Zhejiang Province, Changxing coal mine is 
the nearest to the research area. In the northern winter season, cold air from high latitudes is controlled by the 
continental high-pressure system, and propagates southward to form the strongest northerly dry and cold winter 
monsoon in the world. The northern winter monsoon can controls the atmospheric  circulation50 and carry the 
Pb pollutants from above coal mines to the study area during the dry season from November to  April53. Mean-
while, Pb isotope ratios of the soils in this area were similar to that of anthropogenic Pb from coal combustion 

(1)f Pbanthropogenic =
Rsoil
Pb − Rbasalt

Pb

R
anthropogenic
Pb − Rbasalt

Pb

Figure 3.  Mass fraction of anthropogenic Pb for soils in Southeast China.
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in China, particularly that of Jiangsu-Zhejiang  region41, which is neighboring with Xinchang-Shengzhou Basin. 
Thus, we conclude that coal combustion is the main factor for the enhanced Pb contamination in surface soils.

In conclusion, three soil profiles from rural Southeast China been shown to have elevated surface Pb con-
tamination. Using isotopic methodologies, this elevated Pb was shown to result mainly from anthropogenic 
activity. The 206Pb/207Pb values of deep horizons were close to the parent material suggesting contamination was 
restricted to the surface soil and did not leach through the profile. Our study suggested that the combustion of 
coal was the main source of soil contamination, and to avoid future contamination, lower particulate emissions 
will be required to avoid continued accumulation of Pb in surface soils in the region.

Methods
Study region and soil sampling. The study area is located in Xinchang-Shengzhou Basin, Southeast 
China, between 120° 2′ E–121° 0′ E and 29° 1′ N–29° 5′ N (Fig. 4). It belongs to the southern fringe of the 
northern  subtropics54 and has a mean annual air temperature of 16.6 °C, with yearly extremes ranging from − 5.3 
to 40.3 °C. The region has a mean annual precipitation of 1500 mm with nearly 70% falling during the wet sea-
son (April–September). Basalt is the dominant bedrock in the  region55 with the resulting soil most commonly 
derived from in situ weathering of basalt. The soil is classified as either Udic  Ferrosols56, or Ultisol according 
to USDA Soil  Taxonomy57. The soils support plants that are dominated by Machilus thunbergii and Camellia sp. 
Three basaltic weathering profiles i.e. native forest soils (ZCR and ZAJ) and farmland soil (ZSJ), were selected in 
a rural area of Chongren, Anjishan and Sanjie respectively, in Zhejiang province (Fig. 4, Table 1), with locations 
being relatively remote from cities and obvious influences of human activity. The typical basalt platforms in the 
study area are distributed in triangles. We chose the north, southeast and southwest of the triangle platform as 
the sampling sites, in order to make the sampling points have better typical representative. The parent rock from 
all profiles was fresh tholeiitic basalt, which was collected beneath the sampling profiles. Soils were excavated to 
bedrock and sampled from small concavities in an otherwise convex portion of the landscape by genetic horizon.

Laboratory analytical methods. Collected soil samples were air-dried, ground and passed through a 
2 mm sieve. The soil pH was determined in a suspension of 1:2.5 soil:water solution (w/v). Soil bulk density was 
measured from the 100 cm−3 undisturbed soil cores by drying the cores for 24 h at 105 °C. A homogenized sub-
sample of soil was digested with an acid solution (5 ml concentrated  HNO3 (65%, v/v), 5 ml concentrated HCl 
(30%, v/v) and 5 ml concentrated HF (40%, v/v)). Diluted and filtered samples were assayed using an inductively 
coupled plasma mass spectrometer (ICP-MS) at the State Key Laboratory of Ore Deposit Geochemistry, Institute 
of Geochemistry in the Chinese Academy of  Science58. The standard reference materials were GSR-3, BCR-1, 
GXR-5 and GXR-6. Analytical uncertainties were less than ± 5%.

For the determination of Pb isotopes, soil samples (0.05 g) were digested in a mixture of 4 ml concentrated 
 HNO3 (65%, v/v) and 1 ml concentrated HF (40%, v/v) in Teflon vessels on a hotplate at 200 °C for 8 h. The ves-
sel was then uncovered to allow evaporation to almost dryness. This procedure was repeated until the samples 
were completely  dissolved59. Pb isotopes were measured on a GV Isoprobe-T thermal ionization mass spec-
trometer (TIMS) at the University of Science and Technology of China. The reagent blank was also measured 
and blank subtraction was done for the final intensity of each isotope of Pb in the sample. The relative standard 
deviations (RSD) of 10 replicate readings of samples were better than 1% for 206Pb/207Pb and 0.6% for 208Pb/206Pb. 
The average of measured 206Pb/207Pb and 208Pb/206Pb of the National Institute of Standards and Technology (NIST 
981) were 0.9147 ± 0.0084 and 2.1681 ± 0.0099 with the certified values of 0.9147 and 2.1683, respectively.

Received: 20 April 2020; Accepted: 30 November 2020

Figure 4.  The location of sampling sites.
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