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Abstract: Nonlinear ultrasound crack detection methods are used as modern, non-destructive testing
tools for inspecting early damages in various materials. Nonlinear ultrasonic wave modulation,
where typically two or more frequencies are excited, was demonstrated to be a robust method for
failure indicators when using measured harmonics and modulated response frequencies. The aim
of this study is to address the capability of multi-frequency wave excitation, where more than two
excitation frequencies are used, for better damage identification when compared to single and double
excitation frequencies without the calculation of dispersion curves. The excitation frequencies were
chosen in such a way that harmonic and modulated response frequencies meet at a specific frequency
to amplify signal energy. A new concept of nonlinearity parameter grouping with multi-frequency
excitation was developed as an early failure parameter. An analytical solution of the one-dimensional
wave equation was derived with four fundamental frequencies, and a total of 64 individual and
30 group nonlinearity parameters. Experimental validation of the approach was conducted on
metal plates with different types of cracks and on turbine blades where cracks originated under
service conditions. The results showed that the use of multi-frequency excitation offers advantages
in detecting cracks.

Keywords: nonlinear ultrasound; modulation; crack detection; gas turbines

1. Introduction

Linear ultrasound techniques are proven testing methods for inspecting components.
The failure detection entails measuring changes in elastic properties such as the speed of
sound, attenuation, transmission coefficient, and reflection coefficient [1–3].

In 1964, Hikata et al. expanded this research and found that a sinusoidal ultrasonic
wave distorts the fundamental frequency when it propagates in the presence of nonlineari-
ties [4]. If an ultrasonic wave propagates into a solid body with the fundamental frequency
and is disturbed during the propagation, harmonic frequencies are generated. When the
amplitudes of these frequencies are measured and compared with the fundamental fre-
quencies, these values represent an accurate indicator for detecting material changes [4].
When linear ultrasonic failure detection techniques reach their limits, nonlinear ultrasonic
techniques revealed higher detection rates of incipient failures in materials [4,5].

The comparison of the amplitudes is conducted using derived nonlinearity parameters.
Jhang et al. studied the second harmonic parameter β to explain its dependence on the
wave shift, which enabled drawing conclusions about the material to be examined [6].
This work was extended by Frouin et al. [7], Rothenfusser et al. [8], and Yost et al. [9],
who showed the direct dependence of the amplitudes of the fundamental frequency as
well as the frequency of the second harmonic. The analytical derivations were conducted
by Jeong et al. [10], while Ostrovky et al. investigated the nonlinearity parameters for
geomaterials [11]. To determine the residual fatigue life of a component, Malfense Fierro
and Meo developed the nonlinearity parameters for two superimposed frequencies [12–14],
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which was further developed by Jinpin et al. [15]. The third-order nonlinearity parameter
with one driving frequency was derived from Amura and Meo [16]. The nonlinearity
parameters of the second and third harmonic frequencies are shown in Equation (1) for
one excitation frequency, where A is the amplitude of the fundamental frequency, A2 is
the amplitude of the second harmonic frequency, and A3 is the amplitude of the third
harmonic frequency:

β2 f ∝ A2
A2 ,

γ3 f ∝ A3
A3 .

(1)

The excitation with two different frequencies up to third-order nonlinearity was analyt-
ically derived and investigated [17]. A total of 12 derived nonlinearity parameters were suc-
cessfully used to detect cracks in metal components and turbine blades (Equation (2)). The
excitation with two different frequencies was defined with u(1) = A1sin

[
k f 1(x− ct)

]
+

A2cos
[
k f 2(x− ct)

]
, where A1 and A2 are the amplitudes and kf1 and kf2 are the wavenum-

bers of the fundamental frequencies f 1 and f 2. A f 1+ f 2 are the amplitudes of the harmonic
or modulated response frequencies:

γ f 1 ∝
A f 1+ f 2

A1
3+A1 A2

2 ,

γ f 2 ∝
A f 1+ f 2

A2
3+A1

2 A2
,

β2 f 1 ∝
A f 1+ f 2

A1
2 ,

β2 f 2 ∝
A f 1+ f 2

A2
2 ,

γ3 f 1 ∝
A f 1+ f 2

A1
3 ,

γ3 f 2 ∝
A f 1+ f 2

A2
3 ,

β f 2± f 1 ∝
A f 1+ f 2
A1 A2

,

γ2 f 1± f 2 ∝
A f 1+ f 2
A1

2 A2
,

γ2 f 2± f 1 ∝
A f 1+ f 2
A1 A2

2 .

(2)

An overview of current research developments relating to nonlinear vibroacoustic
modulation techniques is shown in [18]. Van Den Abeele et al. used two superimposed
frequencies for excitation and examined the harmonics of both waves and their side-
band frequencies to detect cracks [19]. They also developed a technique to investigate
the influence of damaged materials on the amplitude-dependent resonance frequency
shifts [20]. These methods are based on the nonlinear interactions of low-frequency and
high-frequency waves. Straka et al. and Greenhall et al. worked on a nonlinear elastic
wave modulation spectroscopy (NEWMS), where the effect of two superimposed waves
was investigated, and low-frequency and high-frequency waves were combined to detect
damages in components [21,22]. Using time-reversal-based imaging methods, an appli-
cation for non-destructive material testing (NDT) with two multi-frequency signals was
developed [23]. A technique was presented where two signals are correlated to estimate
the Time-of-Flight (ToF) for determining distance information [24]. Novak et al. developed
a method to extract system reactions for the second and third harmonic frequencies with a
nonlinear convolutional signal analysis [25]. Pfleiderer et al. investigated the nonlinear
response of subharmonics, ultra-subharmonics, and ultra-frequency pairs for detecting
defects in components [26]. Abraham et al. used nonlinear multi-frequency ultrasound
measurement to characterise grain size fluctuations and distributions in metal samples [27].
Gao et al. developed a method for estimating corrosion size, position, and depth in aircraft
structures based on a local multi-frequency wavenumber estimation [28]. Malfense Fierro
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and Meo developed a phased array technique where three frequencies were used to identify
cracks. The initiate signal f 2 is sent out to affect the dynamics of the crack topology. The
subsequent transmitted pump signals f 1 and f 3 generate a modulation that can be used for
crack detection, and it was demonstrated that using multiple frequency excitation improves
crack detection capabilities [29].

Deng investigated shear horizontal (SH) mode propagation on solid plates, where
two shear waves propagate vertically and parallel in the plate and intersect. If the phase
velocity of the SH mode is equal to the longitudinal velocity of the plate material, this
leads to a cumulative effect of the second harmonic excitation frequency [30,31]. Pruell
et al. showed that phase and group velocity matching can be used to generate acoustic
nonlinearities to determine plasticity-driven fatigue damage [32,33]. Approaches were
developed where correction factors were integrated into the solution of the wave equation
for other wave types [34,35].

To show possibly occurring Lamb waves, Figure 1 reveals the dispersion diagram of
the phase velocity for the material Inconel 718, which is examined in Section 4. Due to
comparable behaviour, the group velocity was not shown in this context. The fundamental
frequencies from 6 MHz to 10 MHz were used in parallel and represented by the S1 mode
according to [32]. The S2 mode demonstrates the range of the second harmonic frequency
(12 MHz to 20 MHz) and S3 demonstrates the third harmonic frequency range (18 MHz to
30 MHz). It becomes clear that phase synchronisation with several excitation frequencies
in this frequency range is not possible. The difference in phase velocities decreases only at
higher frequencies, such as in the third harmonic frequency range. The integration of the
modulated response frequencies would make synchronisation highly complex.
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In this paper, the strength of the quasi-chaotic generation of harmonic and modu-
lated response frequencies was clearly demonstrated, while the dispersion curves were
not considered.

Different excitation concepts were compared to detect cracks in metal plates and on
turbine blades. For this purpose, excitations with up to four frequencies were examined. In
the case of quadruple excitation, a new concept of nonlinearity grouping was developed
analytically. The fundamental frequencies were defined in such a way that several har-
monics and sideband frequencies meet at certain frequencies to improve crack detection
and classification.

2. Multiple Nonlinearity Parameter

Several studies demonstrated that damages in materials could be detected with non-
linear ultrasound techniques using two superimposed fundamental frequencies. The
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detection of defects was also significantly improved using three excitation frequencies, and
therefore, the question is whether increasing this number brings further advantages.

2.1. Analytical Approach

To describe and evaluate the excitation with four frequencies, novel nonlinearity
parameters up to the third-order of nonlinearity were derived analytically in this section.

Figure 2 demonstrates this excitation with the one-dimensional model. In the area of
the defect, nonlinearities are generated, and these signals are received at the other end.
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Figure 2. Model—multi-frequency excitation.

The one-dimensional wave equation was solved with four excitation frequencies. All
harmonic frequencies and modulated response frequencies up to the third-order were
derived as well as the associated nonlinearity parameters, which include the amplitudes of
the fundamental frequencies and the harmonic and sideband frequencies as variables.

In the presence of nonlinearity, the stress σ is defined as:

σ = Eε +
Eβ

2
ε2 +

Eγ

6
ε3, (3)

where E is the Young’s modulus, ε is the strain, β is the second-order nonlinearity parameter,
and γ is the third-order nonlinearity parameter.

Equation (4) is the one-dimensional wave equation, with the assumption that longitu-
dinal waves propagate in a thin circular rod and the attenuation is neglected:

ρ
∂2u
∂t2 =

∂σ

∂x
(4)

where ρ is the mass density and u represents the displacement. The wave speed is defined

as c =
√

E
ρ and the strain as ε = ∂u

∂x . This is substituted into Equations (3) and (4) and
leads to:

∂2u
∂t2 − c2 ∂2u

∂x2︸ ︷︷ ︸
Linear part

= c2β
∂u
∂x

∂2u
∂x2︸ ︷︷ ︸

2nd order

+
c2γ

2

(
∂u
∂x

)2 ∂2u
∂x2︸ ︷︷ ︸

3rd order︸ ︷︷ ︸
Nonlinear part

. (5)

Equation (5) is solved using the perturbation method; therefore, Equation (6) is used
to find solutions for u(2) with the second-order parameter β and u(3) with the third-order
parameter γ:

u = u(1) + u(2) + u(3) (6)

According to Fourier, the assumption for u(1) for four excitation frequencies is:

u(1) = A1sin
[
k f 1(x− ct)

]
+ A2cos

[
k f 2(x− ct)

]
+A3sin

[
k f 3(x− ct)

]
+ A4cos

[
k f 4(x− ct)

]
,

(7)

where A1,2,3,4 are the amplitudes and k1,2,3,4 are the wavenumbers of the four fundamental
frequencies. The detailed derivations are documented in Appendix A.

With an assumed constant wave propagation distance and wavenumber, the general
expressions in Table 1 can be derived. The displacement u (Equations (A2) and (A5)) is
interpreted as the accumulated amplitude of the harmonic frequency: u(x) = Af 1+f 2+f 3+f 4.
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Table 1. Nonlinearity parameter of quadruple-excitation.

Frequency Nonlinearity Parameter

fn
1 γ f n ∝ A f 1+ f 2+ f 3+ f 4

An3+An(∑n−1
i = 1 Ai

2+∑4
i = n+1 Ai

2)

2 fn
1 β2 f n ∝ A f 1+ f 2+ f 3+ f 4

An2

3 fn
1 β3 f n ∝ A f 1+ f 2+ f 3+ f 4

An3

fn ± fm
1,2 β f n± f m ∝ A f 1+ f 2+ f 3+ f 4

An Am

2 fn ± fm
1,3 γ2 f n± f m ∝ A f 1+ f 2+ f 3+ f 4

An2 Am

fn + fm ± fp
1,3 γ fn+ fm± fp ∝ A f 1+ f 2+ f 3+ f 4

Am An Ap

1 n, m, p ∈ {1, 2, 3, 4}, 2 n > m, 3 n 6= m 6= p.

The parameters β or γ were used depending on the degree of nonlinearity. In the
following, δ is used overriding and independent of the degree of nonlinearity for all
nonlinearity parameters. A comparison of the various nonlinearity parameters due to
multi-frequency excitation is shown in Appendix B.

2.2. Group Parameters

The choice of excitation frequencies is crucial to improving damage detection. The
following criteria were defined for selecting the highest (f 4) and lowest frequency (f 1) in
the multi-frequency analysis:

1. No frequency overlap: f4 6= f1
2 .

2. No frequencies with theoretical zero values and negative values: f4 > f1
2 .

3. Sensor bandwidth.

With the defined criteria, the excitation frequencies f 1 = 6.8 MHz, f 2 = 7.3 MHz,
f 3 = 10 MHz, and f 4 = 12 MHz result in 64 individual harmonic and sideband frequencies.
If the excitation frequency combination is chosen systematically (f 1 = 6 MHz, f 2 = 7.3 MHz,
f 3 = 8.7 MHz, and f 4 = 10 MHz), only 30 harmonic and sideband frequencies result. The
signal energies of the various harmonic and sidebands add up at specific frequencies;
therefore, the group parameters form a stronger indicator for the presence of nonlinearities.
The nonlinearity parameters shown in Table 1 describe individual values for each frequency.
When different fundamental frequencies, harmonic frequencies, and sidebands coincide
on a frequency, these parameters are no longer valid. The nonlinearity information of
one frequency must be summarised on one nonlinearity parameter. For this purpose,
the solutions from u(2) (Equation (A2)) and u(3) (Equation (A5)) were re-examined for the
grouped nonlinearity parameters. If, for example, the sideband frequencies f 3 − f 1 and
f 4 − f 2 coincide at the frequency 2.6 MHz, it can be assumed that the individually calculated
nonlinearity parameters, δ, are identical at this point. The total displacement, according
to Equations (A2) and (A5), is defined as u = u f3− f1 + u f4− f2 , which is interpreted as
the accumulated amplitude of the sideband frequency (2.6 MHz). Therefore, equations
were solved for the new combined nonlinearity parameters. Thirty new parameters were
derived for this work, called group parameter δG. Tables 2–5 illustrate the groups with
corresponding frequencies, the harmonic and sideband designation, and the new group
nonlinearity parameters δG.
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Table 2. Nonlinearity parameter group 1, δG1.

Group Ax
Frequency

[MHz] Γf/h/sx

Nonlinearity Parameter Group
δG

1

1 2 2f 1 − f 4
δ1

G1 =
A f 1+ f 2+ f 3+ f 4

A1
2 A4

1 4 f 4 − f 1 δ2
G1 =

A f 1+ f 2+ f 3+ f 4
A4 A1

1 12 2f 1
δ3

G1 =
A f 1+ f 2+ f 3+ f 4

A1
2

1 13.3 f 2 + f 1 δ4
G1 =

A f 1+ f 2+ f 3+ f 4
A2 A1

1 14 2f 4 − f 1
δ5

G1 =
A f 1+ f 2+ f 3+ f 4

A4
2 A1

1 18 3f 1
δ6

G1 =
A f 1+ f 2+ f 3+ f 4

A1
3

1 18.7 f 4 + f 3 δ7
G1 =

A f 1+ f 2+ f 3+ f 4
A4 A3

1 19.3 2f 1 + f 2
δ8

G1 =
A f 1+ f 2+ f 3+ f 4

A1
2 A2

1 20 2f 4
δ9

G1 =
A f 1+ f 2+ f 3+ f 4

A4
2

1 28.7 2f 4 + f 3
δ10

G1 =
A f 1+ f 2+ f 3+ f 4

A4
2 A3

1 30 3f 4
δ11

G1 =
A f 1+ f 2+ f 3+ f 4

A4
3

Table 3. Nonlinearity parameter group 2, δG2.

Group Ax
Frequency

[MHz] Γf/h/sx

Nonlinearity Parameter Group
δG

2

1
2.6

f 3 − f 1 δ1
G2 =

A f 1+ f 2+ f 3+ f 4
A3 A1+A4 A22 f 4 − f 2

1
3.3

f 1 + f 2 − f 4 δ2
G2 =

A f 1+ f 2+ f 3+ f 4

A1 A2 A4+A1
2 A32 2f 1 − f 3

1
12.6

f 3 + f 4 − f 1 δ3
G2 =

A f 1+ f 2+ f 3+ f 4

A3 A4 A1+A4
2 A22 2f 4 − f 2

1
14.7

2f 2 δ4
G2 =

A f 1+ f 2+ f 3+ f 4

A2
2+A3 A12 f 3 + f 1

1
16

f 4 + f 1 δ5
G2 =

A f 1+ f 2+ f 3+ f 4
A4 A1+A3 A22 f 3 + f 2

1
17.3

2f 3 δ6
G2 =

A f 1+ f 2+ f 3+ f 4

A3
2+A4 A22 f 4 + f 2

1
20.7

2f 1 + f 3 δ7
G2 =

A f 1+ f 2+ f 3+ f 4

A1
2 A3+A2

2 A12 2f 2 + f 1

1
27.3

2f 3 + f 4 δ8
G2 =

A f 1+ f 2+ f 3+ f 4

A3
2 A4+A4

2 A22 2f 4 + f 2
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Table 4. Nonlinearity parameter group 3, δG3.

Group Ax
Frequency

[MHz] Γf/h/sx

Nonlinearity Parameter Group
δG

3

1
1.3

f 2 − f 1
δ1

G3 =
A f 1+ f 2+ f 3+ f 4

A2 A1+A3 A2+A4 A3
2 f 3 − f 2
3 f 4 − f 3

1
6

f 1
δ2

G3 =
A f 1+ f 2+ f 3+ f 4

A1
3+A1 A2

2+A1 A3
2+A1 A4

2+A2
2 A3+A2 A3 A4

2 2f 2 − f 3
3 f 2 + f 3 − f 4

1
10

f 4
δ3

G3 =
A f 1+ f 2+ f 3+ f 4

A4
3+A1

2 A4+A2
2 A4+A3

2 A4+A3
2 A2+A2 A3 A1

2 2f 3 − f 2
3 f 2 + f 3 − f 1

1
22

3f 2
δ4

G3 =
A f 1+ f 2+ f 3+ f 4

A2
3+A1

2 A4+A1 A2 A3
2 2f 1 + f 4
3 f 1 + f 2 + f 3

1
23.3

2f 2 + f 3
δ5

G3 =
A f 1+ f 2+ f 3+ f 4

A2
2 A3+A3

2 A1+A1 A2 A4
2 2f 3 + f 1
3 f 1 + f 2 + f 4

1
24.7

2f 2 + f 4
δ6

G3 =
A f 1+ f 2+ f 3+ f 4

A2
2 A4+A3

2 A2+A1 A3 A4
2 2f 3 + f 2
3 f 1 + f 3 + f 4

1
26

3f 3
δ7

G3 =
A f 1+ f 2+ f 3+ f 4

A3
3+A4

2 A1+A2 A3 A4
2 2f 4 + f 1
3 f 2 + f 3 + f 4

Table 5. Nonlinearity parameter group 4, δG4.

Group Ax
Frequency

[MHz] Γf/h/sx

Nonlinearity Parameter Group
δG

4

1

4.6

2f 2 − f 4

δ1
G4 =

A f 1+ f 2+ f 3+ f 4

A2
2 A4+A1 A2 A3+A1 A3 A4+A1

2 A2

2 f 1 + f 2 − f 3
3 f 1 + f 3 − f 4
4 2f 1 − f 2

1

7.3

2f 3 − f 4

δ2
G4 =

A f 1+ f 2+ f 3+ f 4

A3
2 A4+A2

3+A1
2 A2+A2 A3

2+A2 A4
2+A1 A3 A2+A1 A4 A3

2 f 2
3 f 1 + f 3 − f 2
4 f 1 + f 4 − f 3

1

8.7

f 3

δ3
G4 =

A f 1+ f 2+ f 3+ f 4

A3
3+A1

2 A3+A2
2 A3+A3 A4

2+A2
2 A1+A2 A4 A3+A1 A4 A2

2 2f 2 − f 1
3 f 2 + f 4 − f 3
4 f 1 + f 4 − f 2

1

11.3

2f 3 − f 1

δ4
G4 =

A f 1+ f 2+ f 3+ f 4

A3
2 A1+A2 A4 A1+A3 A4 A2+A4

2 A3

2 f 2 + f 4 − f 1
3 f 3 + f 4 − f 2
4 2f 4 − f 3

The derivation of this parameter is illustrated by Equation (8). For group 1, where
only one harmonic or sideband per frequency were used, the parameters result from
Equations (A2) and (A5). In group 2, two harmonics and sidebands always meet one
frequency, which is described by the generalised shift of group 2 with uG2. The amplitudes
A1 and A2 reveal the summary of the solutions from Equations (A2) and (A5) which should
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be solved. The placeholder Γf /h/s represents the combination of fundamental, harmonic,
and sideband frequencies:

uG2 = A1
sin
cos

[(
Γf /h/s1

)
(x− ct)

]
x+A2

sin
cos

[(
Γf /h/s2

)
(x− ct)

]
x,

uG3 = A1
sin
cos

[(
Γf /h/s1

)
(x− ct)

]
x

+A2
sin
cos

[(
Γf /h/s2

)
(x− ct)

]
x+A3

sin
cos

[(
Γf /h/s3

)
(x− ct)

]
x,

uG4 = A1
sin
cos

[(
Γf /h/s1

)
(x− ct)

]
x+A2

sin
cos

[(
Γf /h/s2

)
(x− ct)

]
x

+A3
sin
cos

[(
Γf /h/s3

)
(x− ct)

]
x + A4

sin
cos

[(
Γf /h/s4

)
(x− ct)

]
x.

(8)

This procedure was also used for the further displacement terms uG3 and uG4.
If several harmonics or sidebands meet on one frequency, it was expected that the

signal energy increases at this point. This assumption was proved experimentally, and the
groupings were conducted with two frequencies for comparison. In this case, the previ-
ously defined criteria for frequency combination selection do not apply. The frequencies
f 1 = 5 MHz and f 2 = 10 MHz are selected for the experiments (Figure 3).
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Figure 3. Sensor arrangement—evidence signal grouping.

Using the pulse generator Rigol DG1022Z, the sinus signals were sent to the sensor
Olympus A5013. The same sensor was used on the receiving side. Table 6 illustrates
the fundamentals, harmonics, and sidebands with the corresponding frequencies and
groupings. With this frequency combination, there are several harmonics and sidebands at
the frequencies 5 MHz, 10 MHz, 15 MHz, and 20 MHz.

Table 6. Signal grouping.

Group Γf /h/s Frequency [MHz]

- 2f 1 − f 2 0

1
f 1 5

f 2 − f 1 5

2
f 2 10

2f 1 10

3
3f 1 15

f 2 + f 1 15
2f 2 − f 1 15

4
2f 2 20

2f 1 + f 2 20

- 2f 2 + f 1 25

- 3f 2 30

The first measurement was separately executed with one frequency, f 1 and f 2. In
the frequency spectrum, the amplitudes were measured at positions f 1/2, 2f 1/2, and 3f 1/2
(Figure 4a,b). The same experiments were repeated using two superimposing frequencies
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(f 1 and f 2) transmitted in parallel (Figure 4c). For this purpose, 100 signals were sent
out, an average frequency spectrum was formed, and the corresponding amplitudes
were evaluated.
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Figure 4. Grouping spectra: (a) f 1 = 5 MHz; (b) f 2 = 10 MHz; (c) f 1 = 5 MHz and f 2 = 10 MHz.

The signal energies were calculated from the measured amplitudes and shown as a
comparison in Figure 5. The signal energy resulting from the excitation with one frequency
is on the left side of the graphs (1f), while the energy from the two-frequency excitation
is demonstrated on the right (2f). It is evident that more energy was transmitted in the
multi-harmonic and sideband grouped signals (2f).
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2.3. Evaluation Parameter

The aim of this work is to demonstrate a practicable application of the multi-frequency
excitation and compare the results with one, two, and four excitation frequencies.

In other research, the total sums of the fundamental frequencies and those of the
harmonic and sideband frequencies were compared for evaluation (Equation (9)) [17,36]:

E =
∫ ∞

−∞
| x̂( fn)|2d fn ∝ ∑|AF|+ ∑|AH | ∝ ∑|EF|+ ∑|EH |, (9)

where E is the energy, x̂ is the signal, AF are the fundamental amplitudes, AH are the
harmonic amplitudes, EF is the signal energy of the fundamental frequencies, and EH is
the energy of the harmonic signal. This approach may not be applicable with the four-
frequency excitation, however, because the grouping of the fundamental frequencies as well
as the harmonic and sideband frequencies may overlap. Another possibility of evaluation
with the same disadvantages is to use the acoustic moment concept, which is the integral
of the power spectral density (PSD) function of a signal [37,38].

In addition to the nonlinearity parameters, the comparison value Nindex was introduced
for this purpose. This is a summation of the parameter values δ (Equation (10)):

N(1 f ,2 f ,2 f−swept, 4 f )
index =

m

∑
n = 1
|δn|, (10)

where m is the total number of nonlinearity parameters of the individual measurements.
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3. Proof of the Use of the One-Dimensional Wave Equation

The derived nonlinearity parameters are based on one-dimensional wave propagation,
and it was examined as to whether this model can also be applied to multi-dimensional
applications. A round bar made of the material 1.4571 with a diameter of 5 mm and length
of 100 mm was used to simulate a one-dimensional model. To generate artificial contact
nonlinearities, the sample was cut in the middle and glued back together. At an area
of 1 mm wide, no glue was used so that the two halves had metallic contact. For the
measurements, the Olympus sensor A109S was used to send the longitudinal waves into
the sample via the front side and to receive them on the other side (Figure 6).

One frequency (6 MHz), two frequencies (6 and 10 MHz), and 4 frequencies (6, 7.3,
8.7, and 10 MHz) were sent according to the group derivation from Section 2.2. The signals
were generated with Rigol DG1022Z pulse generators over two channels each and an input
voltage of 150 V. The output signal was amplified with the Phoenix ISL 40 dB amplifier.
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These tests were also conducted with a reference sample without damage for com-
parison. The nonlinearity parameters were calculated from these measurements, and the
determined Nindex values are shown in Figure 7a. To clarify the comparison of the excitation
methods, the normalised view was also selected (Figure 7b). It becomes clear that the
difference with the 4f excitation is stronger than with the 1f excitation.
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4. Experimental Investigation—Plate Samples

In this section, the analytical derivations were proven experimentally and compared
with the different excitation concepts.

4.1. Experimental Setup

Identical test setups were installed for all experiments (Figure 8a), where two Rigol
DG1022Z pulse generators were used for signal generation. Each device had two output
channels to send the single or superimposed frequencies to the sending sensor. For syn-
chronisation, both devices were connected to each other via the trigger inputs and outputs.
The combined signals were amplified with the amplifier Falco WMA-300. The S1 sensor
was the Olympus A5013. The same sensor was used to receive the signal (R1), which was
amplified with the Phoenix ISL 40 dB amplifier and sent to the Picoscope 4424 oscilloscope.
The post-processing was conducted from this position.

Figure 8b reveals the experimental setup. The sensors were held in an additively
manufactured holder and always ensured precise alignment. Two clamps were used for
a certain contact pressure, and standard contact gel was applied under the sensors for
better contact.
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Figure 8. Experimental setup: (a) Scheme; (b) Sensor arrangement.

The samples used were Inconel 718 plates with the dimensions 2 mm× 70 mm× 30 mm,
which consisted of two plates connected using a special micro laser welding process. Samples
with a defect width of 5, 2, and 1 mm were used and arranged centrally (Figure 9). Due to
these artificial defects, contact nonlinearities were generated and evaluated, and reference
samples without defects were available for comparison. Six variants of each sample were
examined, and the arithmetic mean values were processed.
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4.2. One-Frequency Excitation

In this section, the excitation via single frequencies was examined. A 6 MHz frequency
signal and a 10 MHz signal were separately sent to the samples (Figure 10).
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The second and third harmonic frequencies were considered accordingly. When
6 MHz is excited, the nonlinearity parameters of samples 1M and 2M increase significantly
(Figure 11a). A form of saturation was observed as the values drop in the 5M sample.
With the nonlinearity parameters of the third harmonic frequency, the value for the 1M
sample decreases and then continuously increases for the other samples (2M and 5M). If
the samples are sonicated with 10 MHz, a downward trend for both the second and third
harmonic frequencies was given. Only the 5M sample demonstrated a significant increase
in nonlinearities compared to the reference sample (Figure 11b).
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4.3. Two-Frequency Excitation
4.3.1. Constant Frequencies

If two frequencies emitted in parallel are used, the evaluation becomes more complex
since a total of 12 harmonic and sideband frequencies are formed which can be evaluated.
This technique was successfully used and proven in [17]. A 6 MHz and 10 MHz signal
were generated, superimposed, and sent via sensor S1 (Figure 12). If the waves overlap,
harmonic frequencies and more complex modulated response frequencies were generated,
which are evaluated in the following. To compensate the overlapping effects of alternating
compressive and tensile stresses on the various sine waves, 100 signals were transmitted
per experiment and the mean values of the amplitudes were evaluated.
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Figure 12. Excitation frequencies: f 1 = 6 MHz, f 2 = 10 MHz.

Figure 13 reveals the evaluation of the nonlinearity parameters, and all demonstrate
a change compared to the reference sample. The parameter value δ2f 2 showed a clear
pattern depending on the crack size. This phenomenon was moreover observed in [17,36],
where the largest nonlinearities were not generated for the largest crack. These are strongly
dependent on the fundamental frequencies and illustrate significantly more influence with
the 1M and 2M samples.
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4.3.2. Linear Increasing Frequency

To investigate as many frequency combinations as possible, the concept of linearly
increasing frequencies was also explored. A constant frequency of 10 MHz was transmitted
via the sensor S1, and a 6 MHz signal was sent in parallel, which increases linearly to
10 MHz over a period of 60 s. The signals were received by sensor R1 (Figure 14), and
60 measurements per second were recorded.
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In Figures 15–19, the nonlinearity parameters are shown for the individual harmonics
and sidebands.

In Figure 15a, the x-axis illustrates the actual increasing frequency combination starting
with 6/10 MHz up to 10/10 MHz. At the excitation frequencies of 8.4/10 MHz, the values
of the 5M sample increase drastically. The values of the 1M sample are consistently higher
than those of the 2M sample, while the reference values are always lower, except for a peak
at 7.4/10 MHz. With parameter δ2f 2 (Figure 15b), there were increased nonlinearities in
the 5M sample at the frequency combinations 6.4/10 MHz, 9.25/10 MHz, and 9.6/10 MHz;
therefore, the 1M sample reveals smaller peaks at 6.4/10 MHz and 7.8/10 MHz.
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The third harmonic frequency of the sample 1M demonstrates several significant
points at δ3f 1 (Figure 16a). With δ3f 2, increased material nonlinearities were detected in
the reference sample at the start of the measurement. In the further course, several peaks
of the 5M sample arise again (Figure 16b).
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In Figure 17a, the strength of the dual frequency excitation with a modulated response
parameter becomes clear. A comparison demonstrates that the δf 2 − f 1 values for the 1M
sample as well as for the 2M and 5M samples reveal significant increases in nonlinearity.
For the parameter δf 2 + f 1, all samples reveal peaks from different frequency excitation
combinations (Figure 17b).
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The parameter δ2f 1 − f 2 (Figure 18a) demonstrates a clear crack-predicting behaviour.
All damaged samples reveal nonlinear features. The previously shown nonlinearity be-
haviour is continued in Figure 18b, with clear nonlinear signature particularly in the
frequency range 9/10 MHz to 10/10 MHz.
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In Figure 19a, the sample 1M stands out again due to increased parameter values. In
the higher frequency combination range, the damages of the samples 2M and 5M could
be identified. Of all parameters, 2f 2 + f 1 (Figure 19b) best demonstrates the nonlinearity
increases as a function of the crack size. Although higher values were required from the
frequency combination 7/10 MHz, the clearest results are from 8.6/10 MHz to 10/10 MHz.
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4.4. Four-Frequency Excitation

Four frequencies were sent into the sample with sensor S1 (Figure 20). The frequency
selection should relate to the concept of frequency grouping (Section 2.2).
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Figure 20. Excitation frequencies: f 1 = 6 MHz, f 2 = 7.3 MHz, f 3 = 8.7 MHz, f 4 = 10 MHz.

In Figures 21–24, the nonlinearity parameters were shown separately with the different
groupings. Figure 21 demonstrates all nonlinearity parameters for one frequency (Table 2).
The parameter values of the damaged samples usually differ significantly from those of
the reference sample. With the 5M sample, insufficient nonlinearities are generated to
observe a clear change to the reference sample. For the parameters δ2f 1, δf 2 + f 1, δ2f 4 − f 1,
δ3f 1, δ2f 1 + f 2, δ2f 4 + f 3, and δ3f 4, the values of the reference sample and the damaged
5M sample are on the same level. With this nonlinearity group, frequencies with a large
bandwidth from 2 MHz to 30 MHz were considered.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 21. Nonlinearity parameter—δG1. 

In the nonlinearity grouping with 2 frequencies (Table 3), eight parameters were eval-

uated (Figure 22), with a clear change to the reference sample. At 12.6 MHz 

(δf3+f4−f1/δ2f4−f2), 14.7 MHz (δ2f2/δf3+f1), 16 MHz (δf4+f1/δf3+f2), 17.3 MHz (2f3/δf4+f2) and 

20.7 MHz (δ2f1+f3/δ2f2+f1), there is an increase in the nonlinearity parameters as a function 

of the crack size. The bandwidth ranges from 2.6 MHz to 27.3 MHz. 

 

Figure 22. Nonlinearity parameter—δG2. 

Figure 23 demonstrates the frequencies where three nonlinearity parameters meet 

(Table 4). This group consists of seven frequencies covering a bandwidth from 1.3 MHz 

to 26 MHz. These results revealed the strength of the multiple harmonic and modulated 

response frequencies on one frequency. They reflect the size of the cracks in the samples, 

with exception of the higher frequencies (23.3 MHz, 24.7 MHz, and 26 MHz). Contrary to 

group 1, an increase in the parameter values of the 5M sample is given; however, the val-

ues remain below the 1M and 2M samples. 

Figure 21. Nonlinearity parameter—δG1.

In the nonlinearity grouping with 2 frequencies (Table 3), eight parameters were evaluated
(Figure 22), with a clear change to the reference sample. At 12.6 MHz (δf 3 + f 4 − f 1/δ2f 4 − f 2),
14.7 MHz (δ2f 2/δf 3 + f 1), 16 MHz (δf 4 + f 1/δf 3 + f 2), 17.3 MHz (2f 3/δf 4 + f 2) and 20.7 MHz
(δ2f 1 + f 3/δ2f 2 + f 1), there is an increase in the nonlinearity parameters as a function of the
crack size. The bandwidth ranges from 2.6 MHz to 27.3 MHz.

Figure 23 demonstrates the frequencies where three nonlinearity parameters meet
(Table 4). This group consists of seven frequencies covering a bandwidth from 1.3 MHz
to 26 MHz. These results revealed the strength of the multiple harmonic and modulated
response frequencies on one frequency. They reflect the size of the cracks in the samples,
with exception of the higher frequencies (23.3 MHz, 24.7 MHz, and 26 MHz). Contrary
to group 1, an increase in the parameter values of the 5M sample is given; however, the
values remain below the 1M and 2M samples.

The group with four nonlinearity parameters per frequency is shown Figure 24
(Table 5), which was revealed in a narrower frequency range from 4.6 MHz to 11.3 MHz.
This illustrated that the energy of four fundamental, harmonic, and sideband frequencies
are combined at one frequency, which is why this group has the greatest influence in
the evaluation. At 7.3 MHz and 8.7 MHz, two fundamental frequencies are included.
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At 4.6 MHz, the values of the 5M sample decrease. The other frequencies reveal the
nonlinearity parameters as a function of the crack size.
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4.5. Results and Discussion

The various excitation techniques are compared in this section. Therefore, Figure 25
illustrates all Nindex values. Since the reference sample X1 represents the basis of comparison
(Nindex = 0), only the difference to these values were shown. If the values are higher than
zero, the nonlinearities increase; if they are smaller, the nonlinearities decrease. The values
drop sharply with single-frequency excitation at 10 MHz. Only the values of the 5M
sample are in the positive range. The 6 MHz excitation provided better values, even if
the values of the 1M sample are minimally below the value of the reference sample. The
constant excitation with two frequencies reveals a clear increase in the values, which,
however, decrease in the still-positive range for the 5M sample. The arithmetic mean of all
measurement data was used to evaluate the swept values. The Nindex of the 2M sample is
on the same level as the reference sample. In this graphic, it was only possible to deliver a
course as a function of the crack size with the quadruple-excitation.
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Table 7. Overview—turbine blades. 

Blade 
Crack Position  

[Cooling Air Outlet Chamber (Figure 26)] 
Crack Length [mm] 

B292 - - 

B046 2 6.0 

B254 3 6.8 

B286 6 6.1 

The experimental setup was implemented as described in Section 4. The emitting 

sensor S1 was positioned in the area of the inner shroud on a smooth area on the blade 

airfoil (Figure 27a). The receiving sensor R1 was located opposite, near the outer shroud. 

Using an additively manufactured sensor holder, the sensors are held in the same position 

during all tests, and an identical measuring distance was ensured (Figure 27b). 

Figure 25. Comparison Nindex values.

5. Experimental Investigation—Turbine Blades

In the previous section, the various excitation philosophies were tested on metal plates
with artificial defects. In this section, turbine blades with cracks on the trailing edges were
examined using the different excitation concepts.

5.1. Experimental Setup

Four Inconel 628 turbine blades from an industrial gas turbine were used for this
study. Three blades had cracks on the trailing edges on different positions, while one blade
was unused and undamaged and serves as a reference for comparison. These blades are
cooled internally, with the cooling air directed into the blade via the blade root and exiting
via various outlet slots at the trailing edge following the serpentine cooling. Figure 26
illustrates the blades used with the crack positions and Table 7 illustrates the corresponding
crack lengths.
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Table 7. Overview—turbine blades.

Blade Crack Position
[Cooling Air Outlet Chamber (Figure 26)] Crack Length [mm]

B292 - -
B046 2 6.0
B254 3 6.8
B286 6 6.1

The experimental setup was implemented as described in Section 4. The emitting
sensor S1 was positioned in the area of the inner shroud on a smooth area on the blade
airfoil (Figure 27a). The receiving sensor R1 was located opposite, near the outer shroud.
Using an additively manufactured sensor holder, the sensors are held in the same position
during all tests, and an identical measuring distance was ensured (Figure 27b).
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5.2. Measurements with Results and Discussion

Figure 28 revealed the excitation with a frequency of 6 MHz (Figure 28a) and 10 MHz
(Figure 28b). When excited with 6 MHz, the second harmonic parameter δf 2 demonstrates a
clear increase in nonlinearities; the 10 MHz excitation, however, hardly allows conclusions
to be drawn about the damage.
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The dual frequency excitation with 6 MHz and 10 MHz clearly reveals increases in
nonlinearity (Figure 29).
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Figure 29. Nonlinearity parameter.

In Figures 30 and 31, the most relevant results are demonstrated with swept signals.
It is noticeable that the reference blades (B292) also have a higher degree of nonlinearity
peaks (Figure 30a). Using an excitation frequency combination starting with 8.2/10 MHz,
both the reference blade B292 and blade B286 show harmonics. Further significant increases
in the nonlinearity parameters were measured for all damaged blades. As with the metal
plate samples, the excitation frequency combinations from 8/10 MHz lead to considerable
increases in the nonlinearity parameters. Blade B254 achieved the highest values for both
δ2f 1 and parameter δ3f 1 (Figure 30b).
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The results of two modulated response parameters (δ2f 2 ± f 1) are illustrated in
Figure 31. The blade B254 reveals the highest nonlinear values. The crack can also be
diagnosed for blades B046 and B286 by the increased nonlinearity values.
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When evaluating the excitation with four frequencies, the procedure described in
Section 2.2 was followed. The grouping of the nonlinearity parameters was used for crack
detection. Figure 32 illustrates group 1, with one nonlinearity parameter per frequency.
The parameters δf 4 − f 1, δ2f 4 − f 1, δ3f 1, δf 4 + f 3, δ2f 4, δ2f 4 + f 3, and δ3f 4 reveal a clear
increase in the nonlinearity parameters and allow a positive crack prognosis.
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Figure 32. Nonlinearity parameter—δG1.

If two parameters decrease on one frequency (Figure 33), the results are strong, show-
ing that detecting cracks was possible with this group evaluation alone.
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Figure 33. Nonlinearity parameter—δG2.

This behaviour continues and is also shown in the nonlinearity group 3 (Figure 34).
Only δ3f 2 failed to clearly detect the crack on the blade B046.

As in Section 4, the differences between the various parameter values have become
smaller (Figure 35). Because the signal energies of four fundamental, harmonic, and
modulated response parameters each coincide on one frequency, this group approach
provides the strongest informative value.

In Figure 36, the normalised Nindex values for the different processes are used for
evaluation again. If only one frequency is used for excitation, a crack forecast with these
values is hardly possible; if two frequencies are used, both constant excitation and excitation
by means of swept signals reveal a comparable, increasing behaviour; with four frequency
excitations, these values increase continuously.

In most of the measurements, the B254 blade revealed the highest values. Although
this blade had the longest crack with a crack length of 6.8 mm, the high nonlinearities can
have various causes. Compared to the plate metal samples, the position of the cracks on the
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blades is variable. The crack of the blades B046 is only 5 mm behind the sensors, and the
distance increases accordingly up to blade B286. In addition, real cracks behave differently,
and many factors can lead to an increase of nonlinearities. The decisive factor is whether
the crack is closed or open, and it is furthermore crucial how the asperities of the crack
topography are in contact and how much of them are in interaction [39,40].
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6. Conclusions

A comparison of various nonlinear ultrasonic wave modulation techniques was pre-
sented. The tests were conducted on metal plates, with artificially generated cracks, and on
turbine blades with real cracks.

When using one excitation frequency, the results for both the plate samples and
turbine blades were not convincing and showed that selecting the appropriate fundamental
frequency is crucial to the success of the measurement.

The parallel excitation with two frequencies provides a total of 12 nonlinearity param-
eters to evaluate the components, and the new Nindex values were used as a comparison
with the other excitation techniques. For the plate samples, some nonlinearity parameters
revealed a clear increase depending on the crack size. With the two-frequency excitation
with a linearly increasing signal, the informative value of the failures had not improved
in comparison.

The four-frequency excitation was analytically solved using the extended one-dimensional
wave equation. A total of 64 individual nonlinearity parameters were derived. Furthermore,
the four fundamental frequencies were chosen so that as many different fundamental frequen-
cies, harmonic frequencies, and sidebands as possible meet at one frequency. The concept
of grouping nonlinear parameters simplifies the evaluation with a total of 30 nonlinearity
parameters, which facilitates identifying a defect in the material. This behaviour and advan-
tages were proven experimentally. The Nindex values of these measurements demonstrated
behaviour as a function of the crack size. It was shown that, especially with the quasi-chaotic
frequency evaluation, detecting the failure is possible without calculating dispersion curves.

The use of four fundamental frequencies offers clear advantages in detecting defects
in materials by pairing with the frequency grouping method.
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Appendix A

This section includes the further derivation for the solution of the one-dimensional
wave equation with four excitation frequencies up to the third-order of nonlinearity
(Section 2.1).
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Substituting Equation (7) in the right side of Equation (5) with the second-order
nonlinearity parameter β and making further transformations with trigonometric formulas
lead to:

∂2u
∂t2 − c2 ∂2u

∂x2 =

c2β


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.
(A1)

Based on this expression and according to [17], the following solution results for u(2):
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The solution of Equation (5) should now be extended by the cubic nonlinearity param-
eter γ to obtain an encompassing description of the nonlinearity parameters. Substituting
Equation (7) into the right side of Equation (5) in the third-order nonlinearity parameter
γ gives:
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Transformation with binominal and trigonometric formulas leads to:
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∂x2 =
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Based on [17], this results in the following solution:
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Appendix B

Table A1 summarises the derived nonlinearity parameters with an increasing number
of fundamental frequencies. If only one frequency is used, the second and third harmonic
frequencies are available for evaluation. With two fundamental frequencies, 12 nonlinearity
parameters were derived, including the linear-dependent parameter δfn, the harmonic
parameters δ2fn, δ3fn, and the modulated response parameters δfn ± fm and δ2fn ± fm.
If four frequencies are transmitted in parallel, the number of harmonics and sidebands
increases to a maximum of 64. New parameters of the type δfn + fm ± fp were added.

The second harmonic parameters δ2fn and sideband δfn ± fm were derived from the
second-order nonlinearity parameter β. All others have their origin in the third-order
nonlinearity parameter, γ.

Table A1. Comparison—nonlinearity parameters.

One Excitation Frequency Two Excitation Frequencies Four Excitation Frequencies

Frequencies Number Frequencies Number Frequencies Number

- - fn 2 fn 4
2fn 1 2fn 2 2fn 4
3fn 1 3fn 2 3fn 4
- - fn ± fm 2 fn ± fm 12
- - 2fn ± fm 4 2fn ± fm 24
- - - - fn + fm ± fp 16

∑2 ∑12 ∑64
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