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Abstract
Understanding how genes impact the brain’s functional activation for learning and cognition

during development remains limited. We asked whether a common genetic variant in the

BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain

during a critical period for the emergence and maturation of the neural circuitry for reading.

In animal models, the bdnf variation has been shown to be associated with the structure

and function of the developing brain and in humans it has been associated with multiple

aspects of cognition, particularly memory, which are relevant for the development of skilled

reading. Yet, little is known about the impact of the Val66Met polymorphism on functional

brain activation in development, either in animal models or in humans. Here, we examined

whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children’s

(age 6–10) neural activation patterns during a reading task (n = 81) using functional mag-

netic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of

cognitive and reading development. Children homozygous for the Val allele at the SNP

rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and

phonological memory, tasks that have a strong memory component. Consistent with these

behavioral findings, Met allele carriers showed greater activation in reading–related brain

regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal

gyrus as well as greater activation in the hippocampus during a word and pseudoword read-

ing task. Increased engagement of memory and spoken language regions for Met allele car-

riers relative to Val/Val homozygotes during reading suggests that Met carriers have to

exert greater effort required to retrieve phonological codes.
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Introduction
Human development is characterized by a remarkable capacity to learn, and among the most
complex challenges in childhood is learning to read proficiently. Our ability to learn to read
results from the experientially- and biologically-guided maturation and organization of the
brain. Although the brain continues to change throughout the lifespan, it undergoes greater
organization in early life [1]. These developmental processes are partially under genetic control,
driven by molecular signals that result in changes ranging from subtle tuning of synaptic con-
nections to more large-scale functional organization of cortical areas that underlie human cog-
nition [2]. Yet our knowledge of how genes impact the brain’s capacity for learning and
cognition during development remains limited. Here we investigate how variation in the Brain
Derived Neurotrophic Factor (BDNF) gene, which has an established role in brain maturation
and plasticity, particularly as it pertains to cognition and memory, may contribute to variation
in reading and related skills [3–8]. Specifically, we ask whether a common genetic variant in
BDNF, the Val66Met polymorphism, alters patterns of neural activation in the developing brain
in ways that are important for children’s cognitive development, and consequently their read-
ing and other developing academic abilities.

BDNF and Brain Development
The BDNF gene is located on chromosome 11p13 of the human genome and encodes brain
derived neurotrophic factor (BDNF), which is a highly expressed growth factor governing the
development and maturation of the central as well as the peripheral nervous systems. A com-
mon single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met (dbSNP: rs6265)
results in an amino acid substitution (valine to methionine) in proBDNF peptide [a precursor
peptide to BDNF [9, 10]], at codon 66. The rs6265 variant is a missense (i.e., leading to the
alteration of the amino acid composition of the protein) SNP with two alternative alleles—G
(ancestral) and A (derived). Thus, three genotypes are possible for this SNP: GG, AG, and AA,
corresponding to Val/Val, Val/Met or Met/Met, respectively.

This polymorphism has been extensively studied [11], and has been shown to affect secre-
tion of BDNF [12] and regulate neuronal survival, morphology and function [13]. BDNF pro-
tein is a neurotrophin that influences many neural events related to brain plasticity [14] by
regulating cell survival, proliferation and synaptic growth, and by modulating synaptic
changes, particularly long-term potentiation (LTP) in the hippocampus. Individuals homozy-
gous for the ancestral G allele (i.e., Val/Val homozygotes), when compared to heterozygous
individuals (i.e., Val/Met) or individuals homozygous for the derived A allele (i.e., Met/Met),
generally perform better in a variety of domains of cognition, including memory [15–21]
attention [22–26], and executive function [3, 8, 27, 28], although this pattern of results is not
always consistent in studies of BDNF and cognition (see Mandelman and Grigorenko [11] for
a review).

Specifically, research with animal models has demonstrated that mice with higher brain
BDNF levels showed enhanced spatial learning and memory function on a Morris Water Maze
test [29], and mice with decreased BDNF levels in the frontal cortex showed impaired spatial
working memory [30]. Human adults who are carriers of the Met allele at the Val66Met poly-
morphism have shown poorer performance on test measuring executive function and working
memory, and corresponding reduced hippocampal volume [15], poorer performance on a rec-
ognition memory task [31], and greater activation in the hippocampus during an N-back mem-
ory task [12]. This literature suggests a relationship between variation in BDNF and individual
differences in memory processes, which involve hippocampal and cortical structures. However,
to date, human studies of genetic polymorphisms in BDNF have largely focused on adult
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cognition and brain function. Thus, there is both a theoretical and practical need to understand
how variation in BDNF relates to complex cognitive function, in the developing brain.

BDNF is predominantly expressed in the postnatal brain, and peaks at a time in develop-
ment most correlated with neuronal genesis and migration, differentiation, and synaptogenesis
[2, 32–37]. However, BDNF is variably expressed over early life during periods critical for lan-
guage and cognitive development and the expression of BDNF differs by brain regions. BDNF
is associated with structural changes brain-wide, including hippocampal structure [38, 39],
white matter [40, 41], and cortical and subcortical regions, e.g., cortical thickness and volume
[39, 42–44]. Peak BDNF expression in the temporal cortex occurs in infancy, and decreases
with age, whereas peak BDNF expression in the frontal cortex occurs in young adulthood, and
BDNF expression in the hippocampus remains relatively constant over the lifespan [45]. Differ-
ential BDNF expression over cortical regions matches structural imaging evidence that differ-
ent brain structures mature at different rates. Frontal brain regions develop more slowly than
other regions, for example, gray to white matter ratio [46–49], synaptic density [50], and myeli-
nation [51–53] have protracted developmental trajectories in the frontal cortex which parallel
those of children’s cognitive and academic abilities.

Children’s cognitive and linguistic abilities continue to develop concurrently through the
early grade-school years, guided by the maturation of neural sites and systems that support
them as they are learning how to read [54–56]. For example, developmental changes in the
superior parietal lobule, a region known to support working memory, are associated with chil-
dren’s working memory capacity as measured by a digit span task [57]. Children’s scores on
measures of executive function over time were found to be related to voxel-based gray matter
in frontal and temporal cortex, cingulate, insula, occipitotemporal regions (fusiform gyrus),
and parietal regions (precuneus) [58].

Interacting “domain-general” cognitive processes including working memory and attentional
selection support learning [59], including learning to read [60]. When reading, memory systems
hold incoming information in an available state for further manipulation; short-termmemory is
predictive of reading decoding and fluency [61]. Working memory involves preserving incoming
information while simultaneously processing this (and/or other) information [62]. Working
memory consists of a central executive system that is responsible for processing and manipulat-
ing information, and visual-spatial and verbal subsystems [62]. Poor working memory ability,
specifically in the verbal storage system, is associated with poor reading ability. Aspects of lan-
guage including phonological awareness (the awareness of and ability to manipulate the sound
units of language [63]), are critical components of skilled reading. The ability to attend to and
maintain phonological units in a phonological memory loop is predictive of reading outcomes
[64], for example, children with poor phonological memory show difficulties in later reading
[65], and children with poorer growth in working memory ability are more likely to have reading
disability [66]. Retrieving the meaning of words and comprehending passages involves multiple
memory systems, short-term memory is involved in storing phonological codes, working mem-
ory is involved in maintaining information about words and their meanings as text is integrated
to establish coherence and retrieve information from long-termmemory [67, 68]. Working
memory is a significant predictor of reading comprehension [69] and accounts for a significant
proportion of variance in children’s reading comprehension ability [67]. However, the contribu-
tion of working memory to reading depends on the task, that is, specific relationships between
working memory and orthographic, phonological, and naming processes, and sentence and pas-
sage comprehension are different [61, 68], and correlations between working memory and com-
prehension are different with the addition of secondary tasks (e.g., multitasking) [70].

Despite established links between “domain general” cognition, (specifically working mem-
ory), and reading, the biological underpinnings of these relationships are still unclear. The role
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of BDNF in brain maturation and cognition, and its varied expression patterns over develop-
mental periods corresponding to general cognitive development, led us to ask whether genetic
variations in the BDNF gene (here, specifically the Val66Met polymorphism) may modulate pat-
terns of neural activation in the developing brain that support cognitive skills important for lit-
eracy. A number of “candidate genes” for reading disorders have been identified, for example
dyslexia susceptibility 1 candidate 1 (DYX1C1), roundabout Drosophila homolog 1 (ROBO1),
doublecortin domain-containing protein 2 (DCDC2) and KIAA0319 [71–74]. However, there is
wide phenotypic heterogeneity across samples from which relationships between specific candi-
date genes and reading ability have been observed [75]. Further, work by Plomin and colleagues
suggests that so called “generalist genes” such as COMT and BDNF with known impacts on gen-
eral cognitive function may contribute significantly to reading ability and reading (and other
learning) disabilities [76–78]. BDNF specifically may have a role in skilled reading because the
gene has known roles in brain maturation, learning, and cognition. Moreover, the BDNF gene
11p13 susceptibility alleles have been associated with language impairment [79]. The BDNF
Val66Met polymorphism represents a common variant in the population, as such, it may
account for a meaningful amount of the variability in reading and other cognitive abilities. In
this study, we tested the hypothesis that the BDNF Val66Met polymorphism is important for
functional development of neural circuits underlying the cognitive processes that support read-
ing development. The developing circuitry for word reading has been extensively studied; ini-
tially visual information about a word is relayed to an occipitotemporal region referred to as the
“visual word form area” (VWFA; [80, 81, 82]). After initial input, a large left hemisphere circuit
that translates the visual form into phonological and semantic information is engaged, includ-
ing; the supramarginal gyrus (BA 40), which is involved in converting orthography into phonol-
ogy [83], and the superior temporal gyrus (STG, BA 21/22/42), which is known to be important
in phonological processing (e.g., Petitto, Zatorre [84] and Zatorre and Belin [85]); the temporo-
parietal system which includes the inferior parietal lobule (IPL), with the angular gyrus (BA 39),
which is involved in lexical-semantic processing (Seghier, Fagan, & Price, 2010); and the L. Infe-
rior frontal gyrus (IFG) which is involved in both phonological and semantic processing, as well
as working memory, which is particularly important for larger units of text [83, 86–88].

More recently, subcortical regions have also been found to play a role in neural circuitry for
reading including the thalamus, basal ganglia and hippocampus [89, 90]. The hippocampus is
involved in memory function, including long-term memory and working memory [91, 92]. Per-
formance on working memory tasks can be disrupted by hippocampal damage [93]. Patients
with lesions to the medial temporal lobe show dramatic deficits in long-termmemory [94]; this
evidence has been one of the clearest examples of evidence for memory function in the hippo-
campus. Neurodevelopmental changes in these brain regions support the development of cogni-
tive abilities throughout childhood that are important for literacy acquisition [90, 95–100].

Here we examine the relationship between the BDNF Val66Met polymorphism, brain activa-
tion, and reading using functional magnetic resonance imaging (fMRI) in combination with
behavioral indices of reading development. We examined patterns of neural activation as chil-
dren read words and pseudowords while undergoing fMRI neuroimaging. This particular word
and pseudoword reading task has previously been show to recruit the brain’s language and
reading circuitry and discriminate good from poor readers [89, 101–103]. We compare words
(which has associated meanings) to pseudowords, which have no associated meaning, but are
orthographically and phonologically similar to words. Words and pseudowords similarly
engage the brain’s reading circuit, but differ in the search and retrieval of meaning from the
lexicon, and thus put different demands on the sematic memory system.

Our behavioral battery included a comprehensive assessment of language and reading abil-
ity, including children’s phonological awareness and phonological working memory, oral and
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reading comprehension ability, letter-sound identification, spelling, word and passage reading,
recall of information from a story, well as IQ (see “assessment battery” below for specific test
details). This assessment battery is specifically selected to test children’s abilities across multiple
domains of skilled reading. To the best of our knowledge, no study has yet examined whether
variation in BDNF (i.e. Val66Met polymorphism) has an impact on patterns of activation in the
developing brain for reading and specific abilities that are required for skilled reading.

This combined “genes-brain-behavior” approach to developmental research can provide
new insights into the biological underpinnings of a complex psychological phenotype, such as
reading ability and its underlying componential skills such as working memory and phonologi-
cal processing.

Materials and Methods

Participants
Eighty-one children between the ages of 6 and 10 (45 males, 36 females, mean age = 8.1,
SD = 1.1) participated in this study (see Table 1 and Fig 1). The participants in this study are
part of a larger longitudinal study investigating genetic links to structural and functional brain
changes over a period in development corresponding to reading acquisition. Participants for
this study were excluded if they had a standardized performance IQ below 80. This study also
excluded children with a history of severe developmental or neuropsychological disorders. All
children had normal or corrected to normal vision and normal hearing. All children had read-
ing abilities within the typical range. From the larger longitudinal study sample, participants
who had completed the behavioral battery, fMRI task, and had donated a saliva sample were
included.

Participants were divided into two groups based on BDNF Val 66Met genotype: 1) Val/Val
homozygotes (Val/Val; n = 55, 63%), and 2) Met allele carriers (n = 26, 37%) comprised pri-
marily of Val/Met (n = 23, 28%) and, due to its low frequency, only a few Met/Met (n = 3, 9%).
Thus we had two groups: the Val/Val homozygotes group and the Met allele carriers (com-
bined Val/Met and Met/Met groups). The derived/minor allele frequency (MAF, here for the
Met allele) was .23 (The distribution of alleles did not violate Hardy-Weinberg equilibrium,
p = 0.7598). There were no significant differences between our two genotype groups in age, F
(1,79) = 1.363, p = 0.248, grade, χ2 (6) = 5.588, p = 0.471, gender, χ2 (1) = 1.784, p = 0.410, or
handedness, χ2 (1) = 3.379, p = 0.185. The two groups also did not differ with respect to word
reading ability (average Woodcock Johnson Reading Ability; F(1,79) = 0.322, p = 0.572). Sup-
plementary information about race and ethnicity, as well as history of stress can be found in
the Appendix.

This study was approved by the Yale University Institutional Review Board. Parents of chil-
dren participating in our study provided written consent and children provided verbal assent.
Participant consent was recorded on a consent form that explained the details of the study,
potential risks and benefits, and mechanism for storage of data and of identifying information.

Table 1. Participant characteristics by genotype group.

Val/Val Met allele carriers p

n 55 26

Age (years) 8.2 7.9 0.546

Gender (male:female) 28:27 17:9 0.410

Handedness (right:left) 46:5 21:5 0.258

doi:10.1371/journal.pone.0157449.t001
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Behavioral Assessments
Participants completed a battery of cognitive, language and reading assessments as well as edu-
cational and neuropsychological history evaluations, including screening for ADHD. Several
assessments from the Woodcock-Johnson Achievement Battery III [104] were administered,
including letter-word decoding, pseudoword reading (“Word Attack”), spelling, oral language,
story recall, passage comprehension, and oral comprehension. We also administered The Com-
prehensive Test of Phonological Processing (CTOPP; [105]), which includes measures of

Fig 1. Participant Age. Histogram of participant ages by genotype group.

doi:10.1371/journal.pone.0157449.g001
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phonological awareness and phonological memory. Finally, participants also completed an IQ
assessment using the Wechsler Abbreviated Scale of Intelligence, which include four subtest:
Vocabulary, Verbal Similarities, Matrix Reasoning, Block Design (WASI; [106]). Parental
reports of inattention and hyperactivity were collected from the SNAP-IV Parent Rating Scale
[107, 108]. See S1 Table.

fMRI Task
We used a cue-target identity task that required a match/mismatch judgment on each trial via
a button press [101]. The task required participants to view pictures of common objects (e.g., a
dress)—these pictures were followed by presentation of a single word or pronounceable, pseu-
doword (see Fig 2). For example, participants saw an image of a dress and then saw or heard
the word ‘dress’ or a similar pseudoword ‘dreak’. Participants were asked to press one button
when the picture and word matched (match condition) or press a different button when the
picture and word did not match (mismatch condition). The use of an active task with a partici-
pant response allowed us to determine whether participants were reading accurately and
attending to the stimuli. Real words were high frequency and 4–5 letters in length. Pseudo-
words were also 4–5 letters in length and phonotactically legal. Words and pseudowords were
presented either visually or auditorily. Visual stimuli were presented for 2,000 ms and auditory
stimuli were presented through an MRI-compatible headphone. Picture cues were treated as a
trial condition and initially presented on the screen alone, allowing sufficient time to model
separately the evoked responses to processing of the picture cues and for participants to encode
the picture for comparison to the stimuli on subsequent trials. The majority of trials (80%)
were mismatches, and only data from mismatch trials were included in analyses so that brain
responses were compared on a common “mismatch” decision. Six types of mismatch trials
were presented: spoken and printed high-frequency (HF) monosyllabic real words (e.g.,
DREAM); spoken and printed monosyllabic pseudowords (e.g., DREAK); printed HF mono-
syllabic words that are semantically related to the picture (e.g., SHIRT), and printed consonant
strings (e.g., DRLST). Print stimuli were displayed in the box beneath the picture cue for 2,000
ms in 18-point Verdana font and speech stimuli were presented through MR compatible head-
phones. Our baseline was a rest periods during which children viewed a fixation cross. Stimulus
presentation and response collection was controlled by a PC running E-prime 1.2 (Psychology
Software Tools, Pittsburgh, PA, USA).

Reaction time and accuracy rates were recorded for each trial (32 trials per each condition
in total). We compared groups (Val/Val homozygotes vs. Met allele carriers) on reaction time

Fig 2. Schematic of fMRI paradigm. A picture cue is displayed and participants make identity match/
mismatch judgments to print and speech tokens.

doi:10.1371/journal.pone.0157449.g002
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and accuracy rate using ANCOVA with age and parental reports of inattention & hyperactivity
as covariates.

In the current analysis, we focused on only printed words and pseudowords to assess pat-
terns of neural activation underlying specifically word reading, and not auditory word process-
ing. This task is appropriate for children who are beginning readers and has been previously
shown to discriminate good from poor readers [89, 101–103].

Behavioral Data Analysis
We analyzed participants’ performance by genotype on our behavioral assessments using a
MANCOVA. We assessed the effect of the genotype (Val/Val homozygotes versus Met allele
carriers) on Letter-Word Decoding, Pseudoword Reading, Passage Comprehension, Oral
Comprehension, Phonological Awareness, Phonological Memory and IQ, while treating age
and parent reports of hyperactivity (from our ADHD screener) as covariates. The MANCOVA
was followed with two post-hoc analyses: separate ANOVAs and linear discriminant analysis.
We also analyzed correlations between all behavioral variables. All analyses were completed
using R software [109].

fMRI Data Processing and Analysis
Data were acquired using a Siemens Sonata 1.5-Tesla MRI Scanner. Image processing and sta-
tistical analyses were completed using the Analysis of Functional Neuroimages software pack-
age (AFNI; [110]). Twenty axial-oblique anatomic images were acquired, parallel to the
intercommissural line based on sagittal localizer images. Activation images were acquired
using a single-shot gradient echo, echo-planar pulse sequence at these twenty slice locations.
Additional high-resolution anatomical images were collected for 3D co-registration. The imag-
ing parameters for activation images were as follows: TE of 50 ms, TR of 2000 ms, flip angle of
80 degrees, FOV of 20 x 20 cm, matrix size of 64 x 64, slice thickness of 6 mm without spacing.
A maximum of 10 imaging runs were collected for each participant. Images were corrected for
slice acquisition time, motion-corrected, and transformed to standardized reference space
defined by the Montreal Neurological Institute (MNI) by mapping the participant’s high-reso-
lution anatomical scan to the ‘Colin27’ brain, using a combination of affine linear and non-lin-
ear registration parameters [111, 112]. Data were then spatially smoothed with a 6.25-mm
FWHMGaussian filter. Images were excluded if they exceeded an image-to-image change of 5
mm displacement in translation or a combination of rotation and shift exceeding a Euclidian
Norm of 0.5. Regression-based estimation was used for the hemodynamic response at each
voxel and each condition.

We implemented AFNI’s 3dREMLfit command for multiple regression, which adjusts for
serial correlations in the time series noise, and therefore improves the accuracy of parameter
and variance estimates. We used a single parameter gamma reference function with formula (t/
(8.6�0.547))^8.6 � exp(8.6-t/0.547) to estimate the mean response for each condition and gen-
erate individual activation maps. We included six motion parameters that were obtained from
motion correction step in preprocessing into our model as nuisance variables, as well as a
Legendre polynomial set (from zero to third order) for each run to account for drift. Fixation
periods comprised the baseline for the regression model and thus were not explicitly modeled
with a regressor in our model.

We performed an ANCOVA group analysis using AFNI’s 3dMVM program [113]. We
compared patterns of neural activation between our homozygous Val/Val vs. Met allele carriers
for each condition (printed and words and pseudowords) with gender, age and IQ as covari-
ates. Individuals’ voxel-wise response estimates (beta-weights) and their corresponding t-
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values for each stimulus type and/or contrast of interest were inputs to our group-level analysis
in 3dMVM.We corrected for multiple comparisons using a cluster-wise threshold of .05, cor-
responding to a cluster size of 309. Cluster sizes were calculated using AFNI’s 3dClustSim
program.

Brain-Behavior Analysis
Using R [109], we computed partial correlations between behavioral scores on our test battery
and activation in each brain region where significant group differences in activation were
observed, while controlling for participant age. Nonparametric permutation testing (1000 per-
mutations) was performed to estimate the significance of each correlation and adjust for multi-
ple statistical tests. Random permutations were generated independently. For each
permutation, the variables to be correlated were randomly exchanged, and then the statistical
test was recalculated in each permutation. The p-value of each observed correlation was cor-
rected by calculating the proportion of the 1000 permutations for which the generated correla-
tion was greater than the observed correlation and then normalized by the number of
permutations.

DNA Collection and Analysis
During behavioral testing sessions with participants, we obtained biological samples using ster-
ile Oragene™ saliva collection kits (DNA Genotek, Inc). DNA was extracted from the samples
using the manufacturer’s protocol. We used the Applied Biosystems Inc. (ABI) TaqMan proto-
col for SNP genotyping. Specifically, the Assays-on-Demand™ SNP Genotyping Product con-
taining forward and reverse primers as well as the probe for the SNP of interest was utilized. In
order to amplify the region of interest, a polymerase chain reaction (PCR) was carried out
using MJ Research Tetrad Thermocycler on a 384-well plate format. TaqMan reactions
included 100 ng of genomic DNA, 2.5 μl of ABI Taqman1 Universal PCR Master Mix, 0.2 μl
of ABI 40X Assays-on-Demand™ SNP Genotyping Assay Mix (assay ID C__11592758_10),
2.0 μl of sterile H2O and 0.5 μl of Bovine Serum Albumin (BSA). The genotyping call rate was
92%; quality was controlled by regenotyping.

Results

Behavioral
Standardized assessments. We found a significant main effect of genotype group, F(1,69) =

2.266, p = .017, 1-Wilk’s λ = .660, and age, F(1,69) = 13.4630, p< .001, 1-Wilk’s λ = .246. We
did not observe a significant age by genotype group interaction in the MANCOVA. Table 2
shows the effect of the genotype group for each behavioral assessment. We also found significant
positive correlations between our language and reading measures, and between IQ measures.
All significant correlations are shown in Fig 3, p-values are Bonferroni corrected to p =.004.

Given the observation of a significant main effect of genotype, we followed this analysis
with two post-hoc analyses, (1) separate univariate ANOVAs to evaluate which individual vari-
ables differ between groups and (2) a linear discriminant analysis (LDA) to evaluate which lin-
ear combination of variables best separates genotype groups. (1) Our ANOVAs revealed
significantly better performance in Val/Val homozygotes relative to Met allele carriers on mea-
sures of Passage Comprehension (a component of the Woodcock Johnson Achievement Bat-
tery), Phonological Memory (a component of CTOPP phonological processing measure) and
IQ (Block Design), but no significant differences between Val/Val homozygotes relative to
Met allele carriers for Letter-Word Decoding, PseudowordWord Reading (“Word Attack”),
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Oral Language, Story Recall, Spelling, Oral Comprehension (components of the Woodcock
Johnson Achievement Battery), Phonological Awareness (a component of CTOPP phonologi-
cal processing measure), or the remaining IQ subtests. These analyses also revealed significant
effects of the age covariate on Spelling, Letter-Word Decoding, Pseudoword Reading, Phono-
logical Memory, Verbal IQ Vocabulary and Verbal Similarities, Performance IQ Block Design
and Matrix Reasoning. Mean scores and standard deviations for each behavioral assessment by
group are shown in Table 2 and score distributions are show in Fig 3. (2) LDA revealed a dis-
criminant function that classified individuals into genotype groups with 75% accuracy. The
coefficients of the discriminant function were similar for tests with greater memory compo-
nents (phonological memory, passage comprehension, block design, and story recall), and dif-
fered from tests that were predominantly verbal measures such as verbal IQ (vocabulary, word
similarities) and oral language. This confirmed our ANOVA findings above. See Fig 3.

In-Scanner Matching Task Behavioral Response. No significant differences in reaction
time and accuracy rates to making a picture-word matching judgment were observed between
Val/Val homozygotes and Met allele carriers (Reaction Time: MVal/Val = 1649 ms, SD = 354
ms; MMet carrier = 1659 ms, SD = 342 ms, F(1,74) = 0.3263, p>.05; Accuracy: MVal/Val = 86%,

Table 2. Behavioral Results.

Test F p d Group Mean SE

Letter-Word Decoding 1.514 0.223 0.272 Val/Val 113.915 2.037

Met carrier 109.802 2.974

Nonsense Word Reading 3.22 0.077 0.391 Val/Val 113.193 1.577

Met carrier 108.605 2.303

Spelling 0.487 0.488 0.169 Val/Val 110.9 2.409

Met carrier 107.881 3.518

Passage Comprehension 4.289 0.042* 0.406 Val/Val 109.647 1.773

Met carrier 104.292 2.589

Oral Comprehension 1.46 0.231 0.238 Val/Val 118.388 1.7

Met carrier 115.382 2.477

Oral Language 1.481 0.223 0.249 Val/Val 118.403 1.612

Met carrier 115.423 2.354

Story Recall 2.232 0.693 0.366 Val/Val 117.499 1.559

Met carrier 113.255 2.275

Phonological Awareness 2.64 0.109 0.37 Val/Val 111.81 1.903

Met carrier 106.584 2.778

Phonological Memory 5.65 0.020* 0.595 Val/Val 103.176 1.475

Met carrier 96.658 2.154

Verbal IQ—Vocabulary 0.762 0.386 0.211 Val/Val 32.115 0.985

Met carrier 30.554 1.473

Verbal IQ—Word Similarities 0.005 0.947 0.016 Val/Val 22.101 0.753

Met carrier 22.194 1.127

Nonverbal IQ—Block Design 4.604 0.035* 0.509 Val/Val 19.742 1.391

Met carrier 14.42 2.081

Nonverbal IQ—Matrix Reasoning 0.17 0.681 0.102 Val/Val 18.604 0.828

Met carrier 19.238 1.238

F-values, p-values and effect sizes for the group comparison (MANCOVA) as well as means and standard errors for the Val/Val and Met allele carrier groups

on our behavioral assessments.

* denotes p values less than 0.05.

doi:10.1371/journal.pone.0157449.t002
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SD = 15%; MMet carrier = 85%, SD = 18%, F(1,74) = 0.0143, p>.05). As such, differential patterns
of functional activation in brain as a function of genotype cannot be due to simple performance
differences.

fMRI
We analyzed participants’ patterns of neural activation by the genotype (Val/Val homozygotes
vs. Met allele carriers) and word type (word vs. pseudoword) while treating age, gender and
parent reports of hyperactivity (from our ADHD screener) as covariates. There was a signifi-
cant main effect of genotype and word type.

Word Type: Words vs. Pseudowords. We observed a significant main effect of word type
(t = 21.993, p =.05; FWE corrected, cluster size = 309). Greater activation was observed for

Fig 3. Behavioral Results. (A) Histograms of scores for each behavioral assessment, by group. Group means are indicated on each plot
(B) Coefficients of linear discriminant function to classify individuals according to genotype group. Similar coefficients are shown for
phonological memory, passage comprehension, block design, and story recall. (C) Significant correlations (p <.004) between behavioral
assessments.

doi:10.1371/journal.pone.0157449.g003
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pseudowords in the left caudate, putamen, precentral gyrus, inferior frontal gyrus, middle fron-
tal gyrus, inferior parietal lobule, precuneus, and supramarginal gyrus (see Fig 4 and Table 3).
This pattern of increased activation for novel relative to existing words has previously been
observed in several neuroimaging studies [114, 115].

Genotype: Val/Val homozygotes vs. Met allele carriers. We observed a significant main
effect of genotype. Comparisons of the two genetic groups revealed several regions of greater
activation for Met allele carriers relative to Val/Val homozygotes (t = 1.993, p =.05, FWE cor-
rected, cluster size = 309). We did not observe significant interactions between genotype and
word type, therefore, our analysis was focused on patterns of neural activation for both words
and pseudowords combined as an index of print decoding. Met allele carriers showed greater
activation relative to Val/Val homozygotes in the bilateral hippocampus, bilateral parahippo-
campal gyrus, bilateral fusiform gyrus, bilateral cingulate, bilateral precuneus, bilateral inferior
parietal lobule, and bilateral middle frontal gyrus, left inferior frontal gyrus, left medial frontal
gyrus, left precentral gyrus, and left thalamus, and right superior parietal lobule, right superior
frontal gyrus, and right superior temporal gyrus (see Fig 5 and Table 3). The left inferior frontal
gyrus, left inferior parietal lobule (IPL), left cuneus/precuneus, and the left fusiform gyrus
(which includes the region referred to as the visual word form area) are areas crucially involved
in aspects of reading [80, 81, 87, 100, 101, 116]. Moreover the thalamus and putamen have
been recently implicated in reading and associated with “late talking” [89, 90]. The hippocam-
pus and parahippocampal regions, have been previously associated with learning and memory
[7, 9, 15, 117].

There were no areas where the Val/Val homozygotes showed greater activation relative to
Met allele carriers. Table 3 shows a summary of all regions of activation.

Brain Behavior Correlations. Across groups, neural activation in these regions were sig-
nificantly correlated (p<.05) with children’s performance on Passage Comprehension, Letter-
Word Decoding, Spelling, Phonological Awareness, and Verbal (Similarities and Vocabulary)
and Performance (Block Design and Matrix Reasoning) IQ measures (see Fig 6). Skills identi-
fied in this analysis include some that significantly differentiated our groups, as well as other
skills that did not, but that are correlated with those group- associated skills.

Age. Our analyses also revealed a significant effect of age on patterns of neural activation.
Increased age was associated with greater activation in the right cuneus and the left middle

frontal gyrus for both groups. There were no significant interactions between age and genotype,
and no significant effects of other covariates.

Discussion
The central research questions of the present study was whether a common genetic variant in
the BDNF gene (the Val66Met polymorphism) modulates patterns of neural activation in the
developing brain in ways that are relevant for children’s reading skills. We approached this
research question using a combined “genes-brain-behavior”method with the aim to unravel
new information about the biological underpinnings of the development of reading and read-
ing-related skills. Indeed, we observed differences between children who had at least one
Met allelle (Val/Met or Met/Met) and those who were homozygous for the Val allele (Val/Val)
in behavioral performance on tasks tapping memory and in patterns of functional neural acti-
vation during reading.

Children who were Val/Val homozygotes outperformed Met allele carriers on measures of
phonological memory, reading comprehension and nonverbal IQ (block design subtest). These
findings are consistent with the previously documented association in adults between the
Val66Met polymorphism in the BDNF gene and memory and cognitive function [15–21].

BDNF Val66Met, Reading & Brain Activity in Children
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Fig 4. Neural activation by Condition. Comparison of neural activation during word versus pseudoword
reading. Greater activation was observed for pseudowords relative to words.

doi:10.1371/journal.pone.0157449.g004

BDNF Val66Met, Reading & Brain Activity in Children

PLOS ONE | DOI:10.1371/journal.pone.0157449 August 23, 2016 13 / 25



We did not observe significant group differences on any of our other language or reading
measures, though we did see an overall trend in the data for higher performance among Val/Val
homozygotes, which is consistent with the high intercorrelations among these skills. These find-
ings are consitent with our predictions that BDNFmay be associated with reading ability
through an effect on memory-related skills that are important for reading. Specifically, at the
level of phonology, the capacity to monitor and maintain sounds in a phonological loop system
via phonological working memory [62] contributes to a child’s phonological awareness skills,
which are known precursors to reading development. At the level of text processing, a reader
must attend to and maintain incoming information in memory as they accumulate knowledge
across phrases and sentences [118, 119]. Indeed, many children who show reading impairments
(at the level of the word and at the level of text) show working memory deficits [119–122].

Our primary fMRI analysis revealed greater neural activation during reading in children
who were Met allele carriers compared with Val/Val homozygotes. The areas where we
observed greater neural activation in Met allele carriers relative to Val/Val homozygotes
included a broad network of regions known to be important for reading in children, including
left (and right) fusifrom gyrus, left inferior frontal gyrus, and left superior temporal gyrus. Spe-
cifically, the left fusiform gyrus is strongly associated with visual word processing, the left infe-
rior frontal gyrus, has been implicated in lexical, morphological and syntactic processing, and
the left superior temporal gyrus, is involved in spoken language and phonological processing.
Increased activation in left hemisphere reading and language regions is frequently associated
with increased task difficulty, particularly during reading [99, 101, 123]. There were no areas
that showed greater activation for Val/Val homozygotes compared to Met allele carriers.

We also observed differences in functional activation as a function of genotype in the hippo-
campus and parahippocampal gyrus. These findings are consistent the known function of
BDNF in regulating hippocampal and parahippocampal function and volume [9, 12, 36, 45,
124]. Differences in hippocampal activity during recognition of words and pseudowords also
aligns with findings suggesting that learning words (like many other forms of learning)
involves complementary learning systems supported in part by the hippocampus [125]. Specif-
ically, this account suggests that newly learned words are first represented in the hippocampal
system and are then slowly integrated in to the cortex over a period of time that includes offline

Table 3. Neural activation differences by condition and group.

Region BA Volume X Y Z Peak Activation p value

Pseudoword >Word

L. Caudate, L. Putamen 363 -10.5 4.5 17.5 0.416 <.02

L. Precental Gyrus, L. Inferior Frontal Gyrus, L. Middle Frontal Gyrus 6/9/43/44 355 -46.5 1.5 29.5 0.395 <.03

L. Inf Parietal Lobule, L. Precuneus, L. Supramarginal Gyrus 39/40 325 -40.5 -43.5 35.3 0.316 <.04

Val/Met > Val/Val

L. R. Precuneus, L. Inf Parietal Lobule 7/31/40 1305 -10.5 -70.5 32.5 0.3105 < <.01

L. R. Hippocampus, L. R. Parahippocampal Gyrus, L. R. Fusiform Gyrus,
Cerebellum

19/37 1063 -25.5 -55.5 -6.5 0.3935 < <.01

L. Mid Frontal Gyrus, L. Inf Frontal Gyrus, L. Thalamus 9/34 689 -34.5 -16.5 -18.5 0.2733 <.01

R. Cingulate, R. Mid Frontal Gyrus, R. Sup Frontal Gyrus 6/8/32 609 28.5 4.5 47.5 0.3051 <.01

L. Cingulate, L. Medial Frontal Gyrus, L. Mid Frontal Gyrus, L. Precental Gyrus 4/6/24/31 464 -19.5 -7.5 50.5 0.2803 <.01

R. Sup Temporal Gyrus, R. Inf Parietal Lobule, R. Sup Parietal Lobule 7/22/39/
40

384 49.5 -43.5 17.5 0.3445 <.02

For all regions showing significant differences in neural activation, Brodmann Area (BA), Cluster Volume (in voxel number), MNI coordinates at peak,

maximum peak activation, and p-value for peak activation. The sign of the maximum peak activation indicates the directionality of the observed effect.

doi:10.1371/journal.pone.0157449.t003
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Fig 5. Neural activation by group.Comparisons of the Val/Val homozygotes and Met carriers. The Met
carriers showed greater activation relative to the Val/Val homozygotes.

doi:10.1371/journal.pone.0157449.g005
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sleep. Studies have also shown advantages (e.g., faster retrieval) for words that have been con-
solidated after a period of offline sleep, and also reduced hippocampal activity during retrieval
of consolidated words [125–128]. On possible implication of our findings is that Val/Val
homozygotes (who show less hippocampal activation during reading) may have an advantage
in learning and consolidation that contributes to improved reading-related skills, compared to
Met allele carriers, for whom reading may be more effortful.

Fig 6. Brain-behavior correlations. Correlations between children’s performance on behavioral battery and mean
activation in regions reported in Table 3 (regions where Met allele carriers showed greater activation than Val/Val
homozygotes). All correlations are significant at p <.05, after permutation testing.

doi:10.1371/journal.pone.0157449.g006
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Our findings support emerging cumulative risk models of reading development that suggest
that multiple cognitive and linguistic components give rise to skilled reading in the course of
normal development and can also constitute vulnerabilities of the reading system. Children
who carry the Met allele at rs6562 of the BDNF gene, showed overall lower scores on measures
of phonological working memory and reading comprehension, and in functional neural activa-
tion in regions that support reading. Our findings suggest that, development of word reading
proficiency may be facilitated by compensatory neural resources in individuals who have a
genetic predisposition for poorer memory performance, including increased activation in clas-
sic language areas and in regions that support learning and memory more generally (i.e. the
hippocampus and parahippocampal gyrus). This conclusion is also consistent with findings
that training on working memory tasks has positive transfer effects in reading comprehension
[129, 130].

It is important to note that this study is not without limitations. While we have observed
brain and behavioral differences between children who were Val/Val homozygotes and
Met allele carriers, we have only investigated a single nucleotide polymorphism within one
gene. Our ongoing work includes genome-wide association approaches, which allow for the
investigation of more genes and relationships among genes. Our sample size of 81 children,
while considerable for combined gene- brain- behavior approaches is still modest relative to
large scale association studies. Further, our age range limits stronger conclusions about devel-
opmental trajectories for the influence of the BDNF Val66Met polymorphism.

This first-time investigation of the role of the BDNF Val66Met polymorphism in functional
activation underlying reading in the children suggests that homozygous Val carriers might
have a cognitive advantage over Met allele carriers with respect to the brain’s capacity to learn
to read and that neural markers typically associated reading skill are associated with the BDNF
Val66Met polymorphism. While the current study has a modest sample size, our combined
“genes-brain-behavior” approach in the study of a common genetic variant contributes to the
growing literature on the neurogenetic foundations of reading development.

Future work will explore whether the relationships identified here can be used to enhance
the prediction of the onset of reading difficulty and refine our understanding of the nature of
reading disability.

Appendix

Participant Race and Ethnicity
With respect to race and ethnicity, the vast majority of the participants in both groups (N = 70)
were Caucasian (49 Val/Val and 21 Met allele carriers). Of the remaining eleven participants,
one participant was of African-American ethnicity, two participants were of Hispanic ethnicity,
three participants were of Asian ethnicity, and five participants of mixed ethnicity. The BDNF
rs6265 SNP can have minor allele frequencies (MAF) that differ based on ethnicity. For exam-
ple: BDNF rs6265 MAF is about 20% for Caucasian, 4% for African American, and 40% for
Asian population [131]. Our study had a small number of participants who were not of Cauca-
sian ethnicity, and preclude analysis of differences among ethnic groups. Future work with
larger sample sizes will necessitate comprehensive exploration of the variation between ethnic
groups based on minor allele frequencies.

Participant Stress
In order to assess stress, we collected information about stressful events in each child’s life.
This included any changes to family structure (birth/adoption of new child, parent divorce,
remarriage of parent, absence of parent), changes in location (new school, moving to new city),
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death and/or illness in the family, and custody (parent voluntarily gave up custody, parent
found unfit by court system). On average, the children in our sample experience 1.5 stressful
events, and there were no significant differences between groups (MVal/Val = 1.62, SD = 2.80;
MMet carrier = 1.15, SD = 1.54, F(79) = 0.626, p>.05).

Supporting Information
S1 Dataset. Statistical fMRI maps in AFNI format for each subject.
(ZIP)

S1 File. Analysis script in AFNI (Analysis of Functional Neuroimages software package)
used to analyze data.
(SH)

S1 Table. List of behavioral assessments. Each behavioral measure from the corresponding
assessment battery is listed. Mean and by-age reliability coefficients for each measure are
included.
(TIFF)
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