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Abstract 
Background: Cushing syndrome (CS) is a rare endocrine disorder characterized by excessive secretion of glucocorticoids, 
leading to a variety of clinical manifestations, comorbidities, and increased mortality despite treatment. Despite advances in 
imaging modalities and biochemical testing, the diagnosis and management of CS remains challenging. Several tests are 
used to confirm the diagnosis of CS, including urinary free cortisol measurements, dexamethasone suppression tests (1 mg, 
2 mg, and 8 mg), and nocturnal salivary cortisol measurements. However, each of these tests has some limitations, making the 
diagnosis of CS.

Methods: In this paper, we explore the potential of state-of-the-art machine learning algorithms as a clinical decision support 
system for analyzing and classifying CS. Our aim is to use advanced machine learning methods to analyze the accuracy rates 
of diagnostic tests and identify the most sensitive tests for diagnosing CS.

Results: In this study, we performed binary classification based on data from 278 patients with CS (CS+) and 220 healthy 
patients (CS-). We developed a linear mathematical model with high predictive ability, achieving a classification accuracy 
of 97.03% and a Kappa value of 94.05%. The correlation graph shows that CS has strong positive relationships with 2 mg 
(78.8%), 1 mg (76.9%), and mc (72.1%), and moderate positive correlations with 8 mg (45%) and saliva (45.4%). In contrast, 
gender has almost no correlation with CS, so it was removed from the dataset. As a result, the model achieves an overall 
classification accuracy of 97.03%. Finally, we converted the linear model into a mobile application for use by specialist doctors 
in the field of endocrinology.

Conclusion: Traditional diagnostic methods can be time-consuming and require specialized medical expertise. Recently, 
advances in machine learning and mobile technology have opened new avenues for improving diagnostic accuracy and 
accessibility. This study explores the integration of machine learning algorithms into a mobile application designed to assist 
healthcare professionals and patients in the diagnosis of CS.

Abbreviations: AC = adrenal Cushing, AI = artificial intelligence, BIPSS = bilateral inferior petrosal sinus sampling, CS 
= Cushing syndrome, DST = dexamethasone suppression test, GLM = Generalized Linear Models, PC = pituitary-induced 
Cushing.

Keywords: Cushing Diagnosis Mobile App, Cushing disease, Cushing syndrome, ectopic Cushing syndrome, machine 
learning

1. Introduction
Cushing syndrome (CS) is a potentially fatal disease caused by 
abnormally high levels of the cortisol hormone, first described 
by Harvey Cushing in 1912.[1–6] The estimated global inci-
dence of CS ranges from 1.8 to 4.5 cases per million people 
per year, with a prevalence of 57 to 79 cases per million people 
per year when considering all causes. Registry data indicate a 

female-to-male ratio of 4:1 and a mean age at diagnosis of 44 
years (±14).[4,7]

Exogenous CS can occur due to long-term intake of  
glucocorticoid-steroid hormones, which are prescribed for con-
ditions such as asthma, rheumatoid arthritis, lupus, and other 
inflammatory diseases.[8] These hormones, which are chemi-
cally similar to natural cortisol, have potent anti-inflammatory 
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properties. They are also utilized post-organ transplanta-
tion to suppress the immune system and prevent rejection. 
Endogenous causes involve the body’s excessive production of 
cortisol. In pituitary-induced Cushing (PC), excessive secretion 
of ACTH stimulates the adrenal glands to produce cortisol. 
PC is the most common cause of Cushing syndrome and is 
also referred to as Cushing disease. Adrenal Cushing (AC) can 
be due to adrenal tumors or adrenal hyperplasia, a genetic 
disorder leading to cortisol overproduction. Ectopic CS (EC) 
occurs when tumors located outside the pituitary gland, such 
as those in the pancreas, lungs or thyroid produce ACTH.[8] 
The majority (70–80%) of endogenous CS cases are classi-
fied into ACTH-dependent and ACTH-independent causes. 
Cushing disease, the most common form of ACTH-dependent 
CS (80–90%), is also known as corticotroph pituitary ade-
noma or corticotropinoma.[9] Non-pituitary ACTH-secreting 
tumors (ectopic ACTH secretion) represent 10% to 20% of 
ACTH-dependent cases. Lung tumors, particularly neuroen-
docrine tumors, account for a significant portion of ectopic 
ACTH production cases.[4,8,9]

ACTH-independent CS is primarily caused by unilateral adre-
nal adenomas (70%) and adrenal carcinomas (20–30%).[10,11] 
Rare causes include bilateral macronodular adrenocortical 
disease, bilateral micronodular adrenal hyperplasia (isolated 
or part of the Carney complex), McCune–Albright syndrome, 
and bilateral adrenal adenomas or carcinomas.[12–14]

Early diagnosis plays a crucial role in reducing mortality 
and improving the prognosis of CS. However, diagnosing CS 
can be challenging due to symptoms developing gradually and 
overlapping with features of metabolic syndrome, such as high 
blood pressure, elevated blood sugar, excess abdominal fat, 
and abnormal cholesterol, and triglyceride levels.[15] Due to the 
nonspecific nature of these symptoms, diagnosing CS can be 
challenging. Laboratory investigations for clinically suspected 
CS patients are divided into 2 stages. Stage-1 tests serve as 
diagnostic screening tests to prove the presence of hypercorti-
solism, while Stage-2 tests are follow-up tests to evaluate the 
cause of hypercortisolism.[16–18]

The most commonly used procedures to evaluate and exclude 
or confirm CS include the urinary cortisol test, which measures 
cortisol levels in a 24-hour urine sample, the salivary cortisol 
test, which measures cortisol levels in saliva and the low-dose 
dexamethasone supression test, which measures cortisol levels 
in blood after ingestion of dexamethasone. Despite their pre-
dictive value, test results can still be inconclusive. Typically, 3 
tests are recommended for screening: late-night salivary cor-
tisol, urinary free cortisol, and an overnight 1 mg dexametha-
sone suppression test. Most patients require at least 2 positive 
test results to confirm hypercortisolism, with each test having 
its own characteristics and limitations. Inconclusive results 
may occur in patients in the early stages of the disease or 
with periodic forms of CS, sometimes necessitating prolonged  
follow-up or hospitalization.[18–20]

Diagnosing and determining the cause of CS requires careful 
interpretation of signs, symptoms, biochemical test results, and 
medical imaging findings by experienced physicians. Traditional 
diagnostic approaches rely on statistical methods and different 
cutoff points for sensitivity and specificity, leading to varying 
evaluations of test results.[21] ML offers a promising solution 
to overcome these challenges by providing a generalizable 
approach to evaluate medical test results, predict CS diagnosis, 
and aid in prognosis. This paper explores state-of-the-art ML 
algorithms and demonstrates their utility as a clinical decision 
support system for the diagnosis and prognosis of CS. Clinical 
performance evaluation is conducted by comparing model’s 
predictions with expert physicians judgments.[21,22]

The integration of artificial intelligence (AI) models in the 
diagnosis of medical conditions has gained substantial momen-
tum in recent years. A notable example is the widespread appli-
cation of machine learning algorithms during the COVID-19 

pandemic, where these tools played a pivotal role in supporting 
disease detection and diagnosis.[23] Beyond infectious disease 
contexts, AI has shown considerable promise in neuropsychi-
atric domains. For instance, the diagnosis of conditions such 
as Schizophrenia and Attention Deficit Hyperactivity Disorder 
has been investigated using resting-state functional magnetic 
resonance imaging data. In these applications, advanced AI 
techniques like two-dimensional Convolutional Autoencoders 
have been employed to perform efficient and informative fea-
ture extraction.[24] To further improve diagnostic precision and 
model transparency, hybrid approaches have been proposed. 
One such example combines Interval Type-2 Fuzzy Regression 
with Gray Wolf Optimization, yielding enhanced classification 
performance and better interpretability. These developments 
underscore the increasing influence of AI in optimizing diag-
nostic workflows across both somatic and mental health care 
settings.[24]

Moreover, in recent years, nonlinear features (such as frac-
tal dimension and entropy) have emerged as critical elements 
in biomedical data analysis, significantly contributing to the 
improvement of diagnostic accuracy.[25] These features help 
capture the complex, irregular patterns commonly observed in 
physiological signals and medical imaging, making them espe-
cially valuable for detecting subtle pathological changes.[25,26]

Fuzzy logic-based models have also become increasingly 
prominent in clinical decision support systems, primarily due 
to their inherent ability to manage vagueness and uncertainty 
within medical data. Techniques such as fuzzy regression (par-
ticularly hierarchical fuzzy systems and Takagi–Sugeno–Kang 
(TSK) models) offer a flexible framework for modeling the 
intricate and often nonlinear interactions among clinical vari-
ables.[27] TSK fuzzy systems, in particular, have demonstrated 
strong performance in handling nonlinear dynamics within 
healthcare datasets, frequently surpassing traditional linear 
models in both accuracy and adaptability.[28] Compared to 
conventional linear models, these approaches frequently excel 
in both accuracy and adaptability. The use of fuzzy concepts in 
handling uncertainties in medical data can lead to more accu-
rate and reliable outcomes.[29–31]

Despite these advantages, the implementation of sophisti-
cated fuzzy and AI-based models typically requires significant 
computational resources and access to specialized development 
platforms.[29–31] In response to this challenge, our study focused 
on developing a more practical and resource-efficient solu-
tion using Generalized Linear Models (GLM), which enabled 
seamless integration with the MIT App Inventor platform. 
This approach provides a lightweight yet effective alternative, 
ensuring broader accessibility and applicability in real-world 
clinical settings.

1.1. Related study

ML approaches have been applied to various problems related 
to CS.[32] Previous studies have explored automated interpreta-
tion of urinary steroid profiles to classify normal and abnormal 
profiles associated with various metabolic conditions, includ-
ing CS.[33] Classification of CS using gene expression data of 
tumor tissues has been demonstrated.[34] Furhermore, ML has 
been used to identify predictors of early and long-term out-
comes after surgery in patients treated for Cushing disease.[35] 
Another study focused on identifying facial anomalies asso-
ciated with endocrinal disorders, including CS, using ML to 
facilitate diagnosis and follow-up.[36]

In this study, our aim was to analyze the tests used to diag-
nose CS using advanced ML methods, determine their accu-
racy rates, and identify which tests exhibit higher sensitivity in 
diagnosing CS. This is the first study to present comprehensive 
research on the application of the ML approach in this con-
text. An AI model was developed based on data from various 
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diagnostic tests, including the 1 mg dexamethasone suppression 
test (DST), 2 mg DST, 8 mg DST, basal cortisol level, midnight 
cortisol, night salivary free cortisol, 24-hour urine free cortisol 
and basal ACTH levels. The obtained mathematical classifi-
cation model was converted into a mobile application for use 
by endocrinology specialists. To the best of our knowledge, 
there is no previous study that has transformed an ML-derived 
model into a mobile application, making this research original.

2. Materials and methods

2.1. Study design

Retrospective medical records of 498 patients (319 women 
and 179 men, with a mean age of 52.02 ± 13.33 years) were 
used. These patients were admitted to the Akdeniz University 
Faculty of Medicine Endocrinology outpatient clinic between 
2014 and 2023 due to symptoms of Cushing syndrome or 
incidental adrenal adenomas. Diagnostic test results, including 
basal cortisol, basal ACTH, 1 mg DST cortisol, 2 mg DST cor-
tisol, 8 mg DST cortisol, midnight cortisol, 24-hour urine cor-
tisol, and adrenal and pituitary imaging tests, were analyzed. 
The Akdeniz University Faculty of Medicine Ethics Committee 
approved this research study (TBAEK-250 25.04.2024).

2.2. Dataset profile

The CS dataset comprises 498 samples and 11 features (pre-
dictor variables). The target variable represents 4 subtype 
classes: AC, PC, subclinical Cushing sydrome (SC), and EC for 
patients with CS, and nonfunctional adrenal adenoma (NF) for 
patients without CS. Statistical characteristics (mean, standard 
deviation, proportion, and numbers) of dataset characteristics 
by diagnosis type are provided in Table 1. The dataset con-
tains missing values because some medical tests were not per-
formed based on doctors’ orders, depending on symptoms and 
accompanying test results. Some of the data distributions were 
skewed (asymmetric around the mean of the distribution). The 
dataset also suffers from moderate class imbalance, as the NF 
class is overrepresented compared to the other classes.

2.3. Preprocessing

2.3.1. Missing value imputation.  Physicians may omit certain 
tests if previous tests provide sufficient diagnostic information. 
For instance, the 8 mg DST test is typically only conducted 
following screening tests like the 1 mg DST to ascertain the 

type of CS. If a person is suspected of having a nonfunctioning 
adrenal adenoma, the 8 mg DST is often omitted. Depending 
on symptom severity and other indicators, the physician may 
opt to skip the low-dose DST test and proceed directly to the 
8 mg DST test. Therefore, we opted against skipping features 
with missing values and instead employed imputation.

Dealing with missing data poses a significant statistical 
challenge, and there is no one-size-fits-all imputation method 
that works best in all scenarios.[37] The simplest approach is to 
discard samples with missing values. However, in this study, 
discarding samples with missing feature values was not con-
sidered due to the prevalence of missing values in the original 
dataset. Such exclusions would lead to substantial information 
loss and a significantly reduced dataset size. To address missing 
values for a given feature, we replaced them with the median 
of all known values for that feature, calculated separately 
for both the training and validation datasets. This approach 
avoids information leakage and maintains the dataset’s inde-
pendence throughout the training process.

Before modeling the dataset with the ML algorithm, it is 
essential to examine the dataset’s general structure and per-
form necessary operations. Statistical methods are employed 
during the data overview phase to gain insights into the gen-
eral distribution of features in the dataset. At this stage, if any 
missing data entries are identified, the relevant observations 
are retained in the dataset. Following the data cleaning pro-
cess, the dataset is finalized by conducting operations such as 
logarithmic transformation and outlier detection, if necessary.

2.3.2. Skewed feature distributions problem.  In general, 
skewed feature distributions in the dataset reduce the model’s 
ability to identify more common cases, as it focuses more on 
dealing with rarer cases that take extreme values. Some ML 
algorithms (e.g., the LDA classifier) assume normality for 
the underlying populations, and their performance can be 
negatively impacted by violations of this assumption.[38]

Classifiers without distributional assumptions are expected 
to perform well with various distributions, as long as the class 
distributions are reasonably distinct.[39] In a similar study, log-
arithmic transformation was employed to mitigate skewed 
distributions, resulting in improved performance. We applied 
a logarithmic transformation (log base 10) to reduce skew-
ness of feature distributions and reported the level of skewness 
using the Fisher–Pearson skewness coefficient.[40,41]

After preprocessing, correlation analysis was applied to 
measure the relationships between features in the dataset, 
revealing how the dependent variable correlates with the inde-
pendent variables.

Table 1

Characteristics of patients at time of diagnosis data set.

Feature Description

NF (n:220) AC (n:114) PC (n:89) EC (n:16) SC (n:59)

MVR% Mean Mean Mean Mean Mean

Age Subject age (years) 0 47.89 ± 15.62 60.24 ± 13.27 51.48 ± 14.40 46.13 ± 16.62 58.51 ± 10.52
Gender Subject gender (female/male count) 0 156/64 86/28 66/23 11/5 47/12
Saliva Night salivary cortisol 0 0.19 ± 0.10 0.60 ± 1.19 0.47 ± 0.38 3.88 ± 8.12 0.39 ± 0.20
bc Basal cortisol (µg/dL) 29 16.15 ± 5.10 18.71 ± 7.52 22.79 ± 9.62 36.64 ± 15.60 17.29 ± 4.88
Batch Basal ACTH (pg/mL) 35 21.32 ± 14.59 5.57 ± 3.19 77.38 ± 149.8 224.63 ± 265.72 4.82 ± 3.70
1 mg DSTc Cortisol after 1 mg DST (µg/dL) 5 1.35 ± 1.17 7.34 ± 7.88 8.38 ± 7.43 18.57 ± 19.93 4.54 ± 3.75
2 mg DSTc cortisol after 2 mg DST (µg/dL) 23 1.01 ± 0.42 7.27 ± 8.35 8.35 ± 7.3 19.28 ± 20.85 4.44 ± 4.00
8 mg DSTc 8 mg DST 68 1.27 ± 0.21 0.90 ± 0 6.96 ± 3.22 26.50 ± 14.96 4.07 ± 2.46
mc Midnight cortisol (µg/dL) 68 3.46 ± 1.64 11.98 ± 7.75 14.98 ± 9.49 27.55 ± 22.01 10.20 ± 6.41
ufc Urinary free cortisol (µg/24 h) 29 63.71 ± 42.52 228.72 ± 275.0 331.69 ± 263.47 1111.79 ± 1286.71 120.71 ± 71.19
adrMass Mass in adrenal imaging (yes/no) 0 220/0 114/0 0/89 16/0 59/3
pitMass Mass in pituitary imaging (yes/no) 0 0/220 0/114 89/0 16/0 3/59

AC = adrenal Cushing, DST = dexamethasone suppression test, EC = ectopic Cushing, MVR = missing value imputation, NF = nonfunctional adrenal adenoma for patients without CS, PC = pituiter 
Cushing, SC = subclinical Cushing sydrome.
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2.4. Machine learning classification and evaluation 
method

GLM is one of commonly used ML algorithms for classification 
problems. It differs from other ML algorithms, called blackbox 
algorithms, in that it creates a linear model and provides the 
weight coefficients of the features as a result, which can be easily 
interpreted. The β coefficients of the features in the mathemat-
ical model are determined. After determining the coefficients, 
a logit transformation is performed.[42] To calculate probabili-
ties using the obtained logit values, a transformation is made as 
described in formula (1):

 

logit ( p) = β0 + β1.age+ β2.saliva+ β3.bc+ β4.bacth
+β5.mg1+ β6.mg2+ β7.mg8+ β9.mc+ β10.ufc�

(1)

Where Y is the dependent variable, that is, CS, and X is the 
independent variables, that is, {age, saliva, basal cortisol (bc), 
basal acth (bacth), 1 mg DST (mg1), 2 mg DST (mg2), 8 mg 
DST (mg8), midnigt cortisole (mc), urinary free cortisol (ufc)}, 
the probability of a patient being CS + is calculated as in for-
mula (2).[43] If the calculated probability value is >0.5, then the 
patient is considered CS+, and if it is <0.5, then the patient is 
considered

	
CS− . P (Y = 1X) =

1
1+ e−logit( p) � (2)

The success of a classification model needs to be tested with 
available data. Among the most frequently utilized metrics 
in the field of classification are Accuracy, Kappa, Sensitivity, 
Specificity, Positive Prediction Value, Negative Prediction Value, 
Prevalence, Detection Rate, Detection Prevalence, and Balanced 
Accuracy.[44] These metrics provide a comprehensive understand-
ing of the model’s performance. A Confusion Matrix (Table 2) 
is used to mathematically express these evaluation metrics. It is 
a table that illustrates how the model combines actual and pre-
dicted classes. The fundamental terms in this table are defined 
as follows:

	 •	 TP (true positive): classification instances that the model 
identifies as positive and are indeed positive. classifica-
tion instances that the model identifies as positive and are 
indeed positive.

	 •	 TN (true negative): classification instances that the model 
identifies as negative and are indeed negative.

	 •	 FP (false positive): classification instances that the model 
incorrectly identifies as positive but are actually negative.

	 •	 FN (false negative): classification instances that the model 
incorrectly identifies as negative but are actually positive 
(Table 2).

CS+: Cushing syndrome positive,
CS-: Cushing syndrome negative,
N = TP + FN + FP + TN

	
Accuracy =

TP+ TN
N �

(3)

	
Sensitivity =

TP
TP+ FN�

(4)

	
Specificity =

TN
FP+ TN�

(5)

	
Positive Predictive Value =

TP
TP+ FP�

(6)

	
Negative Predictive Value =

TN
TN + FN � (7)

	
Detection Rate =

TP
N � (8)

	
Prevalence =

TP+ FN
N �

(9)

	
Detection Rate =

TP
N � (10)

	
Detection Prevelence =

TP+ FP
N � (11)

	
Balanced Accuracy =

sensitivity+ specificity
2 �

(12)

	
Kappa =

Acc− EA
1− EA �

(13)

3. Results

3.1. Correlation between data characteristics

A correlation graph illustrates the relationships between fea-
tures, with positive relationships depicted in shades of blue and 
negative relationships in shades of red. The intensity of the color 
indicates the strength of the relationship between 2 features. 
Upon examining the correlation graph, several noteworthy 
observations emerge (Fig. 1).

Features exhibiting a positive correlation of over 70% with 
CS include 2 mg (78.8%), 1 mg (76.9%), and mc (72.1%). 
Additionally, 8 mg (45%) and saliva (45.4%) display positive 
correlations close to 50%.

Conversely, gender traits exhibit a correlation very close to 
zero with CS. This lack of correlation suggests that gender is not 
a significant independent trait and was consequently removed 
from the dataset.

3.2. GLM results

The coefficients of the model obtained after running the 
GLM algorithm in the RStudio environment are shown in 
Figure 2.[45]

Considering these coefficients, the mathematical expression 
given in formula (14) is obtained:

 

logit ( p) ∼= 1, 343+ 0, 088 log (age) + 0, 065 log (saliva)
+0, 257 log (bc)− 2, 646 log (bacth) + 0, 172 log (mg1)
+8, 378 log (mg2) + 3, 734 log (mg8) + 0, 702 log (mc)
+0, 954 log (ufc) �

(14)

This mathematical expression represents the relationship 
between CS and other variables. The coefficient of each vari-
able represents the effect of that variable on CS. For example, 
since the coefficient of age is 0.088, the CS value is expected to 
increase by approximately 0.088 with increasing age. Variables 
with positive coefficients (age, saliva, bc, 1 mg, 2 mg, 8 mg, mc, 
ufc) increase the CS value, while the variable with a negative 

Table 2

Confusion matrix.

Classification

Reference

CS- CS+

Prediction CS TP FP
CS+ FN TN
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coefficient (bacth) decreases the CS value. The magnitude of 
the coefficients indicates the strength of the relationship. For 
instance, since the coefficient of the 2 mg variable is 8.378, its 
effect on CS is greater than that of the other variables.

3.3. Evaluation of the model

The significance of the model is assessed through the P-value. 
A P-value below .05 indicates significance, with lower val-
ues (closer to 0) indicating greater significance.[46] As shown 
in Figure 3, our GLM model is statistically significant with 
a P-value of < 2.10-16, which is very close to zero. Once the 
model is deemed significant, metrics are calculated based on the 
Confusion Matrix values. The results obtained using formula 
(3–13) are shown in Figure 3.

When the Confusion Matrix is analyzed, 2 out of the 49 
patients who are actually healthy (FN) are misclassified as 
patients. Similarly, 1 out of 52 patients (FP) was misclassified 
as healthy. Accordingly, the overall classification accuracy of the 
model is 97.03%.

3.4. Transferring the model to a mobile application

The mobile application for the obtained linear model was devel-
oped using App Inventor, an online design platform created 
by MIT.[47] The mathematical model derived using GLM was 
implemented within the App Inventor design interface. After 
completing the necessary checks, an apk file was generated. This 

APK file was then transferred to a mobile device, installed, and 
executed.

The visual interface that opens after running the mobile soft-
ware is shown in Figure 4. In this interface, data for 9 separate 
parameters were entered for both an individual with CS (A) and 
a healthy individual (B) into the sections marked with number 
1 in Figure 4. To perform the prediction, the “Predict” button 
marked with number 2 was pressed to execute the calculation.

In the result obtained for image A, it was revealed that the 
patient is CS-, as indicated by number 3. Similarly, in image B, 
the patient was predicted to be CS+, as indicated by number 3 
(Fig. 4).

4. Discussion
In this study, a ML algorithm was developed using simple bio-
chemical tests to diagnose CS and achieved an accuracy rate of 
over 97.3%. The results demonstrate that ML algorithms based 
on simple clinical tests can effectively diagnose CS. Furthermore, 
this algorithm has been made accessible through a user-friendly 
interface to all clinicians. The mathematical model, developed 
using GLM, was transferred as a mathematical expression in the 
App Inventor design interface, and an APK file was generated. 
The apk file was transferred to a mobile device and executed, 
resulting in a functional application that assists clinicians in 
diagnosing CS with a high accuracy rate.

Accurate diagnosis of CS is crucial for ensuring effective 
treatment for patients.[20–22] Our study presents an innova-
tive approach that leverages the advanced predictive capabil-
ities of ML using basic biochemical tests for diagnosing CS. 
Additionally, the mobile application allows clinicians to quickly 
diagnose CS by inputting data on their phones, particularly use-
ful in outpatient clinic conditions.

ML offers consistent analysis by processing large datasets 
without being constrained by rigid rules, unlike traditional 
methods that are more sensitive to user influence. The accuracy 
rates of biochemical tests used in the diagnosing CS were also 
examined. Features with more than 70% positive correlation 
with CS include 2 mg DST (78.8%), 1 mg DST (76.9%), and mc 
(72.1%), respectively. Additionally, 8 mg DST (45%) and saliva 
(45.4%) showed positive correlations close to 50%. In contrast, 
gender characteristics had a near-zero correlation with CS. The 
most valuable biochemical test was found to be the 2 mg DST.

In conclusion, ML significantly contributes to endocrinology 
by providing better and more accurate predictions in the diag-
nosis of CS. Previous studies have shown that ML outperforms 
conventional methods in predictive power, such as predicting 
surgical outcomes in patients with pituitary adenoma, postop-
erative remission in acromegaly, and resistance to somatostatin 
receptor ligands in acromegaly treatment.[48–53] These studies 
consistently show that ML outperforms traditional methods in 
terms of predictive power. However, there are only a few studies 
in the existing literature that deal specifically with the applica-
tion of ML in the context of CS. For example, Isci et al[8] used 
ML algorithms to differentiate between CD, adrenal CS, and 
subclinical CS; however, their study did not include patients 
with EAS. In another study, Lyu et al[54] used ML algorithms for 
the differential diagnosis of 311 patients with ACTH-dependent 
CS. They used the random forest method and achieved a correct 
diagnosis with a sensitivity of 95% and a specificity of 71.4%. 
However, these studies included parameters such as body mass 
index and disease duration, but did not include crucial bio-
chemical parameters like the 1 mg DST, and MRI features like 
adenoma density. Demir AN et al[55] used ML algorithms con-
sidering various factors including age, gender, serum potassium 
levels, screening, confirmatory and differential diagnostic tests 
for hypercortisolemia, along with sella MRI data, achieving 
an 86% accuracy rate in determining the etiology of ACTH-
dependent CS.

Figure 1.  Correlation graph saliva:salivary cortisol, mg1 = 1 mg DST, mg2 = 
2 mg DST, mg8 = 8 mg DST, mc = midnight cortisol, ufc = urinary free cortisol, 
CS = Cushing Syndrome (Since the first letters in a computer program cannot 
start with a number, “mg” was added before the numbers.)

Figure 2.  GLM coefficients: saliva = salivary cortisol, bc = Bazal Cortisol, 
bacth = Bazal ACTH, mg1 = 1 mg DST, mg2 = 2 mg DST, mg8 = 8 mg DST, 
mc = midnight cortisol, ufc = urinary free cortisol (Since the first letters in 
a computer program cannot start with a number, “mg” was added before 
the numbers.). DST = dexamethasone suppression test, GLM = Generalized 
Linear Models.
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Although factors such as biochemical tests, age, gender, and 
imaging modalities each have limitations in diagnosing CS accu-
rately, ML combines all these features to perform comprehensive 
analysis and predictions. This balances the limitations of ML and 
its relatively limited utility in differential diagnosis. ML’s powerful 
data processing capabilities provide a valuable and noninvasive 
tool in contrast to the current medical approach, which faces chal-
lenges in effectively integrating these features for accurate decisions.

The interpretation of medical tests to diagnose CS and clas-
sify its subtypes is time-consuming and limited by physicians’ 

capacity and clinical experience to integrate numerous and 
complex pieces of information. Results from studies conducted 
in other hospitals and medical centers may vary due to factors 
such as laboratory errors, patient-induced errors, differences 
between groups, age and gender. Despite these challenges, we 
have demonstrated that an ML-based decision support system 
can be helpfull.

Class imbalance in the dataset is known to reduce the predic-
tive performance of a model.[56] Various methods are available 
to alleviate this problem such as subsampling and oversampling 
techniques. Since the dataset size is relatively small, subsampling 
the majority classes results in information loss. Oversampling is 
likely to bias the accuracy as new data samples are created from 
a few old samples and cannot introduce significant changes to 
the dataset. Therefore, we tackle this problem by using ML 
algorithms that can inherently handle imbalanced data classi-
fication through class weighting in the learning process. This 
ML approach outperforms expert human judgment in clinical 
performance evaluation.

One limitation of this study is a relatively small number of EC 
patients, which is reflective of clinical practice. Large-scale stud-
ies are needed to determine the robustness and reproducibility 
of the model, as the decision-making success of AI depends on 
the sample size and data amount. Another limitation is that the 
algorithm we developed should include all the necessary vari-
ables for effective clinical use.

However, the fact that all selected variables are easily acces-
sible and inexpensive measurements that can be applied in out-
patient clinic conditions will facilitate their use. Approximately 
20% of ACTH-dependent cases are EC, while 80% are PC (i.e., 
Cushing Disease). Since both PC and EC are ACTH-dependent, 
some of the samples estimated as PC in the original dataset may 
actually be EC. Therefore, further studies by physicians are 
needed to make a correct diagnosis. Bilateral inferior petrosal 
sinus sampling (BIPSS), imaging findings, and the rate of sup-
pression of cortisol levels after an 8 mg DST are generally infor-
mative in differentiating EC from PC. In our study, there were 
fewer data on BIPSS tests, imaging methods, and the 8 mg DST. 
As we collect more data samples for EC, the models can be eas-
ily updated to differentiate EC.

Figure 3.  Test results of GLM model. GLM = Generalized Linear Models.

Figure 4.  Image of the mobile application interface bc = Bazal Cortisol, bacth = Bazal ACTH, saliva = salivary cortisol, mg1 = 1 mg DST, mg2 = 2 mg DST, mg8 
= 8 mg DST, mc = midnight cortisol, ufc = urinary free cortisol (Since the first letters in a computer program cannot start with a number, “mg” was added before 
the numbers.). DST = dexamethasone suppression test.
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Despite these limitations, the ML model offers numerous 
important advantages. This research represents one of the ini-
tial successful implementations of ML in accurately predicting 
CS diagnosis. The model can serve as a valuable decision sup-
port tool for clinicians, especially when used in integrated with 
a mobile application, thereby simplifying the diagnosis of CS in 
situations where direct diagnosis is challenging. Our approach is 
adaptable to new data and will evolve with the accumulation of 
new samples. Once trained, the prediction models require mini-
mal computational resources and the features are derived from 
routinely conducted tests in hospitals. It can also serve as a gen-
eral framework, allowing the integration of data from various 
hospitals and medical centers. These models can help screen a 
large proportion of negative cases in the early stages of clinical 
diagnosis, prognosis, and treatment.

5. Conclusion
This study aimed to develop an effective method for predicting 
the diagnosis of CS and examining factors affecting its diag-
nosis, including age, gender, and biochemical tests. Using the 
GLM classification algorithm, researchers achieved a 97.03% 
accuracy in predicting the CS diagnosis. To accomplish this, 
they leveraged the power of AI to develop a ML algorithm that 
integrates clinical, biochemical and radiological data. After 
comprehensive testing, the algorithm demonstrated high perfor-
mance in predicting the diagnosis of CS in both training and 
test datasets. The data obtained through this algorithm can be 
used to create a mobile application serving as a clinical decision 
support tool, promising more successful decision-making in the 
future. Additionally, this algorithm has been made accessible 
to all clinicians through a user-friendly interface. Although this 
classification model has achieved significant success, it is neces-
sary to analyze and compare the results with other classification 
algorithms.

In this study, a lightweight and interpretable predictive model 
was developed using GLM to estimate cushing syndrome and 
this model was successfully implemented as a mobile decision 
support application using MIT App Inventor. The choice of 
GLM was motivated by its simplicity, transparency, and com-
patibility with low-resource mobile environments, making the 
solution suitable for real-time use by healthcare workers or 
caregivers in practical settings.

While GLM served as a valuable baseline in this context, 
future work will focus on exploring more advanced model-
ing approaches to improve prediction performance and flex-
ibility. In particular, fuzzy logic-based models, such as fuzzy 
regression, hierarchical fuzzy systems, and TSK models, may 
offer significant advantages in handling uncertainty and non- 
linearity in medical data. These methods will be considered 
for integration in future versions of the application, espe-
cially if the deployment environment allows more computa-
tional capacity.

Moreover, deep learning techniques (such as attention mech-
anisms and transformer-based architectures) have demonstrated 
remarkable success in modeling complex and high-dimensional 
datasets. These approaches could be particularly beneficial 
in future studies involving large-scale patient data or tempo-
ral sequences, such as continuous monitoring of vital signs. 
Although these models currently exceed the computational lim-
its of MIT App Inventor, future implementations using more 
flexible platforms (e.g., TensorFlow Lite or Flutter with on- 
device inference) may enable their integration into mobile health 
applications.

In summary, this work presents a foundational step toward 
accessible, mobile-based clinical decision support systems, 
with future directions aiming to incorporate advanced AI 
methodologies while maintaining usability and real-time 
responsiveness.

6. Limitations
Our study has several important limitations that must be 
acknowledged: the model was developed using data from a 
single medical center, which may limit its generalizability. For 
instance, cortisol measurements in our center were obtained 
using chemiluminescence immunoassays, while other cen-
ters may use tandem mass spectrometry. Differences in testing 
methods across centers could affect the model’s predictive per-
formance. The dataset is relatively small for developing robust 
machine learning models. In particular, the limited number 
of patients with ectopic Cushing syndrome and endogenous 
Cushing may influence the accuracy and reliability of predic-
tions. Larger, more diverse datasets are needed in future studies 
to enhance differential diagnosis. We did not exclude patients 
with cyclical CS from our dataset. Since their clinical variables 
are often unstable, it is unclear whether the model performs 
accurately for this subgroup. The model was developed with 
a relatively small number of EC patients, which may affect its 
robustness and reproducibility. Large-scale studies are necessary 
to validate its clinical utility. Important diagnostic tools such 
as BIPSS and imaging results were not incorporated into the 
machine learning model. Including these tools could improve 
diagnostic accuracy. While downsampling the majority class can 
lead to information loss, oversampling the minority class might 
introduce bias and reduce prediction accuracy. The algorithm 
must include all necessary clinical variables to ensure usability 
by physicians in real-world settings. The success of AI in medi-
cal decision-making relies heavily on sample size and data qual-
ity. More comprehensive studies using different approaches are 
essential for developing reliable diagnostic models.
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