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Abstract: Surface plasmon polaritons (SPPs) on the graphene metasurfaces (GSPs) are crucial to
develop a series of novel functional devices that can merge the well-established plasmonics and
novel nanomaterials. Dispersion theory on GSPs is an important aspect, which can provide a basic
understanding of propagating waves and further guidance for potential applications based on
graphene metamaterials. In this paper, the dispersion theory and its modal characteristics of GSPs
on double-layer graphene metasurfaces consisting of the same upper and lower graphene micro-
ribbon arrays deposited on the dielectric medium are presented. In order to obtain its dispersion
expressions of GSP mode on the structure, an analytical approach is provided by directly solving
the Maxwell’s equations in each region and then applying periodical conductivity boundary onto
the double interfaces. The obtained dispersion expressions show that GSPs split into two newly
symmetric and antisymmetric modes compared to that on the single graphene metasurface. Further,
the resultant dispersion relation and its propagating properties as a function of some important
physical parameters, such as spacer, ribbon width, and substrate, are treated and investigated in the
Terahertz band, signifying great potentials in constructing various novel graphene-based plasmonic
devices, such as deeply sub-wavelength waveguides, lenses, sensors, emitters, etc.

Keywords: surface plasmon polaritons; graphene metasurfaces; double layer; dispersion theory;
modal characteristic; Terahertz applications

1. Introduction

As one of the most important research fields in modern optics and nanophoton-
ics, plasmonics has shown its strong vitality and lasting impact by taking advantage of
the coupling between light and free carriers on the conducting and/or semi-conducting
films [1–4]. The strong localization of surface plasmon polaritons (SPPs) beyond the diffrac-
tion limit is fundamental to develop a series of photonic, plasmonic, and optoelectronic
devices [5,6]. However, conventional plasmonic structures are mostly based on the no-
ble metals/dielectrics, and its obvious drawbacks, such as significant dissipative losses,
limited mode response, and poor tunable capabilities, make it unsuitable for further high-
performance plasmonic applications. Over the last decade, much more attention and effort
has been devoted to the search for novel materials and structures which can sustain SPPs’
mode beyond conventional ones. Among these great progress and achievements [1–8],
graphene stands out from various materials owing to its several advantages.

Graphene is a novel nanomaterial which is composed of an ultra-thin two-dimensional
(2D) carbon atoms sheet within a honeycomb lattice. Its unique atomic arrangement results
in a linearly carrier dispersion and ultra-high carrier mobility at room temperature [7,8].
These excellent properties of graphene make it very attractive to sustain and propagate SPPs’
mode, especially in the Terahertz (THz) band where its resonant plasma frequency locates
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exactly in this spectrum [9–21]. In these studies on the graphene SPPs (GSPs) and their appli-
cations, graphene is usually viewed as an infinite surface, thus the open space boundary con-
dition on 2D sheet is commonly applied. Therefore, its fundamental dispersion theories are
well-established and are commonly used for various applications, such as graphene sheet in
the single- [9–15] or double-layer structures [16–21]. However, the uniform graphene sheet
cannot meet increasing demand on the versatile material parameter change and the un-
precedented electromagnetic control. Therefore, graphene metamaterials or metasurfaces
with specific shapes are largely adopted and investigated in recent years [22–43]. Many
studies show that graphene metasurfaces demonstrate more superior properties compared
to those on the uniform sheet, such as enhanced transmission [22–28], more versatile wave
control [29–36], the tighter field confinement [37–42], etc. A plethora of periodical graphene
metasurfaces are proposed, such as graphene patches or ribbons [22–27], graphene rings,
elliptical or circles [28–32], hollow-carved “H” shapes [33], sinusoidal shaped structure [35],
and so on. Further, these graphene metasurfaces with periodical arrays are also created
for some functional devices, such as waveguides [22,24,25], cloaks [26], sensors [29,37,40],
absorbers [33–35], metalens [36], polarization splitter and converters [32,33], enhanced THz
radiations sources [43], and many others.

Despite this progress on the graphene metasurfaces with various types of topological
structures [22–43], it should be noted that most of these studies are based on numerical
simulations, which heavily rely on some software studios. Nevertheless, numerical inves-
tigations based on Maxwell’s equations usually ignore the physical phenomena of SPPs
behind the designed devices and sometimes are troublesome for some complicated meta-
surfaces. Thus, a fully analytic or quasi-analytic method of GSPs mode on the graphene
metasurface is convenient and can help the detailed understanding of these light–matter
interactions with various structural and material parameters [22–43]. Unfortunately, very
limited works are conducted to this goal and the mode analysis on the graphene meta-
surface is usually based on the transfer matrix method or a simplified scaling law [22–24].
Some rigorous analysis on the GSP dispersion theory and the concise dispersion expression
is revealed, provided and reported by some of the recent literature [44–48]. In Ref. [44],
the authors provide accurate plasmon modes analysis of periodical nanoribbon arrays
by using a time-dependent density theory. Further, they also deal with two different
graphene nanoribbon edges (i.e., Zigzag and Armchair), and different dispersion modes
are also found. In Ref. [47], the authors provide a unified dispersion theory of periodical
ribbon arrays by merging different ribbon edges via periodical conductivity boundary into
Maxwell’s equations. Thus, a simple and concise dispersion expression is revealed and
is also applied to analyze various GSP modes with different parameters. The dispersion
expression and mode distribution are simple for the single graphene metasurface [44,47].
Very recently, some functional plasmonic devices have also been designed on double-layer
graphene metasurfaces in [49–56]. Compared to single-layer graphene metasurface, a
double-layer structure can provide more degrees of freedom to control GSPs and, thus,
may be more advantageous than a single-layer structure [52–54]. However, its fundamental
dispersion theory and the detailed GSPs’ mode distributions with various parameters are
not reported so far because of its complicated periodical boundary conditions.

In this paper, the dispersion theory and its mode distributions on double-layer
graphene metasurfaces with various physical parameters are presented, studied, and
analyzed in THz band. The general dispersion theory is firstly provided by treating dif-
ferent field expressions in each region, along with the periodical boundary condition on
double-layer graphene metasurfaces. Following these fully analytical expressions with
different dispersion characteristics, its GSP dispersion diagrams and the mode distribu-
tions are studied with different physical parameters. Its potential applications based on
double-layer graphene metasurfaces are also envisioned and discussed.



Nanomaterials 2022, 12, 1804 3 of 12

2. Dispersion Theory on Double-Layer Graphene Metasurfaces
2.1. Model and Theory

Distinct to previously double-layer graphene sheet with homogeneous boundary
on the interface [16–21], GSP modes on the periodical graphene metasurfaces are more
complicated and the derivation processes are also very challenging by taking into ac-
count the inhomogeneity of surface boundary conditions. According to waveguide mode
theory [57,58], the electromagnetic fields in the periodical structure should include Bloch’s
waves and the dispersion mode also repeats itself in the dispersion diagrams. We here
take the most simple graphene metasurface of periodical rectangular ribbon arrays on
double-layer structure into account on the 2D space. The studies can also be extended
to other more complicated structures for 3D applications. In addition, an evanescently
transverse magnetic polarization (TM)-guided mode is considered for simplicity and the
theory can also be applied to transverse electric polarization (TE) if different graphene
conductivity is used [20,21]. The considered theoretical model of the bi-layer graphene
metasurfaces is plotted in Figure 1a. The upper- and lower-layer graphene metasurface
of periodical ribbon arrays deposited on the identical dielectric medium ε has the same
structural parameters of width d and period p. The bi-layer metasurfaces align with each
other in both longitudinal and vertical directions and are separated by an air gap depth, as
denoted by g. Its cross-section views of double-layer structure are schematically plotted in
Figure 1b on the x–z plane, and the edge effect along y axis can be ignored [16–21] because
of its intrinsic 2D properties of GSPs.
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Figure 1. (a) The schematic diagrams of the bi-layer grapehene metasurfaces which are deposited on
the same superstrate and substrate medium ε. The upper- and lower-layer graphene metasurface
has the same width d and period p. The bi-layer graphene metasurface is separated by an air gap
with depth of g. (b) The cross-section views of the bi-layer graphene metasurfaces on x–z plane. The
whole structure is divided by three different regions, as labeled by I, II, and III, for the studies on its
dispersion theory.

The key to obtaining its dispersion expressions on double-layer graphene metasurfaces
is to apply the periodical surface conductivity to the different field expressions in each
region, as indicated by I, II, and III in Figure 1b. The zero point of the x axis locates at the
center of the air gap. The zero point of the z axis is defined at the left edge of one graphene
ribbon. The surface conductivity formulism of graphene along the z axis is, thus, given
as below:

σg =

{
σ(ω), mp < z < mp + d
0, mp + d < z < mp + p

(1)

where σ(ω) is the frequency-dependent surface conductivity distribution of complete
graphene sheet and m is the arbitrary integer. The surface conductivity of graphene
has been widely applied [16–43], which includes the intraband and interband conduc-
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tivity according to the well-known Kubo formula within random-phase approximation,
i.e., σ(ω) = σintra + σinter. For intraband conductivity, it is given as:

σintra =
e2

π}2
2kBT

τ−1 − jω
In[2 cosh(

µc

2kBT
)] (2)

For interband conductivity, it can be approximated by the following under
|µc| > > |kBT|:

σinter ≈ − je2

4π} In
2|µc| − (ω− jτ−1)}
2|µc|+ (ω− jτ−1)}

(3)

The above surface conductivity of graphene is a function of radian frequency ω = 2πf,
chemical potential µc (or Fermi level), electron relaxation time τ (τ−1 is scatter rate), and
temperature T. Some other constant parameters are electron charge e, reduced Planck’s
value h̄, and Boltzmann constant kB. j is an imaginary unit. The intraband and interband
conductivity can be simultaneously applied to graphene metasurface according to differ-
ent operation frequency spectra. For some studies in the low frequency band, such as
THz [22–43], the intraband conductivity can represent its surface conductivity of graphene
because of its dominant intraband transition process.

2.2. Field Expression Derivations in Each Region

In order to obtain its dispersion equations on double-layer graphene metasurfaces in
Figure 1, the field expressions should be solved first in each different region, as indicated by
label I, II, and III in Figure 1b. For the electromagnetic fields in region I and III, they should
have the similar forms because of the totally defined symmetric conditions. The electric
fields can be obtained by solving Maxwell’s equations based on the above assumptions
when the dielectric medium possesses an infinitely thick depth. In region I (x > g/2), its
electric field along the z direction and magnetic fields along the y direction are as follows:

EI
z =

∞

∑
n=−∞

Ane−κ(x− g
2 )e
−jβnz

(4)

HI
y =

∞

∑
n=−∞

An
jωε

κ
e−κ(x− g

2 )e
−jβnz

(5)

Moreover, the field expressions in region III (x < −g/2) can also be obtained similarly,
as below:

EIII
z =

∞

∑
n=−∞

Bneκ(x+ g
2 )e
−jβnz

(6)

HIII
y =

∞

∑
n=−∞

−Bn
jωε

κ
eκ(x+ g

2 )e
−jβnz

(7)

The fields inside the upper and lower dielectric medium are periodical by the Block’s
harmonic waves along propagation direction z. An and Bn are the unknown index and
βn = β0 + 2nπ/p (n = 0, ±1, ±2, ±3 . . . ) denotes its propagation constant of the considered
harmonic mode of n along the propagation direction. κ is the decay coefficient in the
perpendicular direction, as calculated by κ2 = βn

2 − εk2, k = ω/c is the wave vector in free
space, and c is light velocity.

In the air gap region II, which is between upper- and lower-layer graphene metasurface
(−g/2 < x < g/2), its electromagnetic fields obey the following expressions:

EII
z =

∞

∑
n=−∞

[Cnsinh(Kx) + Dn cosh(Kx)]e
−jβnz

(8)

HII
y =

∞

∑
n=−∞

− jωε0

κ
[Cn cosh(Kx) + Dnsinh(Kx)]e

−jβnz
(9)
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where Cn and Dn are the unknown index and ε0 is air permittivity. κ is the decay coefficient
in the perpendicular direction. κ2 = βn

2 − k2. Other symbols are the same as those in
Equations (4)–(7). sinh and cosh are hyperbolic sine and cosine functions, respectively. The
similar derivation processes and obtained field expressions are also successfully applied to
some other double-layer SPP structures, such as corrugated metallic waveguide [59–62]. In
addition, the concise dispersion expressions are also revealed for symmetric and nonsym-
metric conditions in [59,60] and [61–63], respectively.

2.3. Dispersion Expressions of GSP Mode

Based on the above electromagnetic fields Equations (4)–(9), in region I, II, and III,
the periodical surface conductivity and tangential electric field boundary conditions on
the upper interface of x = g/2 and the lower interface of x = −g/2 should be mandatorily
satisfied. For the upper graphene metasurface between region I and II (x = g/2 plane), the
following boundary conditions should be obeyed:

EI
z

∣∣∣x=g/2 = EII
z

∣∣∣x=g/2 (10)

(HI
y − HII

y)
∣∣∣x=g/2 = σgEI

z

∣∣∣x=g/2 (11)

Moreover, for the lower graphene metasurface between region III and II
(x = −g/2 plane), there should be following expressions:

EIII
z

∣∣∣x=−g/2 = EII
z

∣∣∣x=−g/2 (12)

(HII
y − HIII

y)
∣∣∣x=−g/2 = σgEIII

z

∣∣∣x=−g/2 (13)

Applying the electric field of Equations (4), (6) and (8) in region I, III, and II to the
boundary conditions of (10) and (12), the following equations are obtained:

∞

∑
n=−∞

[Cnsinh(K
g
2
) + Dn cosh(K

g
2
)]e
−jβnz

=
∞

∑
n=−∞

Ane
−jβnz

(14)

∞

∑
n=−∞

[Cnsinh(−K
g
2
) + Dn cosh(−K

g
2
)]e
−jβnz

=
∞

∑
n=−∞

Bne
−jβnz

(15)

Furthermore, taking the magnetic field of Equations (5), (7) and (9) in region I, III, and
II to the boundary conditions of (11) and (13), we have the following equations:

∞
∑

n=−∞
An

jωε
κ e

−jβnz
+

∞
∑

n=−∞

jωε0
κ [Cn cosh(K g

2 ) + Dnsinh(K g
2 )]e

−jβnz

= σg
∞
∑

n=−∞
Ane

−jβnz
(16)

∞
∑

n=−∞
− jωε0

κ [Cn cosh(−K g
2 ) + Dnsinh(−K g

2 )]e
−jβnz

+
∞
∑

n=−∞
Bn

jωε
κ e

−jβnz

= σg
∞
∑

n=−∞
Bne

−jβnz
(17)

These four Equations (14)–(17) are the foundations of final GSP dispersion expres-
sion results. Obviously, the challenges are eliminating these four unknown indexes of
An, Bn, Cn, and Dn in Equations (14)–(17). The Equations (14) and (15) can be readily
transferred into the following simple Equations (18) and (19), respectively. By integrating
the periodical surface conductivity in Equations (16) and (17) in one period according to
expression (1), the following Equations (20) and (21) concise equations also arise after some
mathematic treatments:

Csinh(K
g
2
) + D cosh(K

g
2
) = A (18)
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Csinh(−K
g
2
) + D cosh(−K

g
2
) = B (19)

An
jωε
κ + jωε0

κ [Cn cosh(K g
2 ) + Dnsinh(K g

2 )]

= σ(ω)
∞
∑

n=−∞
An

sin( βn
2 d)

sin( βn
2 p)

(20)

− jωε0
κ [Cn cosh(−K g

2 ) + Dnsinh(−K g
2 )] + Bn

jωε
κ

= σ(ω)
∞
∑

n=−∞
Bn

sin( βn
2 d)

sin( βn
2 p)

(21)

It should be noted that the periodical surface conductivity of graphene in
Equations (16) and (17) with σg now become the well-known infinite surface conduc-
tivity of σ(ω) in Equations (20) and (21) with the help of our special calculations. Fi-
nally, the expressions of An and Bn in Equations (18) and (19) can be directly applied to
Equations (20) and (21). Thus, the four unknown indexes are reduced to only Cn and Dn
within two equations. If we solve these two equations by eliminating the two unknown
Cn and Dn, the final GSP dispersion expression can be obtained directly in the proposed
double-layer graphene metasurfaces system. For symmetric GSP mode, we have the
following expression:

∞

∑
n=−∞

jωε

κ
tanh(K

g
2
) +

∞

∑
n=−∞

jωε0

K
=

∞

∑
n=−∞

tanh(K
g
2
)σ

sin( βn
2 d)

sin( βn
2 p)

(22)

For antisymmetric GSP mode, its analytical expression is:

∞

∑
n=−∞

jωε

κ
coth(K

g
2
) +

∞

∑
n=−∞

jωε0

K
=

∞

∑
n=−∞

coth(K
g
2
)σ

sin( βn
2 d)

sin( βn
2 p)

(23)

The symbols in the analytical dispersion expressions are the same as those in the above
solved field expressions. The obtained concise dispersion equations with frequency-wave
vector relation include some structural and material parameters and, thus, provide a simple
yet useful tool to analyze the basic propagation properties of GSP mode on double-layer
graphene metasurfaces in Figure 1. Further, they can also be readily used to develop some
novel functional devices [49–56] if the specific dispersion diagrams are calculated.

3. Results and Discussions
3.1. Validation of the Proposed Dispersion Theory on the Structure

Although the dispersion theory and its expressions on double-layer graphene structure
without periodical patterns have long existed in the literature, such as [16–21], we here
address the dispersion theory of double-layer graphene metasurfaces, thus its scope is
largely extended and becomes more general. GSPs’ mode on the periodical structure
is more complicated, which includes Block’s harmonic waves, compared to that on the
uniform interface. If we assume the proposed double-layer structure degraded into the
non-periodical one with condition d = p, the results of (22) and (23) become the simple one,
which has been discussed in [16–18]. Although the similar method and calculations are
used, its derivation process is more challenging and tedious compared to previous ones on
the uniform structure [16–21]. Furthermore, GSPs’ mode splits into two new symmetric and
antisymmetric modes compared to that on the single graphene metasurface [44,47]; thus,
the light–matter interaction on a double-layer structure also becomes complex. Actually, if
the gap size between our proposed double-layer structures becomes large enough with g
as infinite in Equations (22) and (23), GSP mode on the upper- and lower-layer one will
decouple with each other; thus, the two different modes become the unified single one
with the same dispersion expression as shown in [47]. Further, the proposed dispersion
theory on double-layer graphene metasurfaces can be further verified by some numerical
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simulations, such as FDTD in [43] and other software studios in [59–63], where the similar
derivation processes are applicable.

3.2. Dispersion Diagrams of GSP Mode on Double-Layer Structure with Different Parameters

As a specific illustration of the GSP mode on double-layer graphene metasurfaces, the
transcendental dispersion equations are solved and its curve lines with symmetric and
antisymmetric mode are plotted in Figure 2 with green and blue lines, respectively. The
graphene metasurface structural parameters in Figure 1 are: d = 0.5 µm, p = 1 µm, and g = 1
µm. Moreover, the graphene material parameters are also set as constant as: µc = 0.1 eV,
τ = 0.5 ps, and T = 300 K. The upper and lower dielectric is silica with permittivity of
ε = 3.92 in THz band [47,49–52]. It can be noted that symmetric GSP mode occupies its
location in the lower band, while antisymmetric mode in the upper band. The phase
velocity of symmetric mode is larger than antisymmetric mode at the given operation
frequency. In addition, symmetric and antisymmetric GSP modes gradually converge into
the same asymptotical frequency of around 4 THz as the phase velocity increases. As a
comparison with GSP mode on the single graphene metasurface, its dispersion curve is also
plotted as a red line and its parameters are the same with bi-layer metasurfaces [47]. The
oblique black line is light dispersion in the dielectric. The obtained simulated asymptotical
frequency is around 7.5 THz, which is larger than the theoretical one. In the simulations by
CST Microwave studio suite (version is 2018), the periodical condition along the z direction
is applied and the parameters are the same with the theoretical model (dielectric thickness
is 50 µm).
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Figure 2. Dispersion diagrams of the GSP mode on the single- (red line) and double-layer (blue and
green line) graphene metasurfaces. For graphene metasurface, its width and period are 0.5 and 1 µm,
respectively. The gap size of bi-layer structure is g = 1 µm. Others are given in the text.

Compared to GSP mode on the single graphene metasurface, GSP mode on double-
layer structure splits into two newly symmetric and antisymmetric modes, which locate
on the different regions of dispersion diagrams. Further, its phase velocity difference
becomes larger in the middle of dispersion lines, as illustrated in the inset of Figure 2. Its
detailed modal patterns at 2 THz with single- and double-layer graphene metasurfaces are
plotted specifically in Figure 3a–c, respectively. The structural and material parameters are
the same as those of Figure 2. It can be clearly noted that symmetric and antisymmetric
GSPs’ modal profile occurs for symmetric and antisymmetric GSP modes, respectively. The
normalized field patterns are calculated from previous analytical electric field expressions.
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Figure 3. The electric field patterns of GSP mode on the (a) single- and (b,c) double-layer graphene
metasurfaces at 2 THz as indicated in the inset of Figure 2. The white line denotes the location of
each graphene metasurface.

GSP dispersion diagrams and its propagation characteristic on double-layer graphene
metasurfaces can be obtained and analyzed with arbitrary structural parameters based on
the obtained analytic dispersion Equation of (22) and (23). In addition, the mode analysis
and dispersion engineering lay the foundations for further applications based on the gra-
dient index distributions, which rely on the structural parameter changes of double-layer
graphene metasurface, such as graphene lenses, couplers, emitters, absorbers, and sensors.
Here, we consider different dispersion modes with various dielectric mediums, spacer, and
graphene ribbon widths on the structure. Figure 4a,b plot the symmetric and antisymmetric
GSP modes on double-layer graphene metasurfaces with different dielectric medium of
ε = 1.0 (air) and ε = 3.92 (silica) in Figure 1, respectively. Similar to the dispersion diagrams
and modal characteristic of SPP mode on the single-layer graphene metasurface in [47],
the phase velocity of both symmetric and antisymmetric GSP modes become larger with
the increased dielectric permittivity. The increased phase velocity and the enlarged modal
departure from light line are very intriguing to create some ultra-compact and integrated
devices, such as low-profile waveguide and emitters where a deeply sub-wavelength pro-
file is highly valuable. In addition, the coupling coefficient of its absolute value between
double-layer graphene metasurfaces becomes smaller with the increased filled dielectric
permittivity as the phase difference of symmetric and antisymmetric SSP modes gradually
vanishes [17,59]. In order to further demonstrate its different modal characteristics of
GPS mode on double-layer graphene metasurfaces with different dielectric mediums, its
normalized electric field patterns are also plotted in Figures 4c–d and 4e–f with ε = 1.0 (air)
and ε = 3.92 (silica), respectively. It is clarified that the field concentrations of symmetric
and antisymmetric GSP modes with silica cladding are better than thosr of GSP mode with
air cladding. The locations of upper and lower graphene metasurface are indicated by
the dotted white lines. The superstrate and substrate medium are clearly marked in the
structure. Finally, we examine the influence of structural parameters of graphene ribbon
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width d/p and the gap size g on the propagating GSP mode on double-layer structure.
Figure 5a,b plot the dispersion lines of symmetric and antisymmetric GSP modes with
different graphene ribbon width and gap size between bi-layer graphene metasurfaces
according to our previously demonstrated dispersion theory in Equations (22) and (23),
respectively. It can be noted that both symmetric and antisymmetric GSP dispersion line
shift lower with the decreased graphene ribbon width from Figure 5a. For the calculation
results in Figure 5b, symmetric GSP mode shifts lower for the decreased gap size, while the
antisymmetric GSP mode shifts higher oppositely. The dispersion characteristic change in
GSP mode is more sensitive by changing graphene ribbon width compared to the variation
in gap size for the given structure. This also suggests that changing graphene ribbon width
is more effective for creating some gradient-index metadevices where the full phase cover-
age is needed, such as high-efficiency couplers, meta-lenses, and enhanced emitters [49–56].
The analytic dispersion expressions are very useful to analyze its propagating characteristic
and can also be directly used to design some novel graphene devices where its principle is
to heavily rely on software simulations [49–52].
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Figure 4. (a,b) are the GSP dispersion lines on double-layer graphene metasurfaces with dielectric
ε = 1 (air) and ε = 3.92 (silica) conditions in Figure 1. (c,d) are the symmetric and antisymmetric GSP
mode patterns with ε = 1 (air) condition, respectively. (e,f) are the corresponding GSP modes with
ε = 3.92 (silica), respectively. Operation frequency is at 2 THz and other parameters are given in text.
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4. Conclusions

In this paper, the dispersion theory and its model properties of GSP mode on double-
layer graphene metasurfaces are provided by solving the Maxwell’s equations combined
with the periodical surface conductivity boundary conditions on the structure. Further, the
analytical dispersion expression for symmetric and antisymmetric GSP modes is obtained
and its detailed mode analysis with different structural dielectric and graphene ribbon
parameters are presented in THz band. The dispersion theory on the bi-layer graphene
metasurface provides a fast and powerful tool to understand and analyze its fundamental
propagation characteristic of GSP mode on the complicated structured metasurfaces. The
proposed dispersion theory on GSPs with double-layer graphene metasurfaces can be
further verified by some numerical simulations and experimental measurements in the
future. In addition, its presented dispersion characteristic is fundamental to design some
novel THz devices on the bi-layer structure, such as couplers, meta-lenses, transmit-array,
emitters, etc., in the future.
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