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Mosquitoes are one of the deadliest animals on earth because of their ability to
transmit a wide range of human pathogens. Traditional mosquito control methods use
chemical insecticides, but with dwindling long-term effectiveness and negative effects
on the environment, microbial forms of control have become common alternatives.
The insecticide Bacillus thuringiensis subspecies israelensis (Bti) is the most popular
of these alternatives, although it can also have direct effects on lowering environmental
biodiversity and indirect effects on food-web relationships in the ecosystems where it
is deployed. In addition, microbial control agents that impede pathogen development
or transmission from mosquito to human are under investigation, including Wolbachia
and Asaia, but unexpected interactions with mosquito gut bacteria can hinder their
effectiveness. Improved characterization of mosquito gut bacterial communities is
needed to determine the taxa that interfere with microbial controls and their effectiveness
in wild populations. This mini-review briefly discusses relationships between mosquito
gut bacteria and microbial forms of control, and the challenges in ensuring their success.
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INTRODUCTION

Mosquitoes are major disease vectors causing more than 700,000 deaths and millions of new
infections every year (World Health Organization, 2017). Chemical insecticides remain the most
widely used form of mosquito control, but with a rise in resistant mosquito populations (Dai
et al., 2015; Moyes et al., 2017; Li et al., 2018), contribution to population declines of off-target
insects including bees, ladybugs, and wasps (Gossett, 2018), and dangers to human health (van
den Berg et al., 2015), alternative approaches remain necessary. Since its commercialization in
1938, the insecticide Bacillus thuringiensis subspecies israelensis (Bti) has been a popular alternative
to chemical insecticides and is the most common microbial form for controlling mosquitoes
today (Sanahuja et al., 2011; Zhang et al., 2017). Though Bti largely overcomes the specific
pitfalls of chemical treatments (Sanahuja et al., 2011), concerns remain over the direct effects of
toxicity to off-target organisms that may lower environmental biodiversity, and the potentially
detrimental indirect effects on both terrestrial and aquatic food-webs (as reviewed by Bruhl et al.,
2020). With the ongoing widespread use of chemical insecticides and concerns lingering around
long-term Bti use, other microbes have come to the forefront as potential control agents for
mosquito-borne diseases.

Many proposed microbial control agents are symbiotic bacteria that have been exploited for
their abilities to interfere with human pathogen viability within mosquitoes or reduce adult host
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lifespan and reproductive abilities (Minard et al., 2013a; Huang
et al., 2020). These differ from insecticides, chemical or microbial,
which kill the vectors of disease transmission. Microbial control
agents can be native endosymbionts of a target mosquito species
that are exploited for human pathogen control, such as the
Wolbachia wPip strain in Culex pipiens (Glaser and Meola,
2010). They can also be endosymbionts from an insect different
from the target mosquito species that are transfected into a
target host, such as the wMel strain of Wolbachia with antiviral
properties taken from Drosophila melanogaster and transfected
into Aedes aegypti for yellow fever virus reduction (van den
Hurk et al., 2012). Such microbial control agents may be
genetically manipulated in the lab to produce strains that allow
for improved host inoculation, bacterial colonization, and vertical
and horizontal transmission.

Given the key roles that the host gut microbiome plays
in the development of a functioning immune system (as
reviewed by Hooper et al., 2012), the triggering of mosquito
immune responses to modulate vector competence to human
pathogens, and the production of bacterial metabolites that
inhibit human pathogens directly (Ramirez et al., 2012, 2014;
Chu and Mazmanian, 2013), one can anticipate that exposure
to microbial controls influence mosquitoes through a complex
interplay between the microbiome and the immune response,
where different contexts can affect control success. For example,
the mosquito gut microbiome has shown to be important for
some microbial forms of control to be effective (Caccia et al.,
2016), while at other times having little influence (Ramirez et al.,
2014) or proving to be a hindrance to their efficacy (Patil et al.,
2013; Hughes et al., 2014; Rossi et al., 2015; Zink et al., 2015).

While microbial interactions within a mosquito can have
important physiological repercussions on the host and on their
susceptibility to pathogens (Guégan et al., 2018), the conditions
under which they affect microbial control effectiveness are mostly
unknown. Furthermore, as lab populations of mosquitoes can
have distinct microbiomes compared to their wild counterparts
(Hegde et al., 2018), such microbial interactions are difficult to
predict when bringing a method of mosquito control from lab to
field. While both direct and indirect effects of the mosquito gut
microbiota can result in either positive or negative interactions
with microbial forms of control, as reviewed elsewhere (Guégan
et al., 2018; Tetreau, 2018), this mini-review focuses on the
pros and cons of Bti and three candidate microbial control
agents, the impact of gut bacteria on their efficacy, and some of
the current limitations in characterizing gut microbiota of wild
mosquito populations.

BTI

Bti produces four protoxins (Cry4A, Cry4B, Cry11A, and Cyt1A)
as three distinct crystals that become lethal once ingested by
mosquito larvae. Enzymes present in the larval gut activate
these protoxins to a toxic state, form pores in the gut epithelial
membrane, and lead to larval death. In certain environmental
conditions, Bti toxins can persist for months after application,
possibly exposing mosquito larvae to low concentrations of toxin

for a prolonged period that could favor resistance development,
but with the combination of all four toxins this is not a likely
outcome (Bruhl et al., 2020). Bti tolerance in wild mosquito
populations has only been reported twice, in a population of
C. pipiens in Syracuse, New York (Paul et al., 2005) and an
Aedes rusticus population in the French Rhône-Alpes (Boyer
et al., 2012), with no further published reports indicating
sustained selected resistance in these areas. Nevertheless, several
investigations have been carried out to understand the basis of
potential Bti tolerance development using lab-bred mosquitoes
(Paris et al., 2012; Tetreau et al., 2013; Stalinski et al., 2014)
with the causal mechanisms likely involving individual target-site
modifications for each toxin.

There is some evidence, however, showing that the action
of Bti is affected by mosquito gut bacteria. While there are
conflicting results about the role that the midgut microbial
community plays in the insecticidal activity and toxicity of
Bt in lepidopterans (Broderick et al., 2006, 2009; Johnston
and Crickmore, 2009; Raymond et al., 2010; Caccia et al.,
2016), the effectiveness of Bti against mosquitoes has been
shown to be enhanced by decreasing gut bacterial diversity
before introduction of the insecticide. Populations of Anopheles
stephensi with sterile guts show increased susceptibility to
Bti compared to those colonized with bacteria, wherein the
microaerophilic conditions of the normal larval gut might
promote the degradation of Bti toxins via bacteria using them
as a nitrogen source (Patil et al., 2013). Despite this hindrance
by the gut bacterial community on Bti efficacy, the specific
bacterial isolate that is responsible has yet to be identified.
Conversely, Bti itself alters the microbiome of A. aegypti larvae
upon introduction, resulting in lower bacterial diversity in
those larvae most tolerant to the insecticide when compared to
individuals unexposed to Bti (Tetreau et al., 2018). The presence
of Bti might therefore negatively impact the protective action
of symbiotic bacteria, for example by reducing the bacterium
Acinetobacter, which may have antiviral properties (Lee et al.,
2009) as it highly associates with A. aegypti (David et al., 2016)
and Aedes albopictus (Minard et al., 2013b) in organs where
viruses replicate (Crotti et al., 2009; Zouache et al., 2009). Though
Bti is still considered a safer alternative to chemical insecticides, it
is unclear if its continued release into the environment will result
in persistence of mosquito populations with altered microbiomes
that reduce the effectiveness of Bti or have reduced abilities to
protect against other pathogens. Perhaps more concerning is
the increasing evidence of both direct and indirect effects on
off-target organisms that can lower ecosystem biodiversity and
alter trophic food webs, highlighting the need for alternative
mosquito control agents.

WOLBACHIA

Wolbachia is a genus of obligate intracellular bacteria found in
many mosquito species. These bacteria can transmit vertically
within an invertebrate population and horizontally within
and across populations (Hughes et al., 2014). Wolbachia
can also alter the fitness of infected insects (e.g., increase

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 504354

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-504354 October 5, 2020 Time: 13:15 # 3

Dacey and Chain Challenges Exploiting Mosquito Gut Bacteria

adult mortality), inhabit insect reproductive organs to cause
cytoplasmic incompatibility between sperm and egg, and inhabit
the insect gut, which is a key environment for the replication
and maturation of many human pathogens (Ricci et al., 2012;
Dorigatti et al., 2018). Some natural strains of Wolbachia
display inhibitory mechanisms against human pathogens such as
arboviruses (Caragata et al., 2019), for example by diminishing
the viral load of West Nile in C. pipiens and Culex restuans
(Novakova et al., 2017). This makes Wolbachia a good microbial
control agent candidate by means of targeting the pathogen
as opposed to the mosquito itself, reducing off-target effects
that negatively affect environmental biodiversity and food-web
networks. In addition, Wolbachia has been found to have no
negative impacts on the efficacy of Bti (Endersby and Hoffmann,
2013), therefore possibly allowing both control methods to be
used simultaneously. While Wolbachia is widespread throughout
many wild mosquito species of Aedes, Culex, Coquillettidia,
and Mansonia (Ricci et al., 2012), lab strains of Wolbachia
have been genetically manipulated for manual transinfection in
mosquito species that do not typically host Wolbachia. A. aegypti
is one of these species not naturally infected with Wolbachia
but the introduction of this bacterium to the mosquito’s gut has
inhibited host infection by Plasmodium parasites and dengue,
chikungunya, West Nile, and yellow fever viruses (Moreira et al.,
2009; Bourtzis et al., 2014; Jeffries and Walker, 2015). Viral
inhibition by Wolbachia might be achieved through competition
for cellular resources (Moreira et al., 2009) or by increasing
expression of NADPH oxidase, which up-regulates reactive
oxygen species and leads to host immune pathway activation (Pan
et al., 2012). An increase in adult mortality due to Wolbachia
infection may also contribute to lessening mosquito-borne virus
transmission to humans, with mosquitoes dying younger thus
not giving a virus enough time to replicate and migrate to the
salivary glands for human inoculation (McMeniman et al., 2009).
Plasmodium infection in Anopheles mosquitoes has also been
suppressed by the introduction of Wolbachia lab strains (Bian
et al., 2013), plausibly by the same mechanisms as for A. aegypti
virus inhibition (Moreira et al., 2009; Pan et al., 2012).

The establishment of Wolbachia is, however, itself inhibited
in the presence of certain commensal gut bacteria, limiting its
effectiveness as a way to control the spread of mosquito-borne
human pathogens. For example, the effectiveness of Wolbachia
depends on the absence of Asaia, another prevalent bacterium
naturally found in the guts of many mosquito species. Asaia and
Wolbachia often compete with one another for resources that
can lead to mutual exclusion, with wild strains of Asaia shown
to inhibit the establishment of Wolbachia biologics via negative
interference competition in Anopheles and A. aegypti mosquitoes
(Hughes et al., 2014; Rossi et al., 2015). Likewise, the presence of
native Serratia in the mosquito gut is also negatively correlated
with the presence of Wolbachia, thus possibly impeding the
establishment of Wolbachia (Zink et al., 2015). On the other
hand, Wolbachia, which may suppress pathogen transmission
to humans by infecting mosquito reproductive organs to cause
cytoplasmic incompatibility, has not shown to have a major
impact on the gut bacterial diversity of lab reared A. aegypti
or A. stephensi (Chen et al., 2016; Audsley et al., 2017) or wild

A. aegypti mosquitoes (Audsley et al., 2018), questioning its
ability to impact host fitness in this regard. The mechanisms
by which inhibitory gut bacteria may interfere with Wolbachia
are not known, but their continued presence is possibly one of
the reasons why some mosquito populations are unable to be
stably infected with strains of Wolbachia (Hughes et al., 2014;
Rossi et al., 2015; Zink et al., 2015) compared to others that are
successful (Garcia et al., 2019; Nazni et al., 2019). This variability
should raise concerns about Wolbachia as a universally effective
microbial control agent against mosquitoes.

ASAIA

Asaia is another bacterial genus being considered for control
applications for its ability to infect multiple host organs
via mosquito hemolymph and its ability to establish itself
in numerous natural mosquito populations via vertical and
horizontal modes of transmission (Rami et al., 2018). Several
important mosquitoes commonly host Asaia including Anopheles
gambiae, A. stephensi, A. albopictus, A. aegypti, and most
C. pipiens populations (Wilke and Marrelli, 2015). Some wild
strains of Asaia have the ability to secrete proteins that are
toxic to Plasmodium and limit the parasite’s reproduction in
Anopheles vectors (Favia et al., 2007; Bongio and Lampe, 2015;
Cappelli et al., 2019).

Unfortunately, common DNA sequencing methods are often
unable to differentiate between different Asaia species within a
bacterial community, limiting our ability to exploit the beneficial
anti-pathogenic properties of a particular species within this
genus. The identification of the specific Asaia strains that
reduce mosquito competence of a human pathogen (e.g., by
hindering Plasmodium reproduction) will enable development of
microbial control agents with higher success rates against disease
transmission, but might require a combination of sequencing
techniques and biochemical tests for species level resolution
and isolation (Rami et al., 2018). However, because Asaia
competes with Wolbachia in the gut of target mosquitoes,
there will likely be a loss of anti-pathogen activity in certain
circumstances if exclusion of Wolbachia is unavoidable (Rossi
et al., 2015), weakening its ability to prevent mosquito-borne
disease transmission to humans since Wolbachia is widespread.
As both Asaia and Wolbachia show potential as candidates for
mosquito-borne disease control, it is important to keep in mind
their exclusionary relationship, calling for methods of selectively
inhibiting one or the other for example by genetic engineering.

CHROMOBACTERIUM

A bacterial symbiont recently isolated from an Aedes population
and being considered for mosquito-borne disease control is
Chromobacterium sp. Panama (Csp_P). This bacterium can
prevent dengue virus and Plasmodium falciparum infection in
lab-reared A. aegypti and A. gambiae, respectively, by rapidly
colonizing the mosquito gut, prompting expression of host
immune factors, and maintaining an effective level of host
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innate immunity (Ramirez et al., 2014). Csp_P also secretes an
aminopeptidase that degrades the envelope protein of dengue
virus that is required for attachment to host cells (Saraiva et al.,
2018a) and romidepsin, a histone deacetylase inhibitor, that
suppresses Plasmodium development in A. gambiae mosquitoes
(Saraiva et al., 2018b). The entomopathogenic activity of Csp_P
seems to be independent of the presence of a gut bacterial
community, as rapid mortality is seen in lab-reared A. aegypti
and A. gambiae with both aseptic and bacteria inhabited guts
(Ramirez et al., 2014). As lab-raised mosquitoes have distinctly
different gut bacterial communities than wild mosquitoes (Hegde
et al., 2018), field studies are still needed to determine if
Csp_P has any significant microbial interactions in wild target
populations, and if it is able to be established in such populations
with continued anti-malarial and anti-viral properties.

There are several other bacteria besides the ones mentioned
that can inhibit transmission of human pathogens like La
Crosse virus, dengue virus, and Plasmodium in mosquito vectors
including Anopheles, Aedes, and Culex, but their lack of wide-
spread presence throughout mosquito populations and the lack of
knowledge regarding interference by other microbes has not been
well established, limiting their potential at this point (Cirimotich
et al., 2011; Joyce et al., 2011; Ramirez et al., 2012, 2014; Bando
et al., 2013; Bahia et al., 2014; Dennison et al., 2016). Another
challenge is that some control agents are species-specific and can
even enhance vectorial capacity of other human pathogens, which
is a problem for implementation in nature.

INADVERTENT EFFECTS OF MICROBIAL
CONTROL IN WILD POPULATIONS

Microbial control agent candidates that display anti-transmission
properties of a human pathogen in one mosquito species have
sometimes been found to increase mosquito susceptibility to
infection of the same or different human pathogen in another
species. For example, although Wolbachia strains can suppress
Plasmodium infection in Aedes and Anopheles, they can actually
increase Plasmodium susceptibility in C. pipiens (Zele et al.,
2014). Furthermore, while Wolbachia strains might be effective
against Plasmodium in A. aegypti, they can increase susceptibility
to dengue virus infection in these mosquitoes (King et al.,
2018). Similarly, Bti-exposed lab strains of A. aegypti larvae
bred to have low levels of resistance to Bti display a higher
susceptibility to dengue virus as adults than individuals of this
strain not exposed to the insecticide (Moltini-Conclois et al.,
2018). Another promising microbial candidate displaying anti-
malarial properties in Anopheles vectors is Serratia (Bando et al.,
2013; Wang et al., 2017), but the presence of the bacterium
promotes dengue and Chikungunya viral infections in Aedes
mosquitoes (Apte-Deshpande et al., 2012, 2014; Wu et al., 2019).
The introduction of a microbial control agent in the wild to
manage the spread of one group of human pathogens must
therefore not inadvertently get transmitted to the environment
or to other mosquito species, or otherwise risk an inadvertent
mosquito-borne disease outbreak.

CHALLENGES IN CHARACTERIZING
MOSQUITO GUT BACTERIAL
COMMUNITIES

To improve the chances of deploying successful microbial control
agents to control mosquito-borne diseases, there needs to be
concerted efforts to characterize the community of bacteria
harbored by the guts of target mosquito populations. A major
challenge is our ability to accurately assess the composition and
diversity of microbial gut communities. These problems relate to
the experimental conditions and methods used that might bias
the distribution of bacteria observed, as well as the technical
limitations of current sequencing and bioinformatics approaches.

The bacterial community composition of the mosquito gut is
influenced by the water condition of breeding sites (Gimonneau
et al., 2014; Muturi et al., 2018; Duguma et al., 2019), the
developmental stage of the mosquito (Duguma et al., 2015;
Receveur et al., 2018), and the mosquito species (Duguma et al.,
2015; Muturi et al., 2016, 2017; Hegde et al., 2018; Thongsripong
et al., 2018). The degree of influence that environmental microbes
have on the colonization, succession, and temporal changes
of bacteria in the mosquito gut remain unclear, but this is
important to determine the long-term impact of microbials that
alter microbiomes. So far, comparisons of gut bacteria among
field-collected mosquito populations have revealed relatively little
diversity at the phylum and family levels (Boissiere et al., 2012;
Osei-Poku et al., 2012; Thongsripong et al., 2018). However, at
lower levels of taxonomic classification gut bacterial diversity
between mosquitoes increases significantly (Boissiere et al., 2012),
some reports claiming up to a 90% difference in operational
taxonomic units between two individual mosquitoes (Wang et al.,
2011; Osei-Poku et al., 2012; Rosso et al., 2018). The inherent
variation in biological and environmental factors affecting
the mosquito microbiota continues to present challenges in
predicting potential gut bacterial interactions with microbial
control agents in nature.

While technological advances have enabled thorough
investigations into the characterization of microbiomes, there
still remains technical challenges to identify species and compare
results across studies. Gut microbial communities are typically
characterized using 16S ribosomal RNA (16S rRNA) gene
sequencing, but inconsistencies in species profiling exist due to
variations in experimental designs and analytical methods that
introduce biases, preventing direct comparisons of microbial
communities across studies (as reviewed by Pollock et al., 2018).
For example, it has been shown that using different reference
databases to classify sequences from the same dataset can result
in substantial taxonomic differences for bacteria identified at low
abundance (López-García et al., 2018). Furthermore, the method
employed for DNA extraction and the choice of target region
within the 16S sequence also both affect the taxonomic recovery
of microbes in general (Teng et al., 2018).

Some of the limitations of 16S sequencing can be addressed
using whole metagenome sequencing because of the information
acquired from other regions in bacterial genomes. While this can
be more costly and challenging, metagenomics offers advantages
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over 16S sequencing in its ability to profile bacterial genes
and to both detect and identify a greater diversity of bacterial
species (Ranjan et al., 2016). For example, whole metagenomics
has uncovered for the first time a link between wild Anopheles
albimanus microbiomes and resistance to the organophosphate
insecticide fenitrothion (Dada et al., 2018). The combination of
16S and metagenomic sequencing has also been used to assess
the influence of an Anopheles immune factor on the microbiota,
revealing immune factor APL1 to have homeostatic control on
the abundance of specific Cedecea and Klebsiella species in the gut
(Mitri et al., 2020). Similarly, the Caudal gene in D. melanogaster
has a direct impact on the gut bacterial community but at a
more general level, as this gene is responsible for repressing
expression of antimicrobial peptide genes in the digestive tract
(Ryu et al., 2008). Exploitation of mosquito immune responses
to manipulate host gut bacterial makeup may, for example,
aid in transinfection success of microbial control agents by

depleting inhibitory strains or by promoting dominance of
natural symbionts known to inhibit human pathogens. As
mosquito-transmitted pathogens continue to spread globally, we
need the adoption of standardized robust techniques and analysis
methods in mosquito microbiome research relating to microbial
control agent development to permit cross-study comparisons
and for the advancement of validating promising microbial
controls in the field. This will facilitate selection of microbial
agents with higher success rates of disease control by avoiding
unwanted interactions with the mosquito gut microbiome.
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