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Larry A. Kuehn and Gary A. Rohrer
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The “large p small n” problem has posed a significant challenge in the analysis and
interpretation of genome-wide association studies (GWAS). The use of prior information to
rank genomic regions and perform SNP selection could increase the power of GWAS. In
this study, we propose the use of gene expression data from RNA-Seq of multiple tissues
as prior information to assign weights to SNP, select SNP based on a weight threshold,
and utilize weighted hypothesis testing to conduct a GWAS. RNA-Seq libraries from
hypothalamus, duodenum, ileum, and jejunum tissue of 30 pigs with divergent feed
efficiency phenotypes were sequenced, and a three-way gene x individual x tissue
clustering analysis was performed, using constrained tensor decomposition, to obtain a
total of 10 gene expression modules. Loading values from each gene module were used
to assign weights to 49,691 commercial SNP markers, and SNP were selected using a
weight threshold, resulting in 10 SNP sets ranging in size from 101 to 955 markers.
Weighted GWAS for feed intake in 4,200 pigs was performed separately for each of the 10
SNP sets. A total of 36 unique significant SNP associations were identified across the ten
gene modules (SNP sets). For comparison, a standard unweighted GWAS using all
49,691 SNP was performed, and only 2 SNP were significant. None of the SNP from the
unweighted analysis resided in known QTL related to swine feed efficiency (feed intake,
average daily gain, and feed conversion ratio) compared to 29 (80.6%) in the weighted
analyses, with 9 SNP residing in feed intake QTL. These results suggest that the heritability
of feed intake is driven by many SNP that individually do not attain genome-wide
significance in GWAS. Hence, the proposed procedure for prioritizing SNP based on
gene expression data across multiple tissues provides a promising approach for
improving the power of GWAS.

Keywords: constrained tensor decomposition, gene expression, clustering, feed efficiency, swine, GWAS,
weighted SNP
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INTRODUCTION

The “large p small n” problem has posed a significant challenge
in the analysis and interpretation of genome-wide association
studies (GWAS; Diao and Vidyashankar, 2013). The problem
refers to the scenario in statistical inference where the dimension
of independent variables, p, is larger than the sample size, n.
Typically in GWAS, the number of observations, n, is in the
hundreds or thousands and the number of markers, p, is in the
hundreds of thousands. Statistical procedures such as shrinkage
estimation and variable selection are often employed to ensure
the existence solutions in large-p-small-n regressions in GWAS
(Fernando et al., 2017).

The most commonly used approach to GWAS is single-SNP
analysis, where linear or logistic regression is performed
separately for each SNP followed by multiple-testing
correction. This standard single-step adjustment disregards
prior knowledge of potentially noteworthy regions, and, as a
result, tests of significance for SNP in such regions may be overly
down-weighted due to the other relatively inconsequential SNP.
Hence, using prior information to rank genomic regions and
perform SNP selection could increase the power of GWAS.

Recent advances in statistical methodology have made it
possible to incorporate prior information through weighted
hypothesis testing (Genovese et al., 2006). Roeder et al. (2006)
introduced a method which uses linkage analysis information to
up- or down-weight SNP according to their prior likelihood of
association with a trait of interest, and the resulting weighted P-
values are used in the false discovery rate (FDR) procedure. A
similar approach using expression quantitative trait loci (eQTL)
information to weight SNP was proposed by Li et al. (2013).

Transcriptome sequencing (RNA-Seq) is a widely used
technology for genome-wide transcript quantification, used to
analyze gene expression patterns, and provide insight into the
mechanisms underlying complex traits in livestock species.
Genome-wide gene expression data from thousands of studies
have been accumulating and made available through public
repositories such as the Gene Expression Omnibus (GEO;
Edgar et al., 2002). Recently, GWAS results have been
interpreted by interrogating significant SNP for associations
with gene expression data in livestock (Ballester et al., 2017;
Fang et al., 2017; Kommadath et al., 2017; Cai et al., 2018; Deng
et al., 2019). These studies have integrated GWAS and gene
expression data post-GWAS. In this study, we propose the use of
gene expression data from RNA-Seq of multiple tissues
(hypothalamus, duodenum, ileum, and jejunum) as prior
information to assign weights to SNP, select SNP based on a
weight threshold, and utilize weighted hypothesis testing to
conduct a GWAS for swine feed efficiency.
MATERIAL AND METHODS

The U.S. Meat Animal Research Center (USMARC) Animal
Care and Use committee reviewed and approved the use of
animals in this study.
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Population
Feed intake and body weight gain were measured on cohorts of
growing pigs reared at USMARC. All pigs were sired by either
Landrace or Yorkshire boars sourced from 5 different genetic
suppliers and produced out of Landrace-Yorkshire cross sows.
Two different genetic suppliers are represented in each group of
pigs. Pigs entered the barn at approximately 95 days of age at the
beginning of the feeding trial and had ad libitum access to a
standard corn/soybean meal-based diet that met or exceeded
NRC requirements (NRC, 2012). Pigs in each cohort (196 per
cohort) were assigned to one of 14 same-sex pens (14 pigs per
pen) containing a single Feed Intake Recording System (FIRE)
feeder (Osborne Industries, Inc., Osborne KS). After a 1-week
adjustment period, daily feed intakes for each pig were recorded
via the FIRE feeders and pigs were weighed at the beginning (d0)
and end (d 42) of the feeding trial. Twenty-two cohorts of pigs
had individual feeding events recorded.

Different numbers of animals from the population were used
in different stages of the study. Feed intake data was collected on
a total of 4,200 animals across the 22 cohorts. Four of these 22
cohorts (n = 784 animals) were used to select 30 animals with
extreme feed efficiency phenotypes for RNA-Seq. Lastly, GWAS
was performed using data from the 2,813 animals that were both
genotyped and phenotyped. Detailed descriptions of each stage
of the study are provided in subsequent sections.

Sampling for RNA-Seq
Feed efficiency phenotypes were determined for each pig in four
cohorts (n = 784 animals) by dividing average daily body weight
gain (ADG) by average daily feed intake (ADFI) to determine the
gain to feed ratio (Gain : Feed). From each cohort of pigs, a
selection criterion was applied to select animals for further study
that included ADGwithin ± 0.30 SD of the mean and the greatest
and least ADFI (n = 7 or 8 per cohort). The descriptive statistics
are presented in Table 1.

Tissue Collection, RNA Isolation,
and Sequencing
Tissue collection and RNA extraction were performed using the
same procedures in each contemporary group. Sample collection
time frame was consistent across cohorts. Pigs identified as high
and low feed efficiency were euthanized with barbiturates in
accordance with the American Veterinary Medical Association
guidelines (AVMA, 2013). The head was removed, and the
hypothalamus was collected and stored at -80°C as previously
described (Thorson et al., 2017). One 3-cm segment of mid-
jejunum and one 3-cm segment of mid-ileum were collected
from pigs as previously described (Oliver et al., 2002). In
addition, a 3-cm segment of duodenum was collected
approximately 5-cm caudal of the cranial duodenal flexure.

Total RNA was isolated from the tissue samples using the
RNeasy Mini Plus kit and QiaShredder columns (Qiagen,
Valenci, CA, USA). Briefly, 800 ul of RLT buffer with b-
mercaptoethanol were added to 50–100 mg of tissue samples
and homogenized for 40 sec using an Omni Prep 6-station
homogenizer (Omni International, Kennesaw, GA, USA). The
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homogenate was centrifuged in a QiaShredder column on full
speed for 3 min. Genomic DNA was removed from the total
RNA with the Qiagen RNeasy Plus mini-kit, according to the
manufacturer's protocol, and the total RNA was eluted in 50 ul of
RNase free water. Total RNA was quantified with a NanoDrop
One spectrophotometer (Thermo Scientific, Wilmington, DE).
The average 260/280 ratio was 2.05, with a range of 1.94–2.09. An
Agilent Bioanalyzer RNA 6000 nano kit (Santa Clara, CA, USA)
was used to determine the RNA integrity number (RIN). Only
samples with a RIN of 8.0 and higher were used for the RNA
sequencing. The average RIN was 9.1, with a range of 8.1–9.9.

Samples were prepared for RNA sequencing with the Illumina
TruSeq Stranded mRNA High Throughput Sample kit and
protocol (Illumina Inc., San Diego, CA, USA). The libraries
were quantified with qRT-PCR using the NEBNext Library
Quant Kit (New England Biolabs, Inc., Beverly, MA, USA) on
a CFX384 thermal cycler (Bio-Rad, Hercules, CA, USA), and the
quality of the library was determined with an Agilent Bioanalyzer
DNA 1000 kit (Santa Clara, CA, USA). The libraries were diluted
with Tris-HCL 10 mM, pH 8.5 with 0.1% Tween 20 to 4nM
samples (Teknova, Hollister, CA. USA). All libraries were paired-
end sequenced with 150 cycle high output sequencing kits for the
Illumina NextSeq instrument. Bases of the paired-end reads for
all sequenced libraries were identified with the Illumina
BaseCaller, and FASTQ files were produced for downstream
analysis of the sequence data. Sequence data is available for
download from the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) BioProjects
PRJNA528599 (hypothalamus), PRJNA528884 (duodenum),
PRJNA529214 (ileum), and PRJNA529662 (jejunum).

Sequence Data Processing
Read alignment of the RNA-Seq reads was carried out as follows.
First, quality of the raw paired-end sequence reads in individual
FASTQ files was assessed using FastQC (Version 0.11.5; www.
bioinformatics.babraham.ac.uk/projects/fastqc), and reads were
trimmed to remove adapter sequences and low-quality bases
using the Trimmomatic software (Version 0.35; Bolger et al.,
2014). The remaining reads were mapped to the Sscrofa 11.1
genome assembly using Hisat2 (Version 2.1.1; Kim et al., 2015)
with its default parameters. The StringTie software (Pertea et al.,
2015) was then used to calculate raw read counts for each of the
29,651 annotated genes in the NCBI Sscrofa 11.1 reference
annotation (Release 106).

Filtering of lowly expressed genes and normalization of read
counts was performed using a protocol that considers the multi-
tissue structure of the data. First, raw read counts were normalized
using the median of ratios normalization scheme from the DESeq2
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software package (Love et al., 2014), where read counts are divided
by sample-specific size factors determined by median ratio of gene
counts relative to the geometric mean per gene. A normalized gene
expression matrix was constructed for each tissue, and the
arithmetic mean of expression values across samples within each
tissue was computed. Genes with mean normalized expression <
100 in all 6 tissues were removed from further analysis.

Three-Way Clustering Via Constrained
Tensor Decomposition to Detect Gene
Expression Modules
Three-way clustering of multi-tissue, multi-individual gene
expression data was performed using an adaption of the
method described by Wang et al. (2017). Gene expression
measurements for the four tissues were organized into a 3-way
array, or order-3 tensor, with gene, individual, and tissue modes.
That is, the input to the algorithm was an order-3 tensor given
by, W = ⟦wijk ⟧∈RnG�nI�nT , where wijk, denotes the normalized
gene expression value for gene i in individual j in tissue k, nG the
number of genes, nI the number of individuals, and nT the
number of tissues. The tensor W was then decomposed into a
sum R of rank-1 components,

W =oR
r=1lrGr ⊗ Ir ⊗Tr + e, (1)

where l1 ≥ l1 ≥ … ≥ lR ≥0 are singular values in decreasing
order, and Gr, Ir, and Tr are norm-1 singular vectors that indicate
the relative contribution of each gene, individual, and tissue to
the r-th component, respectively, and e = [Eik] is a noise tensor
with each entry Eik i.i.d. N(0,s2).

Complete details of the algorithm used for tensor
decomposition can be found in Wang et al. (2017). Briefly, the
successive rank-1 approximation to Ω is determined by
iteratively solving the following minimization problem:

minimize
lr ,  Gr ,Ir ,Tr

‖W −  lrGr ⊗ Ir ⊗Tr ‖F , (2)

subject to Gr ‖2 =   ‖ Ir ‖2 =   ‖Tr ‖2 = 1,

where ‖·‖F is defined entry-wise as WF =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
onG

i=1onI
i=1onT

i=1w
2
ijk

q
.

At each iteration, we imposed one of two conditions, either
Tr ≥ 0 or Tr ≤ 0, by thresholding values in to 0. The appropriate
sign of was selected to maximize Tr. This constraint on eases the
interpretation of the interaction at the tissue level. Non-zero
tissue loading values indicate that the module is “active” in the
TABLE 1 | Descriptive data of efficient and inefficient pigs (n = 30).1,2

ADFI3, kg/d Initial Weight, kg Ending Weight, kg ADG4, kg/d Gain : Feed

Efficient (Low Intake) 2.08 ± 0.11 47.7 ± 2.8 88.8 ± 2.8 0.991 ± 0.04 0.458 ± 0.025
Inefficient (High Intake) 2.80 ± 0.11 51.1 ± 3.0 93.6 ± 3.2 1.025 ± 0.05 0.367 ± 0.16
J
anuary 2020 | Volume 10
1Animals selected included those with ADG within ± 0.30 SD of the mean and the greatest (inefficient) and least (efficient) ADFI.
2Data means ± SEM.
3Average daily feed intake.
4Average daily gain.
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tissue. Without constraining values in to a single sign, it is
possible (in fact likely) that contains two expression modules,
one for the tissues with positive loading values and one for the
tissues with negative loading values. Consequently, gene and
individual loadings become less informative since they cannot be
explicitly assigned to either the positive or negative loading
module. Note that the constraint on used in this work is
slightly different that of Wang et al. (2017), where they
imposed strict non-negativity on Tr.

Genes with large values in Gr exhibit strong relationships with
individuals and tissues in the r-th component, while these
relationships are stronger in the individuals with larger Ir-
values and tissues with larger (in absolute value) Tr-values. The
loading vectors Gr, Ir, and Tr will be referred to as eigen-genes,
eigen-individuals, and eigen-tissues, respectively, throughout the
remainder of the manuscript.

Gene Ontology Enrichment Analysis
Enrichment analysis of gene ontology GO terms was performed
using the PANTHER classification system (Version 14.1; Mi
et al., 2016). PANTHER's implementation of the binomial test of
overrepresentation with the default Ensembl Sus scrofa GO
annotation as background was utilized. Data from PANTHER
was considered statistically significant at FDR-corrected P ≤ 0.05.

Characterization of Gene Expression
Modules
GO enrichment analysis was performed on the top genes within
each expression module, where the top genes in module r were
defined as genes having a loading value in Gr greater than a
specified cutoff value, c, which controls the significance level. A
permutation-based approach was used to determine c with an
arbitrarily selected significance level of a = 0.005. One hundred
null tensors were generated by randomly and independently
permuting gene expression values for every individual-tissue
pair. That is,

Wnull G,  individual j,  tissue kð Þ≝W PG,  individual j,  tissue kð Þ,

where G denotes the original set of gene expression values and
PG denotes the permutated gene expression values. Each null
tensor was decomposed, and their eigen-genes were used to
represent the null distribution of gene expression values within
each module. The cutoff value for module r, cr, was the 99.5-
percentile of the empirical distribution of Gnull

r .

Proportion of Variance in Individual
Loadings
Sources of variation in individual loadings were analyzed by
fitting the following linear model:

Ij = b1 + b2ADFIj + b3CGj + b4Genderj + ej, (3)

where ADFI denotes average daily feed intake, CG denotes
contemporary group, I = (I1,…, InI )

T , and ej~N(0, s2) for all
Frontiers in Genetics | www.frontiersin.org 4
j = 1, 2,…, nI. After the model was fit, the proportion of variance
explained by each covariate (ADFI, contemporary group, and
gender) was calculated using ANOVA.

Tensor Projection for Identifying ADFI-
Associated Genes
Using the notation from above, let W ∈  RnG�nI�nT denote the
expression tensor and fTr ∈ RnTg be the set of eigen-tissues
from the tensor decomposition. Let W(·, ·, Tr) be the tensor
projection of W through the eigen-tissue Tr = (Tr,1, : : :,Tr,nT )

T ,
i.e.,

W ·, ·,Trð Þ =onT
k=1Tr,k W ·, ·, kð Þ : (4)

Then, the following linear model was used for each gene
tested,

W test gene,   ·,Trð Þ
=   b11 +   b2ADFI +   b3CG + b4Gender + e,     (5)

where ej ~ N(0, s2I). The ADFI-effect was assessed by testing
H0 : b2 = 0 against Ha : b2 ≠ 0.

Phenotypic Data Collection for Genetic
Association Analysis
Twenty-two cohorts of 196 pigs had individual feeding events
recorded in a building fitted with Osbourne FIRE Feeders. The
animals and facilities were previously described in Section 2.1.
Records were removed for animals with incomplete data due to
one of the following reasons: animal removed from the study due
to health, failure of the electronic ID eartag, or failure of the FIRE
Feeder for a majority of the test. As a result, 4,200 animals
remained in the study. Aberrant feeding events were removed if
they did not conform to a logical length of meal time (1 sec < meal
time < 3,600 sec), amount of feed consumed (20 g < feed consumed
< 3 kg), and consumption rate (rate < 2 kg/min). Once aberrant
feeding events were removed, feeding parameters were computed
for each pen and day of test to determine if a feeder was not
operating properly. Statistics used to remove a pen x day included
number of aberrant feeding events recorded, amount of feed
distributed, and total number of events for each day. After all
suspicious records were removed, the amount of feed consumed by
each pig for each day of test was calculated, resulting in a total of
164,660 records of the 184,800 possible daily intake records.

Data were analyzed with WOMBAT (Version 17-07-2017;
Meyer, 2007) fitting a random regression mixed model. Fixed
effects fitted were gender (barrow or gilt) and a combined group-
pen effect. Day on test was fit as the independent variable using a
cubic Legendre polynomial, and animal was fitted as a random
effect. A cubic Legendre polynomial was selected as it
dramatically improved the log likelihood of the model over a
quadratic Legendre regression and only marginal improvements
were seen when evaluating higher order polynomials. Random
regression coefficients were projected to individual daily intake
for each of the days on test, to fill the missing intake records and
January 2020 | Volume 10 | Article 1339
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adjust for fixed effects. Daily projections were summed to obtain
adjusted test intake for each individual.

Genotypic Data Collection for Genetic
Association Analysis
Tail samples were collected on all pigs and stored at −20°C.
Genomic DNA was extracted using the WIZARD genomic DNA
purification kit according to the manufacturer's protocol
(Promega Corp., Madison, WI, USA). Genotyping was
conducted using three platforms: the NeoGen Porcine GGPHD
chip (GeneSeek, Lincoln, USA), Illumina Porcine SNP60 v2 chip
(Illumina, Inc., San Diego, USA), and NeoGen GGP-Porcine
chip (GeneSeek, Lincoln, USA).

Genetic Association Analysis
Ancestors of the pigs having intake records were identified from
USMARC pedigree records to create a 7,009 animal pedigree.
Phenotyped pigs and their ancestors genotyped with a SNP assay,
Illumina Porcine SNP60 v1 or v2 (Illumina, Inc., San Diego,
USA), Illlumina Porcine SNP50 (Illumina, Inc., San Diego,
USA), NeoGen GGP-Porcine chip (GeneSeek, Lincoln, USA),
and NeoGen Porcine GGPHD chip (GeneSeek, Lincoln, USA)
were identified. The SNP were ordered according to the
Sscrofa11.1 genome assembly and available pedigree was used
to impute genotypes to 49,695 SNP from at least one assay for the
4,632 genotyped animals (2,813 phenotyped, 1,819 ancestors)
using findhap (VanRaden et al., 2013).

Following VanRaden (2008), weighted genomic relationship
matrices (G), were constructed as

G =
M* 0

M*

2Sm
i=1pi 1 − pið Þ , (6)

where m is the number of SNP, pi the frequency of the B allele for
the ith SNP, and M* a centered genotype matrix (M) weighted by
a diagonal matrix of weighting factors (D)

M� = MD : (7)

Genomic relationship matrices were constructed for equally
weighted SNP (D = m x m identity matrix) as well as for gene-
centric weightings. Weights for SNP within gene boundaries
were calculated as −log10(P), where P denotes the P-value
obtained from testing the ADFI-effect in Equation (5) in the
gene module of interest. If a SNP did not reside in a gene, it was
assigned a weight of zero.

For a given weight threshold, t, three G for each of the 10 sets
of gene weightings were evaluated: (1) a weighted analysis with
all SNP where all SNP had non-zero weightings (min = 0.00001),
(2) an unweighted analysis using only SNP with weight > t, and
(3) a weighted analysis using only SNP with weight > t. Arbitrary
thresholds of t = 2 and t = 5 were evaluated.

The average information restricted maximum likelihood
(AIREML) algorithm implemented in WOMBAT was used to
estimate heritability (h2) of test intake attributable to pedigree
relationships and each weighted genomic relationship matrix.
Frontiers in Genetics | www.frontiersin.org 5
Phenotypic variance should remain constant; all estimates of
phenotypic variance from these data using different unweighted
G were similar. Weighted G resulted in additive variance
estimates much greater than phenotypic variance from
unweighted G, and residual variances were similar to estimates
using unweighted G. Assuming the residual variance estimate is
appropriate for variation not explained by weighted G and
phenotypic variance equal to that estimated with unweighted
G, the amount of variation explained by weighted G should be
the difference between phenotypic variance from unweighted G
and residual variance from weighted G, and corrected heritability
that difference divided by phenotypic variance. That is,

h2w =  
Var Puð Þ − Var Ewð Þ

Var Puð Þ

where Pu denotes the phenotypic variance from unweighted G,
and Ew denotes the residual variance from weighted G.

After convergence, effects of individual SNP were estimated
for each genomic relationship matrix. Following Wang et al.
(2012),

â = M* 0
M*M* 0h i−1 bug , (8)

where â is a vector of SNP effect estimates and ûg the vector of
animal effects predicted for each genotyped animal. Z-scores were
computed standardizing â to a mean of zero and variance of one:

Zi =  
ai −   �a
SD âð Þ

where a and SD(â) denote the mean and standard deviation of
â, respectively.
RESULTS

Sequencing, Read Mapping, and Gene
Expression
RNA-Seq libraries from hypothalamus, duodenum, ileum, and
jejunum tissue of 30 pigs with divergent feed efficiency
phenotypes were sequenced, generating over 7.4 billion 75-bp
paired-end reads, with an average of 61.8 million reads per
library (Table 2). After adapter removal and read trimming,
the resulting high-quality reads were mapped to the Sscrofa 11.1
genome assembly (NCBI accession AEMK00000000.2) with an
average 98.6% read mapping rate per library. Sequencing
statistics for individual libraries are given in Table S1.

Normalized gene expression values were computed for the
29,651 annotated genes in the porcine genome, and lowly
expressed genes across the six tissues were removed, resulting
in a set of 19,365 genes to be used in downstream analyses.
Table 3 shows the number of genes expressed in each of the
January 2020 | Volume 10 | Article 1339
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tissues, where a gene is considered expressed if normalized
expression ≥ 100 in at least fifteen (half) of the libraries in the
tissue. An average of 13,351 genes were expressed per tissue.

Expression Modules Across Individuals
and Tissues
A three-way gene x individual x tissue clustering analysis was
performed, using constrained tensor decomposition, to obtain a
total of 10 gene expression modules.

Module I – Shared, Global Expression
In the first gene expression module, the eigen-tissue and eigen-
individual loading distributions are essentially flat (Figure 1I).
Hence this module captures baseline, global gene expression
common to all samples in all tissues. Enrichment analysis
showed that many GO terms related to basic eukaryotic cell
activities were enriched in the set of 1,307 top genes, including
ion binding, protein binding, nucleotide binding, and transport
(Table S2).

Module II – Hypothalamus
The second gene expression module clearly separated the
hypothalamus from the intestinal tissues (Figure 1II). In the
eigen-individual, more of the proportional variance in loading
values was explained by ADFI than contemporary group or
gender (6.8% compared to 1.15% and 0.96%, respectively; Table
4). The top 130 genes were enriched for functions related to
nucleotide binding, protein binding, ion binding, hydrolase
activity, and glutamate transporter activity.

Module III – Proximal Small Intestine
The third component captures expression specific to tissues in the
proximal small intestine, the duodenum and jejunum. The eigen-
tissue is primarily driven by the duodenum (Figure 1III). A
moderate amount of variation among individuals was explained
by both gender (8.13%) and ADFI (5.58%), while the variance
explained by contemporary group was negligible (~ 0%). A total of
88 genes passed the thresholding to be considered a top gene in
Frontiers in Genetics | www.frontiersin.org 6
the module. These genes were primarily enriched for binding GO
terms, including G protein-coupled receptor binding, sulfur
compound binding, carbohydrate derivative binding, bile acid
binding, cytoskeletal protein binding, ubiquitin protein ligase
binding, nucleotide binding, and metal ion binding. Nearly 83%
(73/88) of the top genes were also identified as top genes in the
hypothalamus expression module (Module II).

Module IV – Distal Small Intestine (positive loadings)
The fourth gene expression module was comprised of the distal
small intestinal tissues, the jejunum and ileum, with the ileum
being the main driver (larger loading value; Figure 1IV).
Although contemporary group explained the largest amount of
proportional variance (10.53%), a moderate amount of variation,
6.05%, was explained by ADFI. Top genes in the module
were enriched for functions related to peptide transport,
lipid transport, chemokine receptor binding, hydrolase activity,
bile acid binding, peptidase inhibition, and ion binding. Only one
of the top genes, COX1, overlapped with the top genes from
Module II, while 15 genes from Module III's top set
were overlapped.

Module V – Jejunum
Expression in the jejunum tissue was captured in the fifth
component (Figure 1V). Contemporary group was the only
covariate to account for more than 1% of the variation among
individuals. GO analysis of the 121 top genes identified that
translation regulation, RNA binding, fatty acid binding, and
rRNA binding were significantly enriched.

Module VI – Jejunum and Hypothalamus (negative
loadings)
The sixth module included the hypothalamus and the jejunum in
the eigen-gene, with the jejunum tissue having a much stronger
effect (Figure 1VI). Again, contemporary group was the main
covariate explaining individual loading value variation, as it
explained approximately 6% of the variation and ADFI and
gender each explained less than 1%. No GO terms were
significantly enriched in the set of top genes.

Module VII – Small Intestine
Expression in all three parts of the small intestine, the
duodenum, jejunum, and ileum, was captured in the seventh
module. The duodenum was the most significant driver, while
the jejunum and ileum had very similar loading values (Figure
1VII). Once again, variation in loading values in the eigen-
individual was predominantly explained by contemporary group.
TABLE 2 | Summary of sequencing statistics by tissue.

Tissue Total number reads Mean number reads per library Mean read mapping % per library

Hypothalamus 2,014,157,388 67,138,579.6 96.91%
Duodenum 1,653,423,084 55,114,102.8 98.25%
Jejunum 1,809,768,258 60,325,608.6 99.59%
Ileum 1,942,804,030 64,760,134.3 99.47%

All 7,420,152,760 61,834,606.3 98.55%
Janu
TABLE 3 | Summary of expressed genes by tissue.

Tissue Total number of genes expressed1

Hypothalamus 14,205
Duodenum 12,824
Jejunum 12,734
Ileum 13,640
1Genes defined as expressed if normalized expression ≥ 100 in at least 15 libraries.
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FIGURE 1 | Tissue loading values for Modules I–X from the tensor decomposition.
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The GO term CMP-N-acetylneuraminate monooxygenase
activity was significantly enriched in the top genes.

Module VIII – ileum
Ileum gene expression was highlighted in the eighth component
(Figure 1VIII). Variation between individual loading values was
not well-explained by any of the covariates in the model, ADFI
(1.97%), contemporary group (1.47%), and gender (2.11%). No
GO terms were significantly enriched in the set of top genes.
Additionally, no top genes were overlapped with those from
Module IV, which was also driven by gene expression in
the ileum.

Module IX – distal small intestine (negative loadings)
The fourth gene expression module was comprised of the distal
small intestinal tissues, the jejunum and ileum (Figure 1IX). It
should be noted that this module corresponds to negative
loading values for the tissues, while the results in Module IV
corresponded to positive loading values. Similar to Module IV,
ileum was the main driver of expression in the module, and
contemporary group explained the largest amount of variation
between individual loadings. However, none of the top genes
were found to be top genes in Module IV, and no GO terms were
significantly enriched.

Module X – jejunum and hypothalamus (positive
loadings)
The sixth module included the hypothalamus and the jejunum in
the eigen-gene, with the jejunum tissue having a much stronger
Frontiers in Genetics | www.frontiersin.org 8
effect (Figure 1X). This module corresponds to positive loading
values in the eigen-tissue, while Module VI gave the results
for negative loading values. A larger amount of variation
among individuals was explained by covariates in the model
than that from Module IV, contemporary group explained
21.22% and ADFI explained 5.05%. The GO term CMP-N-
acetylneuraminate monooxygenase activity was significantly
enriched in the top genes. There was no overlap between the
set of top genes and the top genes from Module IV.

Genetic Association Analysis
For each of the gene modules, three genetic association analyses
were conducted: (1) a weighted analysis with all SNP, (2) an
unweighted analysis using only SNP with weight > 5, and (3) a
weighted analysis using only SNP with weight > 5. Removal of
low weight SNP resulted in SNP sets ranging in size from 101 to
944 markers (Table 5). Results from these analyses are shown in
Tables 5 and 6. Utilization of all 49,691 SNP with pedigree and
genomic relationships resulted in heritabilities of 0.366 and
0.269, respectively. In general, applying SNP weights derived
from each of the gene models resulted in heritabilities that
remained close to those derived from the unweighted pedigree
and genomic models (Table 7).

The removal of SNP with weight < 5 and leaving SNP
unweighted in the model decreased performance in all 10
modules (Table 5), i.e., heritabilities were below those of the
pedigree and unweighted models. Removal of SNP with weight
< 5 and utilizing the SNP weights in the model increased
performance from the unweighted case in all ten modules, but
TABLE 4 | Proportional variance in individual loading values explained by average daily feed intake (ADFI), contemporary group, and gender in each of the modules
obtained from the tensor decomposition.

Module ADFI Cont. Group Gender

I 2.02% 3.46% 3.28%
II 6.80% 1.15% 0.96%
III 5.58% 0.00% 8.13%
IV 6.05% 10.53% 0.01%
V 0.00% 10.98% 0.67%
VI 0.36% 6.08% 0.14%
VII 0.00% 18.01% 0.42%
VIII 1.97% 1.47% 2.11%
IX 2.98% 10.09% 0.00%
X 5.05% 21.22% 0.26%
January 2020 | Volume 10 | Arti
TABLE 5 | Heritability estimates for feed efficiency from unweighted genome-wide association studies (GWAS) utilizing SNP with weight > 5.

Data Set Heritability (h2) Standard Error (SE) # SNP h2/# SNP

Module I 0.069 0.016 183 3.77E-04
Module II 0.062 0.015 204 3.03E-04
Module III 0.061 0.016 145 4.21E-04
Module IV 0.088 0.018 944 9.32E-05
Module V 0.088 0.018 536 1.64E-04
Module VI 0.040 0.012 192 2.08E-04
Module VII 0.045 0.013 101 4.46E-04
Module VIII 0.081 0.017 528 1.53E-04
Module IX 0.081 0.017 624 1.30E-04
Module X 0.015 0.014 296 5.07E-05
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overall heritability was still lower than that obtained from using
all SNP (Table 6).

Output from the association analyses for feed intake is shown
in Table S3. A total of 36 unique significant SNP associations
were identified across the ten gene modules, while 2 only SNP
were significant in the standard analysis using all 49,691 SNP
with no SNP weights. Neither of the 2 SNP identified in the
unweighted analysis were identified in the weighted analyses.
The number of significant SNP identified in each module's
analysis ranged from 0 to 22, with Modules I, II, VI, VII, and
X having only no significant SNP and Module III having 22
significant SNP. For the weighted analyses, significant SNP were
identified on chromosomes SSC 2, 4, 5, 7, 8, 9, 13, 14, 15, 18, and
X, with SSC 9 and SSC 8 having the largest numbers of significant
SNP, 12 and 6, respectively.
DISCUSSION

The most widely used approach to GWAS has been to assign
equal prior probability of association to all sequence variants
tested. Recent findings suggest that incorporating prior
information can increase the power for identifying
associations. Such prior information can be obtained from
Frontiers in Genetics | www.frontiersin.org 9
several different sources, including but not limited to linkage
analysis (Roeder et al., 2006), gene expression (Li et al., 2013;
Gamazon et al., 2015; Gusev et al., 2016; Xu et al., 2017), and
functional annotation of variants (Sveinbjornsson et al., 2016). In
this work, we present a methodology that exploits multi-tissue
transcriptional data from a small set of individuals with extreme
phenotypes to assign SNP weights for a GWAS on an expanded
set of phenotyped individuals. It has been shown that any set of
nonnegative weights can guarantee substantial power gain if the
weights are informative and little power loss if the weights are
uninformative (Genovese et al., 2006). Hence, the weighting
procedure is robust to the informativeness of the weights.

We applied our method to identify genetic markers associated
with feed intake in swine. The gut-brain axis is comprised of
bidirectional communication between the central and enteric
nervous systems, linking cognitive centers of the brain with
peripheral intestinal functions. The gut-brain axis modulates
short-term satiety and hunger responses to regulate the delivery
of nutrients and transit of nutrients through the gastrointestinal
tract (Hussain and Bloom, 2012). RNA-Seq was performed on
tissues involved in the gut-brain axis, including hypothalamus,
duodenum, ileum, and jejunum, originating from pigs with
extreme feed intake phenotypes. A tensor decomposition
method, which performs three-way clustering across genes,
TABLE 6 | Heritability estimates for feed efficiency from weighted genome-wide association studies (GWAS) utilizing SNP with weight > 5.

Data Set1 Heritability (h2)2 Standard Error (SE) # SNP h2/# SNP

Module I 0.106 0.049 183 5.81E-04
Module II 0.099 0.050 204 4.86E-04
Module III 0.094 0.053 145 6.52E-04
Module IV 0.137 0.0374 944 1.45E-04
Module V 0.156 0.026 536 2.91E-04
Module VI 0.073 0.072 192 3.82E-04
Module VII 0.081 0.066 101 7.98E-04
Module VIII 0.131 0.036 528 2.49E-04
Module IX 0.128 0.040 624 2.04E-04
Module X 0.089 0.061 296 3.00E-04
January 2020 | Volume 10 | A
1SNP weights derived from indicated gene module.
2Heritability estimates were corrected using the difference between the phenotypic variance estimated with the unweighted G and residual variance estimated with each weighted G.
TABLE 7 | Heritability estimates for feed efficiency from weighted genome-wide association studies (GWAS) utilizing all SNP.

Data Set1 Heritability (h2)2 Standard Error (SE) # SNP h2/# SNP

Pedigree (Unweighted) 0.366 0.045 49,691 7.37E-06
Genomic (Unweighted) 0.269 0.031 49,691 5.42E-06
Module I 0.270 0.035 49,691 5.44E-06
Module II 0.271 0.037 49,691 5.46E-06
Module III 0.269 0.028 49,691 5.41E-06
Module IV 0.273 0.040 49,691 5.49E-06
Module V 0.272 0.038 49,691 5.46E-06
Module VI 0.270 0.034 49,691 5.43E-06
Module VII 0.269 0.026 49,691 5.40E-06
Module VIII 0.272 0.039 49,691 5.49E-06
Module IX 0.273 0.039 49,691 5.49E-06
Module X 0.270 0.035 49,691 5.44E-06
1SNP weights derived from indicated gene module.
2Heritability estimates were corrected using the difference between the phenotypic variance estimated with the unweighted G and residual variance estimated with each weighted G.
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tissues, and individuals, was used to identify gene expression
modules that were either common to all tissues and individuals
or exclusive to particular tissue/individual combinations.

The top ten gene modules from the tensor decomposition were
considered. Note that since the clustering algorithm generates
expression modules via successive rank-1 approximations, if
more expression modules were desired the algorithm could
simply be applied to the residual tensor. Module I captured
baseline, global gene expression common to all samples in all
tissues, indicated by the flat distributions of the eigen-tissue and
eigen-individual loading values. Other gene modules captured
expression specific portions of the gut-brain axis, including the
hypothalamus, the proximal and distal small intestine, the entire
small intestine, and the individual components of the
small intestine.

A tensor projection model was used to identify ADFI-
associated genes within each of the ten modules. The P-values
obtained from testing the ADFI-effect were used to weight SNP
in order to conduct a weighted GWAS. P-values were chosen
over regression coefficients for weighting in order to rank SNP
according to the significance of their respective genomic regions
rather than simply an effect size. Results from both the weighted
and unweighted analyses are shown in Tables 7–9. Preliminary
analyses using weighted SNP revealed what appeared to be
inflated estimates of heritability. There was substantially less
change in residual variance estimates, indicating that inflated
heritability was not a result of explaining substantially more
Frontiers in Genetics | www.frontiersin.org 10
phenotypic variation with the weighted G, but an artifact of
weighted G resulting in inflated additive and phenotypic
variance estimates. Phenotypic variance should remain
constant, so heritability estimates were corrected using the
difference between the phenotypic variance estimated with the
unweighted G and residual variance estimated with each
weighted G.

There was a common pattern to the change in heritability
estimates as the SNP prioritization changed. When using all 50K
unweighted SNP, the heritability increased from 0.269 using
genomic relationships to 0.366 using pedigree. In all ten
modules, the use of weighted SNP restricted to those with
weight > 2 resulted in a heritability slightly lower, but
comparable to that from the usual unweighted, genomic
model. Randomization of SNP weights (Table S4) resulted in
nearly the same overall and average per SNP heritabilities,
suggesting that the weighting threshold may be suboptimal.

To investigate if a more stringent SNP weight threshold could
increase model performance, SNP with weight < 5 were removed
from the analysis. This resulted in an average 21-fold drop in the
number of SNP included in each analysis (Table 5). Although
overall heritability estimates were lower than those obtained
using SNP with weight > 2, the heritability per SNP increased.
Additionally, in most modules, both overall and per SNP
heritabilities were higher than those obtained when the SNP
weights were randomized. The numbers of SNP (101 < p < 944)
in these analyses were smaller than the number of animals (n =
TABLE 8 | Heritability estimates for feed efficiency from unweighted genome-wide association studies (GWAS) utilizing SNP with weight > 2.

Data Set Heritability (h2) Standard Error (SE) # SNP h2/# SNP

Module I 0.209 0.028 5,915 3.53E-05
Module II 0.182 0.026 5,259 3.35E-05
Module III 0.139 0.022 1,992 6.98E-05
Module IV 0.221 0.027 7,290 3.03E-05
Module V 0.184 0.025 4,442 4.14E-05
Module VI 0.175 0.025 4,311 4.06E-05
Module VII 0.148 0.022 1,951 7.59E-05
Module VIII 0.229 0.028 9,283 2.47E-05
Module IX 0.225 0.028 7,932 2.84E-05
Module X 0.183 0.025 4,250 4.31E-05
January 2020 | Volume 10 | A
TABLE 9 | Heritability estimates for feed efficiency from weighted genome-wide association studies (GWAS) utilizing SNP with weight > 2.

Data Set1 Heritability (h2)2 Standard Error (SE) # SNP h2/# SNP

Module I 0.217 0.036 5,915 3.66E-05
Module II 0.205 0.035 5,259 3.90E-05
Module III 0.166 0.043 1,992 8.31E-05
Module IV 0.255 0.026 7,290 3.50E-05
Module V 0.222 0.028 4,442 5.00E-05
Module VI 0.200 0.037 4,311 4.65E-05
Module VII 0.174 0.041 1,951 8.93E-05
Module VIII 0.250 0.030 9,283 2.69E-05
Module IX 0.238 0.031 7,932 3.00E-05
Module X 0.208 0.034 4,250 4.90E-05
1SNP weights derived from indicated gene module.
2Heritability estimates were corrected using the difference between the phenotypic variance estimated with the unweighted G and residual variance estimated with each weighted G.
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4,200), eliminating the ‘p greater than n' problem. Hence,
applying a more stringent threshold results in a more
informative set of SNP. Note the weight threshold values of 2
and 5 were chosen arbitrarily. Additional investigation will be
needed to determine the optimal weight threshold for SNP
inclusion, but this was outside the scope of this study.

Across the ten gene modules (weight > 5), 36 unique SNP
were identified as having significant effects, while only 2 SNP
were significant in the unweighted analysis utilizing all 50K SNP.
Neither SNP from the unweighted analysis resided in known
QTL related to swine feed efficiency (feed intake, average daily
gain, and feed conversion ratio) compared to 29 (80.6%) in the
weighted analyses, with 9 SNP being located in feed intake QTL
(Table S4). Additionally, many of the genes harboring significant
SNP have been identified in previous studies as candidate genes
related to feed efficiency in several species (Table S5). In
particular, the genes ROBO2 (2 SNP), PLA2G4A (4 SNP), and
MEGF10 (1 SNP) were previously identified as candidate genes
for residual feed intake and feed conversion ratio in swine (Ding
et al., 2018; Horodyska et al., 2019). Hence, the results from this
study suggest that a considerable proportion of heritability of
feed intake is driven by many SNP that individually do not attain
genome-wide significance in GWAS and therefore support a
highly polygenic architecture for feed intake.

Our integrated methodology, at present, is obviously partial
to genotyped SNP within genes. Because most available
biological resources are biased toward genes, SNP pertaining to
known genes likely have more relevant prior information.
Consequently, the resulting weights may be more effective for
associated SNP residing in or close to known genes. Therefore,
results derived from our method can still be informative
regardless of their intrinsic bias. Future work will focus on
extending the scope of the tensor decomposition step to
leverage data from other genomic sources, including but not
limited to expression of non-coding RNA, miRNA expression,
transcription factors, methylation targets, and miRNA binding.
Additionally the method will be extended to prioritize variants
from whole genome sequencing for assay development based on
functional effects.
Frontiers in Genetics | www.frontiersin.org 11
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