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Many proteins realize their special functions by binding with specific metal ion ligands
during a cell’s life cycle. The ability to correctly identify metal ion ligand-binding residues
is valuable for the human health and the design of molecular drug. Precisely identifying
these residues, however, remains challenging work. We have presented an improved
computational approach for predicting the binding residues of 10 metal ion ligands
(Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Ca2+, Mg2+, Mn2+, Na+, and K+) by adding
reclassified relative solvent accessibility (RSA). The best accuracy of fivefold cross-
validation was higher than 77.9%, which was about 16% higher than the previous result
on the same dataset. It was found that different reclassification of the RSA information
can make different contributions to the identification of specific ligand binding residues.
Our study has provided an additional understanding of the effect of the RSA on the
identification of metal ion ligand binding residues.

Keywords: metal ion ligand, binding residues, relative solvent accessibility, secondary structure, position weight
matrix

INTRODUCTION

Proteins act as an indispensable material in the life process. However, many special functions of
protein are realized by binding with specific ligands, and more than one-third of the proteins
need to bind with metal ion ligands. Thus, depending on the interaction between the metal ion
ligands and specific binding residues, many metal ion ligands can affect the special protein functions
(Caspers et al., 1990; Supek et al., 1997; Selvarengan and Kolandaivel, 2005). For instance, Mn2+ is
used as catalyst in photosynthesis (Degtyarenko, 2000; Reed and Poyner, 2000), Ca2+ can lead to
anxiety and Alzheimer’s disease (Jiang et al., 2015; Cao et al., 2017), and Cu2+ can cause Coronary
Heart Disease (Sodhi et al., 2004; Lin et al., 2005). The basic principle of molecular drug design is
that the interaction between the receptor and ligand must conform to the “Lock and Key Model,”
and the interaction between the protein and ion ligands we studied also conforms to the “Lock
and Key Model.” In the experiment of molecular drug design, protein crystallization, structure
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confirmation, and the interaction between ligands and protein
residues are required. Thus, the experimental method is a time-
consuming and expensive process, and it cannot be processed
in batches, however, theoretical prediction of binding residues
between proteins and ligands can overcome these shortcomings,
and accurate prediction can provide theoretical information for
drug design experiments. Therefore, correctly identifying metal
ion ligand-binding residues is helpful for the human health and
the design of molecular drug.

In the past two decades, experimental methods have been
developed to identify metal ion ligand-binding residues, such as
the Nuclear Magnetic Resonance Spectroscopy (Sletten, 1997)
and fluorescence method (Kawahashi, 2003). However, due to
the time-consuming nature and other limitations of experimental
methods, the high-throughput computational methods were
developed to predict the binding residues of metal ion ligands.
Among the computational methods, many efforts were made
to improve the databases, feature parameters, and algorithms.
First, the databases were generally acquired from Protein Data
Bank (PDB) (Tainer et al., 1991; Bernstein et al., 1997; Sodhi
et al., 2004; Lin et al., 2005; Bordner, 2008; Babor et al., 2010;
Lu et al., 2012), Structural Classification of Protein (SCOP)
(Hubbard et al., 1997; Sodhi et al., 2004; Chauhan et al., 2010;
Sobolev and Edelman, 2013), Ligand Protein Contact (LPC)
(Sobolev et al., 1999; Chauhan et al., 2010), and BioLip (Yang
et al., 2013a,b; Hu et al., 2016a,b, Wang et al., 2019). Second,
the feature parameters generally contained the composition
information of the amino acid (Cao et al., 2017; Wang et al.,
2019), hydrophilicity-hydrophobicity (Lin et al., 2005; Lin et al.,
2006; Cao et al., 2017), charge (Lin et al., 2005; Cao et al.,
2017; Wang et al., 2019), position specific score matrix (PSSM)
(Hu et al., 2016a), relative solvent accessibility (RSA) (Lin et al.,
2006; Hu et al., 2016a; Cao et al., 2017; Wang et al., 2019)
and three-dimensional structure information (Babor et al., 2010;
Roy et al., 2012; Yang et al., 2015; Hu et al., 2016a). Finally,
the classification algorithms used were artificial neural network
(ANN) (Lin et al., 2005), Support Vector Machine (SVM) (Lin
et al., 2006; Jiang et al., 2015; Cao et al., 2017; Hu et al.,
2016a), Naïve Bayes (Ebert and Altman, 2010), COFACTOR (Lin
et al., 2006; Yang et al., 2015), TargetSeq, TargetCom (Hu et al.,
2016b), COACH (Yang et al., 2015), and SMO (Wang et al.,
2019). Among the three aspects in the prediction mentioned
above, the key step of feature extraction was generated by one
of two ways: (1) the three-dimensional structure information
or (2) primary sequence information of the protein. However,
the precise three-dimensional structure information of many
proteins was not available in the recent databases. Thus, feature
extraction from sequence information is more popular in current
research. Among the sequence information, RSA is one of
the important parameters. In the previous works, researchers
only divided it to burial and exposure by a certain threshold.
However, the effects of different classifications of the RSA
on prediction results have not been explored. In this paper,
based on the semi-manually curated database of BioLip for
biologically relevant ligand–protein interactions, we performed
a statistical analysis for RSA and further reclassified the RSA. By
integrating the optimized sequence information, we mainly used

the Gradient Boosting Machine (GBM) algorithm and obtained
better predicted results by using fivefold cross-validation and an
independent test.

MATERIALS AND METHODS

Benchmark Dataset
We selected non-redundant datasets of metal ion-binding
proteins that were constructed in our group (Cao et al., 2017;
Wang et al., 2019). The benchmark datasets were entirely from
the BioLip database (Yang et al., 2013a). The proteins were
filtered with a resolution less than 3 Å, the length of sequences
was greater than 50, and the sequence identity was below 30%.
Among the ∼250 ligands, there were only 10 ligands that could
meet the above conditions to contribute to our further statistical
analysis and prediction. The statistical information of the datasets
containing ten metal ion ligands is shown in Table 1. In the
protein sequence, residue binding with ion ligands was not only
determined by the residue itself but also by how this was affected
by the surrounding residues. Thus, a sliding window method
was used to cut the protein sequence into overlapping residue
segments with different sizes ranging from 5 to 21. In order
to ensure that each residue was in the center of the segments,
we added (L-1)/2 dummy residues “X” at both terminals of the
proteins, where L was the window length. The optimal window
length for each ligand was determined based on the evaluation
results of the proposed computation method. If a binding residue
was located at the segment center, it was defined as a positive
sample; otherwise, it was defined as a negative sample. The
number of non-binding segments was much larger than that of
the binding segments, which led to a heavy imbalance in the
datasets (Table 1). According to the methods of previous works
(Yen and Lee, 2006; Roy et al., 2015), we took the number of
positive samples as the standard and randomly extracted the
equal number of negative samples. In this way, the negative
samples were randomly selected 10 times to ensure the credibility
of the results. Finally, we averaged the 10 results to calculate our
overall accuracy.

TABLE 1 | The benchmark datasets of 10 metal ion ligands.

Metal ion ligand Number of chains P N L

Zn2+ 1428 6408 405113 7

Cu2+ 117 485 33948 13

Fe2+ 92 382 29345 9

Fe3+ 217 1057 68829 9

Co2+ 194 875 55050 11

Ca2+ 1237 6789 396957 9

Mg2+ 1461 5212 480307 9

Mn2+ 459 2124 156625 7

Na+ 78 489 27408 9

K+ 57 535 18777 11

P is the number of the binding segments of metal ion ligands, N is the number of
the non-binding segments of metal ion ligands, and L is the optimal window length.
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Selection and Extraction of Feature
Parameters
According to the biological background of protein–ligand
interactions and the statistical analysis of protein sequences,
we extracted features of the position conservation information,
which was acquired from the protein backbone and side chains.

Secondary Structure and Relative Solvent
Accessibility
Analyzing the three-dimensional (3D) structure of a protein
is critical to the understanding of its function. However, 3D
models of only a small fraction of the sequenced proteins were
made. The prediction of a secondary structure and RSA is a
crucial step from the sequence to the 3D structure, reflecting the
spatial structure information of the backbone and side chains,
respectively. We therefore selected the predicted secondary
structure information and RSA information. The prediction was
helpful when simplifying the problem from the 3D structure to
sequence information (Chen and Zhou, 2005; Lin et al., 2005; Hu
et al., 2016a,b; Cao et al., 2017; Wang et al., 2019). In this paper,
they were predicted by using ANGLOR software (Wu and Zhang,
2008). We obtained three secondary structure types, including
alpha-helix (H), beta-strand (E), and coil (C). The relative solvent
accessibility (RSA) was generally represented as a Boolean value,
indicating whether the residue was buried (RSA < 0.25) or
exposed (RSA > 0.25).

Physicochemical Properties of Amino Acids
Physicochemical properties affected the protein–ligand
interactions, and different physicochemical properties of
amino acids were caused by their different side chains (Lin
et al., 2005, 2006; Cao et al., 2017; Wang et al., 2019). Metal
ion ligands bind to a residue, probably preferring to bind to a
specific side-group of this residue. The information from the
side chains is therefore important for the prediction of metal
ion ligand-binding residues. Since different standards can cause
different classifications, the amino acids were divided into six
categories according to the hydrophilicity and hydrophobicity
(Panek and Eidhammer, 2010) (Supplementary Figure S1)
and three categories according to the charge (Taylor, 1986)
(Supplementary Figure S2).

Construction of Position Weight Matrix
The ion-binding residues tend to be more conserved than others
during the process of evolution, and the residue conservation
is a crucial indicator for the presence of functionally important
residues. The PWSM has been successfully used in the prediction
of transcription factor binding sites and ligand binding sites (Kel
et al., 2003; Hu et al., 2016a). Thus, the position weight scoring
matrix (PWSM) was used to extract the position conservation
information of the basic feature parameters, and the scoring
matrix based on amino acid residues was constructed from the
sequence segments with a specific window length. The position-
specific occurrence frequency of an amino acid is calculated as
follows:

Pij =
nij +

√
Ni/21

Ni +
√
Ni

(1)

where i is the position index in the sequence segment, j is one
of the 20 kinds of amino acids or vacancy, nij is the frequency of
the jth amino acids at the ith position, and Ni is total number of
all amino acids occurring at the ith position. The position weight
matrix is then calculated as follows:

Wij = log
Pij
Poj

(2)

where Poj is background probability of the jth amino acid.
Therefore, based on the positive and negative training sets, two
standard scoring matrices can be obtained. In a testing set, we got
2∗L dimensional values for every sequence segment. Finally, the
5∗2L dimensional values from the above five features can be used
as the input parameters in the subsequent algorithm.

Gradient Boosting Machine
The Gradient Boosting Machine (GBM) is an improved Boosting
algorithm proposed by Friedman (2001, 2002), Rawi et al.
(2018) and Jain et al. (2018). The GBM algorithm is different
from the original Boosting algorithm. The core of the Boosting
algorithm is to set different weights to different samples during
the iterative process. Based on the results of the previous
iteration, the Boosting algorithm will increase the weight of
wrong classification samples and reduce the weight of correct
classification samples. Then, a weak classifier will be generated
in each iterative process; after m iterations, a strong classifier an
improved performance will be obtained by setting weight for each
weak classifier. In the iterative process, GBM algorithm classifies
the sample residual of the previous iteration and not the sample
itself. After the end of the iteration, our classifier Fm(x) was
obtained as Equation (3), where m is the number of iterations
in the calculation process, ρm is the weight value and also the
distance of the loss function decreases in its gradient direction,
and hm(x) is the function that fits the sample residuals in the
iterations.

Fm(x) = Fm−1(x)+ ρmhm(x) (3)

In addition, the GBM algorithm can handle mixture data
and its robustness against outliers in the output space is very
strong. In this paper, we implemented the GBM algorithm in
the R platform by using the “gbm” package. In the classifier,
parameters were optimized: “n.trees” ranged from 1 to 500,
“n.minobsinnode” ranged from 10 to 50, “interaction.depth”
ranged from 3 to 9, and “shrinkage” ranged from 0.01 to 0.1.

The Validation and Evaluation Metrics
As general validation methods, cross-validation and independent
tests have been commonly used in previous literature (Hu et al.,
2016a,b; Sun et al., 2016; Cao et al., 2017; Wang et al., 2019). In
the five cross-validations, the dataset was randomly divided into
five equal subsets. Four subsets were then used as training sets,
and the remaining subset was used as a testing set. This process
was repeated five times in such a way that each subset was used
once for testing, and the average performance of the five subsets
was then taken as the final performance.

We used several following metrics to evaluate our proposed
method: sensitivity (Sn), specificity (Sp), False positive rate
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FIGURE 1 | Flowchart of the method for the identification of metal ion ligand-binding residues.
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(FPR), accuracy of prediction (Acc), and Matthew’s correlation
coefficient (MCC). They are defined as follows:

Sn =
TP

TP + FN
× 100% (4)

Sp =
TN

TN + FP
× 100% (5)

FPR =
FP

TN + FP
× 100% (6)

Acc =
TP + TN

TP + TN + FP + FN
× 100% (7)

MCC =
(TP × TN)− (FP × FN)

√
(TP × FP) (TP × FN) (TN × FP) (TN × FN)

(8)

where TP is the number of correctly predicted metal ion ligand
binding residues, FN is the number of binding residues predicted
as non-binding residues, TN is the number of correctly predicted
non-binding residues, and FP is the number of non-binding
residues predicted as binding residues. To explain the above
prediction method more directly and clearly, see our detailed
flowchart in Figure 1.

RESULTS AND DISCUSSION

The Classification of Relative Solvent
Accessibility
For each metal ion ligand, based on the optimized window
length, we gradually added the parameters from the position

TABLE 2 | Predicted results for K+ ligand-binding residues.

Feature parameter Sn (%) Sp (%) FPR (%) Acc (%) MCC

WA 60.7 60.2 39.8 60.5 0.209

WA + QS 63.2 60.2 39.8 61.7 0.234

WA + QS + DH 65.4 61.9 38.1 63.6 0.273

WA + QS + DH + SS 73.8 58.5 41.5 66.2 0.327

WA + QS + DH + SS + SA_2 80.2 76.3 23.7 78.2 0.565

conservation information of amino acids (WA), hydrophilic-
hydrophobic (QS), charge (DH), secondary structure (SS), and
RSA to the GBM algorithm. It was found that the predicted
result was significantly improved by successively adding each
of the features.

Predicted Results for K+ Ligand Binding Residues
Table 2 shows the prediction results of the K + ligand by
gradually adding parameters to the model. By gradually
adding parameters to the model, we found that the
different parameters had different effects on the predicted
results. In this work, we used the initial classification of
Boolean value thresholds (marked as SA_2) and added
it to the model; the predicted result was significantly
improved, and the Acc and MCC increased by nearly
12 and 24%, respectively. However, the predicted results
did not change much by adding other parameters. It
indicated that the RSA played an important role in
the whole parameters for identifying the metal ion
ligand-binding residues.

FIGURE 2 | The statistical distribution of relative solvent accessibility in positive and negative set for K+ ligand. Note: the abscissa axis is the values of the relative
solvent accessibility, and the ordinate is the number of amino acids corresponding to each predicted value. The solid red line represents the positive set, and the
dotted blue line represents the negative set.
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Statistical Analysis of the Relative Solvent
Accessibility
Due to the importance of RSA and the particularity of metal
ion ligands, we performed the statistical analysis of the RSA
information for different metal ion ligands. Then, we found that
the classification was not the same for different metal ion ligands.
Therefore, we reclassified the thresholds of the Boolean value
for different metal ion ligands. For instance, Figure 2 shows the
statistical distribution of the RSA in a positive set and negative
set for the K+ ligand (the statistical distribution of other metal
ion ligands is shown in Supplementary Material 1). In Figure 2,
the abscissa indicates the predicted values of amino acid RSA; the
ordinate indicates the number of amino acids corresponding to
each predicted value in the positive and negative samples.

If it is reclassified by the distribution, it can be divided into
four regions (marked as SA_V), namely [0, 0.15), [0.15, 0.25),
[0.25, 0.35), and [0.35, 0.85], which are represented by h(x) and
four letters.

h(x) =


A, x ∈ [0, 0.15)

B, x ∈ [0.15, 0.25)

C, x ∈ [0.25, 0.35)

D, x ∈ [0.35, 0.85]

If it is reclassified according to the peak value, it can be divided
into four regions (marked as SA_P), namely [0, 0.15), [0.15, 0.4),
[0.4, 0.5), and [0.5, 0.85], which are expressed by y(x) and four
letters.

y(x) =


I, x ∈ [0, 0.15)

K, x ∈ [0.15, 0.4)

L, x ∈ [0.4, 0.5)

M, x ∈ [0.5, 0.85]

TABLE 3 | Predicted results of K+ ligand-binding residues.

SA classification Sn (%) Sp (%) FPR (%) Acc (%) MCC

SA_2 80.2 76.3 23.7 78.2 0.565

SA_4 85.4 81.9 18.1 83.6 0.673

SA_V 87.5 85.0 15.0 86.3 0.725

SA_P 81.7 77.4 22.6 79.5 0.591

TABLE 4 | The optimal predicted results of 10 metal ion ligand-binding residues
and corresponding specific classifications of relative solvent accessibility.

Ligand SA classification Sn (%) Sp (%) FPR (%) Acc (%) MCC

Zn2+ SA_4 92.6 90.3 9.7 91.5 0.829

Cu2+ SA_4 94.0 94.2 5.8 94.1 0.883

Fe2+ SA_4 99.2 100 0 99.6 0.992

Fe3+ SA_V 88.6 91.4 8.6 90.0 0.801

Co2+ SA_V 79.8 89.6 10.4 84.7 0.697

Ca2+ SA_2 76.6 79.2 20.8 77.9 0.558

Mg2+ SA_4 91.6 91.5 8.5 91.6 0.831

Mn2+ SA_P 81.3 88.3 11.7 84.8 0.698

Na+ SA_V 85.9 84.0 16.0 85.0 0.700

K+ SA_V 87.5 85.0 15.0 86.3 0.725

TABLE 5 | The features rejected by using the Boruta feature selection algorithm.

Metal ion
ligand

Rejected features

Zn2+ WA6, DH4, DH12, DH13, DH14

Cu2+ WA2, WA5, WA6, WA8, WA15, WA18, WA19, WA20, WA21,
WA22, WA23, WA24, QS1, QS2, QS3, QS4, QS5, QS6, QS7, QS8,
QS9, QS10, QS11, QS15, QS16, QS17, QS18, QS19, QS20,
QS22, QS23, QS24, QS25, DH1, DH2, DH3, DH4, DH5, DH6,
DH7, DH8, DH9, DH10, DH11, DH12, DH15, DH16, DH17, DH18,
DH19, DH20, DH21, DH22, DH23, DH24, DH25, DH26, SS1, SS2,
SS3, SS4, SS5, SS6, SS8, SS13, SS14, SS15, SS16, SS17,
SS21, SS22, SS26, SA1, SA2, SA3, SA4, SA5, SA6, SA7, SA8,
SA9, SA10, SA12, SA21, SA23, SA24, SA25, SA26

Fe2+ WA1, WA2, WA4, WA8, WA12, WA13, WA14, WA15, WA17, QS1,
QS2, QS3, QS4, QS5, QS6, QS7, QS8, QS9, QS10, QS11, QS13,
QS14, QS17, QS18, DH1, DH2, DH3, DH4, DH5, DH6, DH7, DH8,
DH11, DH12, DH13, DH14, DH15, DH16, SS2, SS4, SS9, SS10,
SS11, SS12, SS13, SS15, SS16, SS17, SS18, SA 11, SA12, SA18

Fe3+ WA1, WA2, WA5, WA8, WA11, WA12, WA13, WA14, WA15,
WA17, WA18, QS1, QS2, QS5, QS7, QS8, QS11, QS12, QS13,
QS14, QS16, QS17, QS18, DH1, DH2, DH5, DH6, DH11, DH13,
DH14, DH15, DH16, SA 18

Co2+ WA1, WA2, WA4, WA6, WA10, WA13, WA14, WA15, WA16,
WA17, WA18, WA19, WA20, WA21, WA22, QS1, QS2, QS3, QS4,
QS7, QS8, QS9, QS13, QS14, QS15, QS16, QS17, QS18, QS19,
QS20, QS21, QS22, DH1, DH2, DH3, DH4, DH5, DH6, DH7, DH8,
DH9, DH10, DH13, DH15, DH16, DH17, DH18, DH19, DH20,
DH21, DH22, SS19, SS20, SS21, SA1, SA2, SA16, SA19, SA20,
SA21, SA22

Mn2+ WA10, WA12, WA13, QS2, QS4, QS9, QS10, QS11, QS12, DH9,
DH11, DH12, DH14

Na+ WA3, WA4, WA5, WA6, WA7, WA8, WA10, QS2, QS3, QS4, QS5,
QS6, QS7, QS8, QS10, QS12, QS13, QS15, QS16, QS17, QS18,
DH1, DH2, DH3, DH4, DH5, DH6, DH7, DH8, DH11, DH12, DH13,
DH14, DH15, DH16, DH17, DH18, SS1, SS3, SS5, SS8, SS9,
SS10, SS16, SS17, SS18, SA1, SA2, SA3, SA4, SA5, SA6, SA13,
SA18

K+ WA1, WA2, WA3, WA5, WA6, WA7, WA8, WA9, WA10, WA13,
WA14, WA18, WA19, WA21, WA22, QS1, QS2, QS3, QS4, QS5,
QS6, QS7, QS8, QS9, QS10, QS13, QS14, QS15, QS17, QS18,
QS19, QS20, QS21, QS22, DH1, DH2, DH3, DH4, DH5, DH6,
DH7, DH8, DH9, DH13, DH14, DH15, DH16, DH17, DH18, DH19,
DH20, DH21, DH22, SS1, SS2, SS3, SS4, SS5, SS6, SS21, SS22,
SA1, SA2, SA4, SA5, SA6, SA8, SA10, SA13, SA14, SA17, SA18,
SA19, SA20, SA21, SA22

When “i” is an odd number, WAi, DHi, QSi, SSi, and SAi indicate the matrix
value of amino acid, charge, hydrophilic-hydrophobic, secondary structure, and
relative solvent accessibility at the ((i + 1)/2)th position calculated from the positive
training set. When “i” is an even number, WAi, DHi, QSi, SSi, and SAi indicates the
corresponding values at the (i/2)th position calculated from the negative training
set.

Besides, we also used the previous four regions (Cao et al.,
2017), which were suitable for most metal ion ligands (marked
as SA_4), namely [0, 0.2], (0.2, 0.45], (0.45, 0.6], and (0.6, 0.85],
which were represented by g(x) and four letters. The four kinds of
grouping methods (SA_2, SA_4, SA_P, and SA_V) of other metal
ion ligands are shown in Supplementary Material 2.

g(x) =


E, x ∈ [0, 0.2]
F, x ∈ (0.2, 0.45]
G, x ∈ (0.45, 0.6]
H, x ∈ (0.6, 0.85]
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FIGURE 3 | The feature importance of Zn2+ ligand indicated by MeanDecreaseAccuracy value (A) and MeanDecreaseGini value (B) from Random Forest. Note: the
larger the MeanDecreaseAccuracy and MeanDecreaseGini values, the higher the importance of the feature parameters. WA1-WA18 is the features of amino acid,
QS1-QS18 is the features of hydrophobic, DH1-DH18 is the features of charge, SS1-SS18 is the features of secondary structure, and SA1-SA18 is the features of
relative solvent accessibility.

The Predicted Results of Four General
RSA Classifications
Then, for each metal ion ligand, four different classification
groups of RSA were added to the parameters, and four general

TABLE 6 | Comparison of predicted results based on the full feature and
Boruta’s feature.

Ligand Feature
selection

Feature
dimension

Sn (%) Sp (%) Acc (%) MCC

Zn2+ Full 70 92.6 90.3 91.5 0.829

Boruta 65 92.7 89.1 90.9 0.818

Cu2+ Full 130 94.0 94.2 94.1 0.883

Boruta 42 93.4 93.8 93.6 0.872

Fe2+ Full 90 99.2 100 99.6 0.992

Boruta 40 96.1 96.1 96.1 0.921

Fe3+ Full 90 88.6 91.4 90.0 0.801

Boruta 57 88.0 90.7 89.4 0.787

Co2+ Full 110 79.8 89.6 84.7 0.697

Boruta 49 79.5 89.1 84.3 0.690

Ca2+ Full 90 76.6 79.2 77.9 0.558

Boruta 90 76.6 79.2 77.9 0.558

Mg2+ Full 90 91.6 91.5 91.6 0.831

Boruta 90 91.6 91.5 91.6 0.831

Mn2+ Full 70 81.3 88.3 84.8 0.698

Boruta 57 81.4 88.0 84.7 0.695

Na+ Full 90 85.9 84.0 85.0 0.700

Boruta 36 83.6 82.4 83.0 0.661

K+ Full 110 87.5 85.0 86.3 0.725

Boruta 34 83.7 82.2 83.0 0.660

prediction models were obtained. The four different predicted
results of K+ ligand binding residues are shown in Table 3.

We found that the predicted results of the same metal ion
ligand were different for the four general prediction models, and
the optimal predicted results of ten metal ion ligand-binding
residues were from the differently specific prediction model. An
additional file shows this in more detail (see Supplementary
Material 3). For example, the K+ ligand obtained the optimal
predicted result from the specific classification namely SA_V, but
the Fe2+ ligand obtained this from SA_4.

The Optimal Predicted Results of Ten
Metal Ion Ligand-Binding Residues
By comparing the four general prediction models, the optimal
predicted results for ten metal ion ligand-binding residues were
obtained and listed in Table 4.

Based on the different classifications of RSA, we obtained the
optimal predicted results of ten metal ion ligand-binding residues
and corresponding specific prediction models.

The Predicted Results (by Use of the
Boruta Algorithm)
We used the 5∗2L dimensional features in the above calculations.
However, different features made varied contributions to the
predicted results, and the combination of different features
did not necessarily result in a good classification performance.
Therefore, we used a Boruta algorithm (Kursa and Rudnicki,
2010; Kursa et al., 2010; Feng and Li, 2017, Feng et al., 2018) to
make a main feature selection. The algorithm iteratively removed
the features that were less relevant than random probes. From this
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we could obtain the optimal features combination. The algorithm
was implemented by the “Boruta” package in R environment. In
this way, after a large-scale computation, the confirmed features
were obtained, and the rejected features were removed from the
combination of all the features. The rejected features are shown
in Table 5.

When using the Boruta algorithm to reduce the dimension
of the features, it was found that the reduced dimensions
of different metal ion ligands were different. For example,
the dimensions of the Ca2+ and Mg2+ ligands were not
reduced, the dimension of the Zn2+ ligand was reduced by 5
dimensions, the dimension of the Mn2+ ligand was reduced by

TABLE 7 | The statistics of the training dataset and the independent testing
dataset.

Ligand Training dataset Independent testing

dataset

Chains P N Chains P N

Zn2+ 1142 5145 321,161 286 1263 83,952

Cu2+ 93 377 27,548 24 108 6400

Fe2+ 73 301 23,824 19 81 5521

Fe3+ 173 859 54,945 44 198 13,884

Co2+ 155 707 44300 39 168 10,750

Ca2+ 989 5256 312,876 248 1533 84,081

Mg2+ 1168 4069 384,365 293 1143 95,942

Mn2+ 367 1685 124,543 92 439 32,082

Na+ 62 408 22,411 16 81 4997

K+ 45 410 14,882 12 125 3895

TABLE 8 | Comparison of our independent test results with previous results.

Ligand L Method Sn (%) Sp (%) Acc (%) MCC

Zn2+ 7 This work 78.1 82.7 82.7 0.1865

7 Cao et al. 94.1 84.3 84.4 0.2525

Cu2+ 13 This work 74.1 76.8 76.7 0.1519

13 Cao et al. 91.7 82.9 83.0 0.2458

Fe2+ 9 This work 96.3 91.8 91.9 0.3593

9 Cao et al. 90.1 73.6 73.9 0.1708

Fe3+ 9 This work 90.9 83.5 83.6 0.2301

9 Cao et al. 87.9 72.7 72.9 0.1584

Co2+ 11 This work 76.8 83.6 83.4 0.1960

11 Cao et al. 73.2 82.3 82.2 0.1760

Ca2+ 9 This work 60.0 79.3 79.0 0.1272

9 Cao et al. 59.5 79.2 78.9 0.1251

Mg2+ 9 This work 75.7 84.0 83.9 0.1724

9 Cao et al. 50.2 81.9 81.6 0.0871

Mn2+ 7 This work 76.8 80.2 80.1 0.1624

7 Cao et al. 76.5 79.8 79.8 0.1599

Na+ 9 This work 43.2 84.5 83.9 0.0947

9 Cao et al. 33.3 78.2 77.5 0.0348

K+ 11 This work 51.2 73.1 72.4 0.0941

11 Cao et al. 45.6 62.8 62.3 0.0301

The bold values represent the best Acc and MCC values.

13 dimensions, etc. In order to prove the justifiability of the
features eliminated by the Boruta algorithm, we analyzed the
importance of the features by using the “randomForest” package
in R environment. The larger the MeanDecreaseAccuracy and
MeanDecreaseGini values, the higher the importance of the
feature parameters. Taking the Zn2+ ligand as an example, it can
be seen from Figure 3 that the important features of the first 30
dimensions were consistent with the confirmed features by the
Boruta algorithm.

The obtained subset features were then input into the GBM,
and the predicted results were shown in Table 6. Table 6 shows
that we obtained similar results based on subset features. This
suggested that, under the premise of ensuring the accuracy,
the Boruta algorithm was efficient in its ability to reduce the
dimensions of features for predicting metal ion ligand-binding
residues. The decline of the subset predicted results showed
that all the selected features had certain contributions to the
recognition of the binding residues. In addition, the predicted
results of the subset were still higher than those of SVM. Our

TABLE 9 | Comparison of our optimal predicted results in fivefold cross-validation
with previous results.

Ligand Method Sn (%) Sp (%) Acc (%) MCC

Zn2+ This work 92.6 90.3 91.5 0.829

Wang et al. 94.2 84.2 89.2 0.789

Cao et al. 99.8 99.5 99.7 0.993

Cu2+ This work 94.0 94.2 94.1 0.883

Wang et al. 91.3 86.8 89.0 0.782

Cao et al. 95.5 97.1 96.3 0.926

Fe2+ This work 99.2 100 99.6 0.992

Wang et al. 90.1 81.9 86.0 0.722

Cao et al. 91.9 90.7 91.3 0.826

Fe3+ This work 88.6 91.4 90.0 0.801

Wang et al. 86.2 85.5 85.9 0.717

Cao et al. 86.9 88.7 87.8 0.756

Co2+ This work 79.8 89.6 84.7 0.697

Wang et al. 75.3 86.4 80.9 0.621

Cao et al. 80.8 85.1 83.0 0.660

Ca2+ This work 76.6 79.2 77.9 0.558

Wang et al. 68.8 75.3 72.1 0.443

Cao et al. 71.3 79.1 74.8 0.502

Mg2+ This work 91.6 91.5 91.6 0.831

Wang et al. 71.1 73.1 72.1 0.442

Cao et al. 76.6 73.9 75.3 0.505

Mn2+ This work 81.3 88.3 84.8 0.698

Wang et al. 82.0 83.9 83.0 0.659

Cao et al. 82.1 84.4 83.2 0.664

Na+ This work 85.9 84.0 85.0 0.700

Wang et al. 68.9 74.0 71.0 0.430

Cao et al. 82.2 76.2 79.4 0.586

K+ This work 87.5 85.0 86.3 0.725

Wang et al. 71.6 64.5 68.0 0.362

Cao et al. 77.3 83.2 80.3 0.607

The bold values represent the best Acc and MCC values.
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FIGURE 4 | The comparison of prediction performances between several machine learning methods based on the same features by using five fold cross-validation
test.

method was therefore relatively reliable for predicting the metal
ion ligand binding residues.

The Predicted Results of GBM by Using
an Independent Test
We used equal samples of positive and negative in the
previous calculations. However, the positive and negative
samples were not equal when we intercepted segments by
using the sliding window method. In order to verify the

practicability of the proposed method, we divided the total
dataset into two parts: the training dataset was used to construct
the predicted methods by fivefold cross-validation, and the
independent testing dataset was used to test the extrapolation
ability of the predicted methods. The protein chains in the
independent testing dataset accounted for 20% of the total
dataset, which was consistent with the published work (Cao et al.,
2017). The statistical information of the datasets is shown in
Table 7.
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In the independent test, the 5∗2L dimension position
information was input into the GBM algorithm to obtain the
predicted ligand-specific models, and the testing dataset was
input into the predicted model to test. The number of positive
and negative samples was not balanced, and the MCC values
in Table 8 therefore reflect the stability of the predicted model.
In order to compare these results more obviously, we added
them to Table 8. The comparative results indicated that the
selected features and algorithm had better identification abilities
for predicting metal ion ligand-binding residues.

Comparison With Other Methods
It is necessary to compare our proposed methods with previous
models using the same dataset, classification strategy, and
evaluation methods. For the purposes of comparison with the
previous results (Cao et al., 2017; Wang et al., 2019), our
predicted results of fivefold cross-validation and independent
test are displayed in Tables 8, 9, respectively. Comparing
the previous results in our group (Cao et al., 2017; Wang
et al., 2019), most of the metal ion ligands were improved
to different degrees. With the same dataset, the same feature
parameters, classification strategy, and evaluation methods,
we further made a comparison between the GBM algorithm
and several other machine learning methods, including SVM,
Random Forest, and Artificial Neural Network. Using the
same features, the ACC and MCC values of each classifier
for ten ligands are displayed in Figure 4. The results showed
that accuracies of the GBM classifier were higher than
other machine learning methods, indicating that the GBM
classifier was a powerful tool for predicting metal ion ligand
binding residues.

CONCLUSION

The interactions between metal ion ligands (e.g., Na+, Mn2+,
Ca2+, K+, and Cu2+) and proteins perform key biological
functions in many important life processes. Research into these
metal ion ligands and functions is of significant biological import.
In particular, the prediction of ligand binding residues is of
great significance to the understanding of the biological functions
of proteins and drug design. In this work, we predicted the
binding residues of 10 metal ion ligands in the BioLip database,
and we obtained improved results. According to the biological
background of proteins, we selected hydrophobic polarized
charges, predicted secondary structures, and RSA information
as the basic information. From the statistical analysis of RSA
information, we found that the reclassified RSA information
has important effects on recognition of metal ion ligand-
binding residues. Therefore, on the basis of primary sequence
information, we extracted the important features of RSA by
reclassifying the RSA as four different classifications (i.e., SA_2,
SA_V, SA_P, and SA_4). Using the GBM algorithm and an
overall classification strategy, we further improved the prediction
success rate of metal ion ligand binding residues in the cross-
validation and independent test. In the best performance, MCC
values were higher than 0.558, the FPR values were lower than

20.8%, and the Acc values were higher than 77.9%. In comparison
with previous results (Cao et al., 2017), our best accuracy of
fivefold cross-validation was about 16% higher on the same
dataset. In this research, we identified the specific contributions
of different reclassified RSA to the identification of 10 ligand-
binding residues. However, for the prediction performances of
different ligands, there are different improvements that can
indicate the differences in the ligand-binding residues. Our next
step is to prove this specialty. To make our models available for
other researchers, we provide our database in Supplementary
Material 4 and full feature parameters in the additional material.
In our future work, we will make efforts to provide a web server
for the analysis method presented in this paper, which can be
manipulated by readers according to their need.
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