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Abstract

Understanding the main factors contributing to individual differences in fluid intelligence is

one of the main challenges of psychology. A vast body of research has evolved from the the-

oretical framework put forward by Cattell, who developed the Culture-Fair IQ Test (CFT 20-

R) to assess fluid intelligence. In this work, we extend and complement the current state of

research by analysing the differential and combined relationship between eye-movement

patterns and socio-demographic information and the ability of a participant to correctly solve

a CFT item. Our work shows that a participant’s eye movements while solving a CFT item

contain discriminative information and can be used to predict whether the participant will

succeed in solving the test item. Moreover, the information related to eye movements com-

plements the information provided by socio-demographic data when it comes to success

prediction. In combination, both types of information yield a significantly higher predictive

performance than each information type individually. To better understand the contributions

of features related to eye movements and socio-demographic information to predict a partic-

ipant’s success in solving a CFT item, we employ state-of-the-art explainability techniques

and show that, along with socio-demographic variables, eye-movement data. Especially the

number of saccades and the mean pupil diameter, significantly increase the discriminating

power. The eye-movement features are likely indicative of processing efficiency and

invested mental effort. Beyond the specific contribution to research on how eye movements

can serve as a means to uncover mechanisms underlying cognitive processes, the findings

presented in this work pave the way for further in-depth investigations of factors predicting

individual differences in fluid intelligence.
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Introduction

With his theory of human intelligence published in 1963, Cattell [1] established a common

understanding of two factors underlying human intelligence: crystallized and fluid intelli-

gence. While crystallized intelligence primarily involves abilities related to acquired knowledge

and experience, fluid intelligence encapsulates the general abilities of reasoning and problem

solving regardless of such knowledge. As such, fluid intelligence is considered foundational to

many cognitive tasks and, most importantly, to learning [2, 3]. Therefore, researchers from

various fields have investigated individual differences that contribute to fluid intelligence and

—consequently—its derived skills in the areas of learning and cognition. Several approaches

have been used to capture individual differences in fluid intelligence, including participants’

reports of strategies [4] or motivational factors (e.g. effort [5, 6]). Given that self-reports can be

biased [7], psychophysiological measures, especially ocular movements like scanpaths [8] and

pupil diameter [9] have shown to be useful indices for strategies and motivational factors to

predict individual differences in fluid intelligence [10]. Thus, to paint a more complete picture

of the factors contributing to an individual’s performance in an intelligence test, eye tracking

can play an important role as it enables researchers to investigate the participants’ behavior in

an unobtrusive way.

Using eye movements to capture individual differences in fluid intelligence

With the increasing availability of accurate and low-cost eye-tracking technology, new means

of monitoring a participant during task accomplishment at a fine-grained level have become

available. In particular, there has been an increased interest in employing eye movement analy-

sis to improve understanding of the relationship between eye movements and the allocation of

visual and cognitive resources. This interest is reflected in a considerable number of publica-

tions, especially in the fields of processing speed and working memory capacity, which are

considered key processes underlying performance in fluid intelligence tests [11, 12]. In this

context, multiple research articles have also addressed the relationship between eye move-

ments and performance in fluid intelligence measures through empirical studies [8, 10,

13–16].

Prior research has also revealed the pupil to be a particularly interesting eye-related feature,

since pupil size changes have been linked to task demands and cognitive effort [17]. In their

review, van der Wel and van Steenbergen argue that pupil diameter is an indicator for the gen-

eral exertion of cognitive effort which tends to be higher for more difficult tasks [17]. There-

fore, a more difficult task evokes a greater pupillary response indicating more mental effort

and a greater mobilisation of cognitive resources. Already by 1979, Ahern and Beatty demon-

strated that the link between task difficulty and pupil diameter in an arithmetic task is moder-

ated by individual differences in intelligence [18]. Individuals with higher intelligence scores

responded more accurately and demonstrated a smaller pupil diameter suggesting that indi-

viduals with higher IQ scores may need to exert less mental effort to successfully complete the

task. In contrast, van der Meer reported an increase in pupil diameter and accuracy in partici-

pants with higher fluid intelligence scores solving an analogical reasoning task [19], but only

for the most difficult item. Furthermore, Bornemann and colleagues have investigated 11th

graders and found a significant positive correlation between task difficulty and pupil dilation

for an analogy task that participants were unfamiliar with, but not for an algebra task that was

already part of the curriculum [20]. They concluded that the novelty of the task allows partici-

pants with greater cognitive abilities to allocate more cognitive resources, whereas a familiar

task does not cause this effect. Overall, there seems to be a complex interplay between task dif-

ficulty and pupil diameter that varies with task type, novelty, and intelligence.
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A limited number of studies have investigated eye-movement patterns and strategies associ-

ated with performance in fluid intelligence tests. For example, in a study conducted by Vigneau

et al., [10], 55 participants (i.e., university students) were monitored during 14 selected items

of the Raven’s Advanced Progressive Matrices test. The authors reported differences in viewing

patterns between participants scoring relatively higher or lower on the test. Proportional time

on the problem matrix (i.e., test item), latency to first alternation, and time distribution on the

problem matrix were positively correlated to test scores, whereas the number of alternations

between matrix and response choice and the gaze time spent on answer alternatives were nega-

tively correlated to the test scores [10]. In particular, the authors argue that participants do not

only differ with regards to their strategy, but also regarding how that strategy is employed,

thereby adding a qualitative dimension to the existing distinction between constructive match-

ing and response elimination [21, 22]. Similar findings were reported by Hayes et al., [14] in a

study with 35 university students. The authors found that a significant percentage of the vari-

ance on the participants’ scores on a Raven’s Advanced Progressive Matrices test was explained

by eye-fixation patterns, where systematic scanning of the problem matrices and less toggling

between matrix and responses were indicative of better performance, which likely reflects dif-

ferential strategies between groups: e.g., more successful participants might have constructed

an internal representation of the problem before scanning the answer alternatives. Relatedly,

Laurence et al. [23] investigated the association between eye movement patterns and IQ test

performance in a study with 34 participants who completed a digitalized version of the Wiener

Matrizen-Test 2. The authors reported that participants who scored higher on the test showed

less gaze transitions between the relevant areas of interest and the response alternatives [23].

More recently, Sargezeh et al., [13] recorded eye movements of 44 participants while perform-

ing a comparative visual search task and found significant differences between participants

who scored low, medium, and high on a measure of fluid intelligence using multiple features

extracted from eye movements. More specifically, the authors reported a strong positive corre-

lation between saccade peak velocity and test scores, while the ratio of total fixation duration to

total saccade duration was negatively correlated with performance [13]. Finally, Curie et al.

[24] used a larger sample of 137 participants to investigate the validity of a new visual analogical

reasoning paradigm for populations with intellectual disabilities and found that both, problem-

solving strategies as well as eye-tracking data explained individual differences in performance.

Overall, eye movement patterns seem to be indicative of participants’ strategies, which are asso-

ciated with successful performance in fluid intelligence tasks.

Although several eye movement features have shown to be useful in predicting individual

differences in performance during fluid intelligence tasks, previous research in this domain

has often been restricted to relatively small sample sizes. Thus, studies with larger sample sizes

are required to reveal robust and reliable results. Our study addresses this research gap and

provides a comprehensive analysis of eye-movement features related to task performance

using a standardized test of fluid intelligence, the CFT at the item level. Furthermore, there is

limited research that has focused on participant strategy and their roles in explaining individ-

ual differences in problem solving success. Thus, a more comprehensive approach that relies

on more fine-grained behavioral and physiological measures and that also includes socio-

demographic factors as an additional source of variance is needed to achieve a deeper under-

standing of the underlying mechanisms contributing to cognitive performance.

Socio-demographic factors and fluid intelligence

Theoretical accounts from various disciplines including sociology, economics, and psychology

as well as empirical evidence suggest a robust link between socio-demographic factors and
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intelligence. Specifically, socio-economic status that includes the education level of partici-

pants and their parents has shown to be significantly correlated with fluid intelligence [25, 26],

which has been attributed to differential experiences and opportunities [27, 28]. For example,

Kaufman et. al demonstrated the correlation between years of formal education and fluid intel-

ligence in a stratified sample of 1125 adults ranging from 22 to 90 years of age [25]. They

found the same correlation for crystallized intelligence and several academic skills. Finally,

using a school cut-off design, Zhang et al. [29] found that first-graders outperformed their age-

matched kindergarten peers in matrix reasoning, indicating that experiences related to school-

ing impacted the development of intelligence. Overall, accumulating research has highlighted

the importance of educational experiences for cognitive development, which translates to indi-

vidual differences in intelligence. In addition to educational experiences, other activities have

shown to contribute to cognitive performance including various leisure activities such as phys-

ical exercise [30], playing computer games [31, 32], and musical training [33]. Collectively, a

host of experiential factors have shown to contribute to individual differences in intelligence.

Research goals

With this work, we aim to advance the literature on individual differences in fluid intelligence

by including both, eye-tracking data as well as socio-demographic variables to predict task per-

formance at the item level using machine learning techniques. To address our aims, we rely on

the TüEyeQ data set [34, 35] collected from 315 university students performing a fluid intelli-

gence test. While a sample size of 315 participants is unusually large in a typical eye movement

study, it is rather small-scale compared to other data sets that focus on socio-demographic fac-

tors and those in the machine learning literature. While we have hypotheses that are rooted in

the body of research on either socio-demography or eye tracking, investigating them jointly

has an exploratory character when problem solving success is concerned.

To the best of our knowledge, this is the first study that provides a methodological founda-

tion for the investigation of factors that contribute to individual differences in problem solving

skills by relying on socio-demographic, eye movement, and physiological data. More specifi-

cally, our predictive model is based on the Gradient Boosting Decision Trees (GBDT) [36]

algorithm, which allows us to go beyond conventional linear statistical methods that are

restricted to simple relationships between the features and the target variable. The GBDT algo-

rithm is an ensemble approach that makes use of simple decision trees as base learners. Since

each tree added to the ensemble is different from the previous trees and focuses on the remain-

ing error, the GBDT algorithm helps to reduce bias [37, 38], which is very important for data

sets of moderate size where the instance-related bias and the variability across instances can

negatively influence a predictive model. A further advantage of the GBDT algorithm is that it

is not vulnerable in the presence of collinearity and is, therefore, very well suited for processing

behavioural and eye-tracking data in a holistic way.

Materials and methods

The TüEyeQ data set was recently published on Nature Scientific Data to enable researchers to

freely access the experimental data [35]. Therefore, for a thorough description of the experi-

mental setup and further details on the data, we refer the reader to the data set description as

published in [35]. In the following, we will briefly describe the data collection and processing

steps of TüEyeQ relevant to this work.

More specifically, let P be the set of participants and I the set of items of a CFT 20-R fluid

intelligence test. For a feature-based description xP(p) of a participant p 2 P and a feature-

based description xI(i) of a CFT 20-R item i 2 I, we aim to predict whether p will correctly
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solve i, that is, we search for a mapping f: concat(xP(p), xI(i)) 7! {0, 1} that can correctly predict

whether a participant p will succeed or fail on an item i, where concat(xP(p), xI(i)) denotes the

concatenation of the feature vector describing the participant and the feature vector describing

the item. Note that xP(p) can vary depending on whether we use only socio-demographic

information to describe the participant, or only eye-movement data, or both.

For a detailed description of the features contained in the TüEyeQ data set, we refer to

Table 1 and [35].

The TüEyeQ data set

Study participants. TüEyeQ contains data collected from 315 healthy participants (217,

female, 94 male, 4 not stated; with an age mean of 23.272 years, SD 3.022) completing the

CFT-R, and providing their socio-demographic and educational background characteristics,

including information on leisure time activities and the use of technology, software, and gam-

ing (see Table 1 for a complete list of variables). Due to technical shortcomings or low tracking

quality, eye movement data is available for only 229 out of these 315 participants as will be

explicitly described in the following. All participants had a university entrance qualification,

reported no neurological or psychiatric pre-existing conditions, and no visual impairment

above 3 dioptres. The Ethics Committee at the Psychological Institute at the University of

Tübingen confirmed that the procedures were in line with ethical standards of research with

human subjects. All participants were informed in written form and consented that their

anonymous data can be analyzed and published. Due to a self-constructed pseudonym, they

had the option to revoke this consent at any time.

The IQ test. The participants performed the first part of the revised version of the “culture

fair” intelligence test (CFT 20-R) designed by Weiß et al. [39]. This test is intended to measure

the general mental capacity (i.e., the g-factor of intelligence or fluid intelligence) by means of

different problem types that require the ability to recognize figural relationships and to engage

in formal logical thinking in problems of varying degrees of complexity under a time restric-

tion. The CFT 20-R consists of four categories of different problem types, namely series con-

tinuation, classifications, matrices, and topological conclusions. Each of these categories

consists of 11–15 test items with increasing difficulty and a time limit of 3–4 minutes.

In order to record the eye movements of the participants during the task, we adapted the

classic pen-and-paper version of the IQ test to a digital one that can be displayed on a com-

puter screen. To imitate paper version as closely as possible, we presented several test items on

a single screen page as long as this did not necessitate scrolling. Further information regarding

the presentation and layout of the test can be found in [35].

Data acquisition. As described in [35], the data was collected in a digital classroom

equipped with 30 remote eye trackers attached to laptops with 17inch HD display screens run-

ning at full brightness. This setup allows for data collection of up to 30 participants simulta-

neously, minimizing the overall time needed for collection. For this study, verbal instructions

were given to the entire group pertaining to a brief overview of the protocol and an explana-

tion of eye tracking, then individual calibrations were performed with a supervised quality

check. Interactions between the participants and the computer took place via mouse or touch

pad depending on participants’ preference.

The collection environment controlled the room illumination level, ensuring no effects

from sunlight or other outdoor light. The standard maintained illuminance for the experimen-

tal sessions was between 10 to 50 lux, measured with a Lux sensor (i.e., Gossen Mavo-Max illu-

minance sensor, MC Technologies, Hannover, Germany).
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Table 1. Description and encoding of all performance-related, educational and socio-demographic features in the order of their appearance in the csv file as pro-

vided by the TüEyeQ data set (available through the Harvard Dataverse Repository under https://doi.org/10.7910/DVN/JGOCKI).

Variable

Nr.

Feature Description Encoding

1 TaskID Unique identifier for every task String, CFT-block-related task

id

2 subject Unique identifier for every participant String-based id

3 age The age of a participant categorical

4 gender The gender of a participant, i.e. male, female, unknown categorical

5 handedness Indicates whether the participant is right-handed or left-handed binary

6 native_german This variable describes whether a participant is a native German binary

7 native_german_mother Indicates whether the mother of the participant is a native German binary

8 native_language_mother The native language of the participant’s mother categorical

9 native_german_father Indicates whether the father of the participant is a native German binary

10 native_language_father The native language participant’s father categorical

11 education_mother The scholarly or professional education of the participant’s mother categorical

12 education_father The scholarly or professional education of the participant’s father categorical

13 training_mother The scholarly or professional training of the participant’s mother categorical

14 training_father The scholarly or professional training of the participant’s father categorical

15 books Indicates how many books are in the participant household categorical

16 job_mother The profession of the participant’s mother categorical

17 job_father The profession of the participant’s father categorical

18 year_of_degree The year in which the final study degree was achieved by the participant categorical

19 mean_grade_degree The average grade of the participant’s final degree continuous

20 programming_experience Indicates whether the participant has experience programming languages binary

21 smartphone_usage Indicates the frequency of smartphone usage (range: never to daily) categorical

22 tablet_usage Indicates the frequency of tablet usage (range: never to daily) categorical

23 notebook_usage Indicates the frequency of notebook usage (range: never to daily) categorical

24 desktop_pc_usage Indicates the frequency of desktop pc usage (range: never to daily) categorical

25 tv_usage Indicates the frequency of tv usage (range: never to daily) categorical

26 text_editor_usage Indicates the frequency of text editors usage (range: never to daily) categorical

27 spreadsheet_usage Indicates the frequency of spreadsheet software usage (range: never to daily) categorical

28 presentation_software_usage Indicates the frequency of presentation software usage (range: never to daily) categorical

29 email_usage Indicates the frequency of email usage (range: never to daily) categorical

30 browser_usage Indicates the frequency of web browser usage (range: never to daily) categorical

31 google_usage Indicates the frequency of Google usage (range: never to daily) categorical

32 wikipedia_usage Indicates the frequency of Wikipedia usage (range: never to daily) categorical

33 facebook_usage Indicates the frequency of Facebook usage (range: never to daily) categorical

34 twitter_usage Indicates the frequency of Twitter usage (range: never to daily) categorical

35 skype_usage Indicates the frequency of Skype usage (range: never to daily) categorical

36 youtube_usage Indicates the frequency of Youtube usage (range: never to daily) categorical

37 ebay_usage Indicates the frequency of Eabay usage (range: never to daily) categorical

38 amazon_usage Indicates the frequency of Amazon usage (range: never to daily) categorical

39 online_news_usage Indicates the frequency of online news usage (range: never to daily) categorical

40 online_banking_usage Indicates the frequency of online banking usage (range: never to daily) categorical

41 gaming_adventure Indicates whether the participant primarily plays adventure games binary

42 gaming_action Indicates whether the participant primarily plays action games binary

43 gaming_first_person_shooter Indicates whether the participant primarily plays first person shooter games binary

44 gaming_casual Indicates whether the participant primarily plays casual games binary

(Continued)
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Table 1. (Continued)

Variable

Nr.

Feature Description Encoding

45 gaming_mmo Indicates whether the participant primarily plays Massive Multiplayer Online

games

binary

46 gaming_racing Indicates whether the participant primarily plays racing games binary

47 gaming_rpg Indicates whether the participant primarily plays Role Playing Games games binary

48 gaming_simulation Indicates whether the participant primarily plays simulation games binary

49 gaming_sports Indicates whether the participant primarily plays sports games binary

50 gaming_strategy Indicates whether the participant primarily plays strategy games binary

51 smoking Indicates whether the participant is a smoker binary

52 excessive_drinking Indicates whether the participant is an excessive drinker binary

53 grades_math The participant’s final math grade (German Abitur) continuous

54 grades_german The participant’s final German grade (German Abitur) continuous

55 grades_biology The participant’s final biology grade (German Abitur) continuous

56 grades_physics The participant’s final physics grade (German Abitur) continuous

57 grades_chemistry The participant’s final chemistry grade (German Abitur) continuous

58 grades_geography The participant’s final geography grade (German Abitur) continuous

59 grades_history The participant’s final history grade (German Abitur) continuous

60 grades_art The participant’s final art grade (German Abitur) continuous

61 gaming_hours_weekly_min The minimum hours the participant spends gaming per week continuous

62 gaming_hours_weekly_max The maximum hours the participant spends gaming per week continuous

63 leisure_simple_entertainment Indicates whether the participant’s leisure activity involves simple entertainment binary

64 leisure_mental_activity Indicates whether the participant’s leisure activity involves mental activity binary

65 leisure_sports_exercise Indicates whether the participant’s leisure activity involves sports and exercise binary

66 leisure_music Indicates whether the participant’s leisure activity involves music binary

67 leisure_art Indicates whether the participant’s leisure activity involves art binary

68 leisure_dance Indicates whether the participant’s leisure activity involves dance binary

69 leisure_hobbies Indicates whether the participant’s leisure activity involves hobbies (e.g. DIY) binary

70 leisure_play_games Indicates whether the participant’s leisure activity involves playing (video-) games binary

71 leisure_relaxation Indicates whether the participant’s leisure activity involves relaxation binary

72 leisure_social_activity Indicates whether the participant’s leisure activity involves social activities binary

73 leisure_humanitarian_services Indicates whether the participant’s leisure activity involves humanitarian work binary

74 leisure_nature_activities Indicates whether the participant’s leisure activity involves nature/outdoor

activities

binary

75 leisure_travel_tourism Indicates whether the participant’s leisure activity involves travel and tourism binary

76 study_subject_primary The primary study subject category of the participant categorical

77 study_subject_secondary The secondary study subject category of the participant categorical

78 cft_sum_full The aggregated CFT score of the participant continuous

79 cft_task Indicates whether the participant solved the task correctly binary

80 fixationCount The number of fixations performed by a participant during a test item continuous

81 meanFixationDuration The mean duration of fixations performed by a participant during a test item continuous

82 saccadeCount The number of saccades performed by a participant during a test item continuous

83 meanSaccadeAmplitude The mean amplitude of saccades performed by a participant during a test item continuous

84 meanSaccadeDuration The mean duration of saccades performed by a participant during a test item continuous

85 microsaccadeCount The number of microsaccades that occured during a test item continuous

86 meanMicrosaccadeAmplitude The mean amplitude of microsaccades during a test item continuous

87 meanMicrosaccadeDuration The mean duration of microsaccades during a test item continuous

88 meanMicrosaccadePeakVelocity The mean peak velocity of microsaccades during a test item continuous

89 meanPupilDiameter The mean pupil diameter of a participant during a test item continuous

https://doi.org/10.1371/journal.pone.0264316.t001
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The study participants first received general instructions about the nature of the test, fol-

lowed by the first block consisting of one particular type of problem. Each block had specific

instructions, introducing the participants to the block’s requirements and demonstrating the

essence of the problem types based on three exemplary test items. The instruction phase was

conducted without time constraints, thus all participants could go through the examples and

familiarize themselves with the test procedure. All instructions were presented in German

using the SoSci Survey online platform [40].

Eye-tracking equipment. Eye movement data were collected by means of SMI RED250

remote eye trackers, a commercial eye tracker with 250Hz sampling frequency. Since the eye

tracker has a high sampling frequency, both stable (fixations) and rapid (saccadic) eye move-

ments for static stimuli can be measured. Eye movements were recorded using the included

eye-tracking software Experiment Center which outputs the raw gaze data consisting of x

and y coordinates of each data point, the timestamp information, and the pupil diameter in

millimeters.

Calibration was performed for all participants. A validation also was performed as a quality

check to measure the gaze deviation for both eyes from a calibration point. A deviation larger

than one degree required re-calibration. Calibrations were performed prior to the experiments

as well as one or two times during the experimental session depending on how many images

were presented.

Quality of eye tracking data. Initially, the raw gaze data was examined for signal quality

using the eye-tracking software BeGaze provided along with the eye trackers. This software

reports the proportion of valid gaze signal to stimulus time as the tracking ratio. Therefore, if a

participant’s tracking ratio was deemed insufficient (i.e., less than 80% for at least a part of the

task), we omitted the corresponding eye-tracking data. This pre-processing stage can assure

that errors (e.g. post-calibration shifts, poor signal due to glasses) in the gaze data are substan-

tially minimized. Consequently, eye-tracking data from 58 participants had to be omitted due

to low tracking ratios. An additional 11 eye-tracking data sets were excluded due to errors in

the presentation software and another 17 because of incomplete data. This leaves us with eye-

tracking data for only 229 of 315 participants. The raw eye-tracking data was then pre-pro-

cessed to improve the data quality and to extract the relevant features.

Eye movement features. Building on previous work that has focused on the investiga-

tion of individual differences in fluid intelligence using eye-movement data, our aim was to

uncover the extent to which specific eye-movement features can predict CFT performance

at the item level. More specifically, the selection of eye-movement features used in our

work is informed by previous work; that is, we focus on such features that have shown to

be indicative of specific strategies during problem solving as discussed in the introduction.

Beyond the typically used features, e.g., fixation or saccade related features, we also include

some additional features (e.g. microsaccades, pupillometry) that are more exploratory. Fol-

lowing eye-movement features as provided by the TüEyeQ data set were considered in our

models:

• Fixation-related information—Fixations describe the periods where the eye is “still” and

thus perceiving visual information. Fixations were extracted from the raw eye-tracking data

based on the I-VT algorithm [41]. In our models, we use both the number of fixations, i.e.,

fixationCount, as well as their mean duration, i.e., meanFixationDuration, dur-

ing an IQ-test item, since previous work relates longer fixations to higher processing load

and more effort [42].

• Microsaccades-related information—Microsaccades, i.e., fixational eye movements, occur

during an especially prolonged fixation, and have been previously linked to visual attention
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[43, 44], perception [45], working memory [46], and task difficulty [47]. In this work, we

used the following features related to microsaccades from the TüEyeQ data set: microsac-
cadeCount (i.e., the mean number of microsaccades that occurred during a particular

CFT task performance), meanMicrosaccadeAmplitude (i.e., the mean amplitude of

microsaccades that occurred during each item of the CFT), meanMicrosaccadeDura-
tion (i.e., the mean duration of microsaccades that occurred during problem solving),

meanMicrosaccadePeakVelocity, (i.e., the mean peak velocity of microsaccades

during problem solving).

• Saccade-related information—The TüEyeQ data set also provided saccade-related informa-

tion. Saccades are rapid eye movements that enable us to change the focus of attention and

were extracted from the eye-tracking protocols based on the I-VT algorithm [41] with a

velocity threshold of 30˚/s. Since saccade velocity depends on neural activity and cannot be

voluntarily controlled [48], saccade parameters have been previously linked to fluid intelli-

gence. In our analysis, we employ the following parameters of saccades from TüEyeD: sac-
cadeCount (corresponding to the number of saccades occurring during problem solving),

the meanSaccadeAmplitude ((i.e., the mean amplitude of saccades occurring during

problem solving), and the meanSaccadeDuration (i.e., the mean duration of saccades

accruing during problem solving).

• Pupillary information—Since pupil diameter has been used used as an indicator of cognitive

load, short-term memory, language processing, reasoning, perception, sustained attention,

and selective attention [49–56], we also include the mean pupil diameter in our data analysis

(meanPupilDiameter) and explicitly investigate its role in determining problem solving

success.

Fig 1. Success rates for each item of the CFT and a summary regarding all responses combined. The purple bar (on

the very right) stands for the average success rate across all test items. The remaining colors encode the four different

blocks of the test.

https://doi.org/10.1371/journal.pone.0264316.g001
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Feature and factor analysis

Table 1 provides a detailed description of all features provided by the TüEyeQ data set. In addi-

tion to that, Fig 1 shows the percentage of correct responses for each test item and the average

success rate (i.e., across all items in purple).

To analyse the socio-demographic and eye-movement features with respect to their vari-

ability, we first removed the columns related to the following features from the data set: par-
ticipant (i.e., the id of a participant), taskID (i.e., the id of an item in the CFT 20-R.

Note that the feature taskID encodes both the CFT 20-R category/block to which the task

belongs and the position of the task within that category), cft_task (i.e., a binary variable

indicating whether the CFT item was solved correctly), and cft_sum_full (i.e., the total

score of a participant over the CFT 20-R). After removing these features, we were left with a

total of 85 features, 10 of which are eye-movement features.

In a next step, we developed a predictive model on the TüEyeQ data set with the goal of reli-

ably predicting the performance of a participant on a random CFT item as described by its

taskID, which gives hints at both the item type (i.e., one of the four task blocks of the CFT

20-R framework) and the position of the item within the corresponding CFT 20-R task block

(i.e., of items of the same type). An increasing index of taskID (i.e., as represented by the

ending digits) corresponds to increasing task difficulty.

In this work, we also conduct a feature importance analysis on the prediction of a partici-

pant’s CFT task performance and find that some features are, indeed, highly discriminative

from a statistical point of view.

Predicting task performance: Model description

To identify an adequate predictive model for the TüEyeQ data, we conducted an empirical

evaluation of various machine learning algorithms on the data. Not surprisingly, a predictive

model based on the Gradient Boosting Decision Trees (GBDT) algorithm [36] showed the

highest predictive performance. Our empirical findings on the excellent predictive perfor-

mance of GBDT are also supported and complemented by previous results from numerous

Data Science competitions and challenges. More specifically, according to [57],among the 29

winning solutions of Kaggle challenges (https://www.kaggle.com/competitions) in 2015, 17

solutions used the GBDT algorithm.

The GBDT algorithm is an ensemble approach that makes use of simple decision trees as

base learners. A new decision tree tk is added at step k to optimize Lk ¼
Pn

j¼1
ðyj � ðtkðxjÞþ

ŷk� 1
j ÞÞ

2
þ
Pk

i¼1
OðtiÞ, where n is the number of training instances, yj is the true label of xj, ŷk� 1

j

denotes the prediction for xj based on the k − 1 decision trees used so far, and tk represents the

new decision tree. O(�) is a regularisation term, which imposes constraints on the tree struc-

tures. The above loss can be minimized through stochastic gradient descent hence the name of

the approach. Interestingly, the above loss function can be reformulated in a way that yields a

clear strategy for the growing procedure of the current tree (i.e., whether or not to continue

splitting a node, which feature to use, etc.).

Since each tree added to the ensemble is different from the previous trees and focuses on

the remaining error, the GBDT algorithm helps to reduce bias [37, 38], which is very impor-

tant for data sets of moderate size where the instance-related bias and the variability across

instances can negatively influence a predictive model. Another advantage of the GBDT algo-

rithm is that it is not vulnerable in the presence of collinearity and is, therefore, very well suited

for processing behavioural and eye-tracking data. Moreover, the GBDT algorithm has high

application value since it can deal effectively with missing values and does not require much
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data preprocessing (apart from turning the target variable into a nominal variable). Note that

this is a strong advantage over other advanced ML algorithms (e.g. Deep Learning) because

most of the information contained in the data can be maintained, which is highly beneficial to

the prediction quality.

For the development of our GBDT-based model, we used the LGMBClassifier from the

LightGBM framework (https://lightgbm.readthedocs.i0). Our model employed 100 decision

trees with a maximum depth of 7 for each tree, a learning rate of 0.1, and a scale_pos_weight

parameter that compensates for the class imbalance in the dataset. All other parameters were

left in their default configuration. The script that was used in our analysis is provided as a sup-

plementary file to ensure transparency and reproducibility of our results.

Validation. To provide robust estimations and exploit the training data as effectively as

possible, we adopted a stratified group 20-fold cross-validation strategy. Thus, the largest part

of the data (i.e., over 16.000 instances) was used for training and other 800 examples for test-

ing. It also ensured that data from any participant is only ever present in either the training or

the validation set. Note that although there is some variance in the predictive performance

across the 20 folds, as can be seen in the Fig 3a–3c, the standard deviation of the ROC curves is

within an acceptable range.

ROC-AUC measure. The ROC-AUC (i.e., the area under the receiver operating charac-

teristic curve) quantifies the performance of a classification model over all classification score

thresholds. The ROC curve plots two parameters: (1) the True Positive Rate, i.e., tpr ¼ TP
TPþFN,

and (2) the False Positive Rate, i.e., fpr ¼ FP
FPþTN. Note that the tpr is a synonym for the recall of

a predictive algorithm whereas the fpr represents the rate of false alarms. The ROC curve plots

the tpr vs. the fpr values at different classification score thresholds. It can be shown that the

area under the ROC curve is the ranking accuracy with respect to the classification score

returned by a classifier. Ideally, instances that belong to the positive class should be assigned a

higher score by the classifier and thus ranked higher than the instances that belong to the

negative class. Hence, an AUC of 1 means that all positive instances are ranked before the neg-

ative instances and the two classes are clearly separated by the classifier. In contrast, an AUC

of 0.5 means that there is no order across the instances and, as a result, the classes cannot be

separated.

Explainability approach

In Machine Learning, post-hoc explanability techniques can help gain insight into the impor-

tance of input features for predictions made by a complex model f : Rn ! ½0; 1� (e.g., an

ensemble model that uses n different input features like the GBDT model described earlier).

Two of the most popular techniques, so-called local attribution frameworks, are described in

[58–60]. The main idea behind local attribution explainability is to generate a local attribution

score for each feature by optimizing a simple (typically linear) explanation model g such that it

locally approximates the complex model f. Hence, g can be seen as a local interpolation of f in

the region of interest, i.e., in the close neighborhood of an input x 2 Rn
, where n is the number

of input features.

One of the most widely used local attribution techniques that comes with a strong semantic

interpretation of a feature’s importance was introduced in [58, 59]. It approximates the Shap-

ley value [61] of a feature to quantify it’s local attribution score. The Shapley value originates

from Cooperative Game Theory and is a value that represents a player’s contribution to the

result achieved by a coalition of players. In terms of predictive modelling, the Shapley value

determines the marginal contribution of an input feature to the prediction for all possible

combinations of inputs. Specifically, according to the original formalisation in [61], given a
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feature vector x ¼ ðxjÞ
n
j¼1

, let �j 2 R be the Shapley value of input feature xj 2 R:

�j ¼
X

S�Fnfjg

jSj!ðjFj � jSj � 1Þ!

jFj!
fS[fjgðxS[fjgÞ � fSðxSÞ
h i

; ð1Þ

where F denotes the original set of features and |�| denotes the cardinality of a set. Besides,

fS(xS) is the prediction of model f based on the input features that are included in the subset S.

For practical purposes, the other features (i.e., in F\S) are not removed; instead they are set to

baseline values [62]. We can reformulate (1) in terms of a characteristic function v(S) to

express ϕj as the expectation of the marginal contribution of feature xj:

�j ¼
X

S�Fnfjg

vðS [ fjgÞ � vðSÞ ¼
X

S�Fnfjg
DjvðSÞ ¼ ES½DjvðSÞ� ð2Þ

For the computation of the Shapley value, we would have to consider 2|F| feature subsets,

which is not feasible for high-dimensional data. Hence, various approximations of (1) have

been proposed [58, 63, 64]. For the explainability analysis in this work, we employ the TreeEx-

plainer approach presented in [58].

Results

In this section, we first report the results of the statistical tests on the eye-movement features.

More specifically, we investigated the differences between participants either solving the item

correctly (“task solved”, representing one item within the CFT) or answering the item incor-

rectly (“task not solved”) using all eye-movement features provided by the TüEyeQ data set.

We further examined the predictive information as drawn from the socio-demographic fea-

tures, eye-movement features, as well as from the combination of all features, respectively.

Finally, we investigate the differential impact of the implemented features on the prediction

made by the machine learning model.

Eye-movement data

In a first step, we conducted statistical tests with regard to the eye-movement information in

the TüEyeQ data set. More specifically, a t-test to compare items that were solved correctly

and those that were answered incorrectly. The results of this statistical comparison are shown

in Table 2.

Table 2. Statistical comparison of the eye-movement features during items that were solved correctly vs. those that were answered incorrectly.

Eye-movement feature Cohen’s d correct vs. incorrect p-value correct vs. incorrect Incorrectly answered Correctly solved

Mean SD Mean SD

fixationCount -0.65 � 10−161 29.07 21.71 17.16 13.89

meanFixationDuration [ms] -0.13 � 10−5 582.07 243.81 549.95 262.63

saccadeCount -0.66 � 10−163 29.76 22.20 17.20 13.99

meanSaccadeAmplitude [px] 0.10 � 10−4 223.70 75.58 230.94 75.52

meanSaccadeDuration [ms] 0.04 0.12 28.08 4.97 28.28 4.80

microsaccadeCount -0.02 0.51 1.91 1.31 1.89 1.39

meanMicrosaccadeAmplitude [px] -0.02 0.53 7.47 7.14 7.34 7.66

meanMicrosaccadeDuration [ms] -0.02 0.51 11.48 7.85 11.33 8.36

meanMicrosaccadePeakVelocity [px/frame] -0.02 0.43 23.48 18.76 23.04 19.43

meanPupilDiameter [mm] 0.14 � 10−6 3.38 0.33 3.43 0.33

https://doi.org/10.1371/journal.pone.0264316.t002
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As presented in Table 2 and shown in Fig 2a, our results show a highly significant difference

(p< 0.0001) between fixation counts on items that were answered incorrectly (29.07±21.71)

and and those that were solved correctly (17.16±13.89). More specifically, CFT items that were

solved correctly were characterized by significantly less fixations than CFT items that were

incorrectly answered by the participants. Our results show similar findings with regard to

the mean fixation duration (Fig 2b), indicating significantly shorter fixations for correctly

solved CFT items (549.95ms±262.63ms) than for items that were answered incorrectly

(582.07ms ± 243.81).

Consistent with the previously described data, we found highly significant differences

regarding the saccade-related features SaccadeCount (i.e., the number of saccades) and

meanSaccadeAmplitude. As shown in Table 2 and Fig 2c, in the case of correctly solved

CFT items, the participants performed significantly less saccades than for test items that were

incorrectly answered. Furthermore, during CFT items that were solved correctly, participants

performed saccades with significantly larger amplitudes than during items that were incor-

rectly answered, see also Fig 2d. With regard to the feature MeanSaccadeDuration, we

found no significant difference between the two conditions. As shown in Table 2 and in the

Fig 2f–2i, there were no significant differences for miccrosaccade-related parameters between

the two behaviours (task-solved vs. task not solved).

Fig 2. Eye movement differences between the incorrectly answered (purple) and correctly solved items (yellow).

(a) Fixation Count. (b) Mean Fixation Duration. (c) Saccade count. (d) Mean saccade amplitude. (e) Mean saccade

duration (f). Microsaccade Count. (g) Mean Microsaccade Amplitude. (h) Mean Microsaccade Duration. (i) Mean

Peak Velocity of Microsaccades.

https://doi.org/10.1371/journal.pone.0264316.g002
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With regard to the pupil diameter size, we found a highly significant difference between the

the items that were solved correctly and those which were not. As shown in Table 2, partici-

pants showed a larger pupil diameter size in the case of correctly solved test items as compared

to those items that were answered incorrectly.

Predictive information in the features

Our goal was to evaluate the impact of the features related to eye-movements on predicting

whether a participant successfully solved a given CFT item. To this end, we built three GBDT

models with the same number of decision trees, i.e., 100, the same maximum depth of 7 per

tree, and the same learning rate of 0.1. All three GBDT models were trained and validated by

applying the cross-validation procedure as introduced above in the model description.

The first GBDT model was trained on the eye-movement-related features only. The second

GBDT model was trained only on the socio-demographic features, and the third was trained

on the combined 85 features. There are two questions of interest:

• Are the features related to eye movements informative enough for predicting the perfor-

mance of a participant on a given CFT item?

• If so, is the information contained in the eye-movement features complementary to the

information contained in the socio-demographic features? Or, more specifically, is a predic-

tive model developed on both types of features, i.e., the eye-movement and the socio-demo-

graphic features, more discriminative than the models developed on the single subgroups of

features?

Interestingly, as it can be seen in Fig 3a, the GBDT model developed on the eye-movement

features alone is already discriminative with an ROC-AUC of 0.63. Note that the model uses

only 10 features (i.e., the features related to eye-movements in the TüEyeQ data set). The

GBDT model developed on the 75 socio-demographic features is, as shown in Fig 3b, less dis-

criminative, with an ROC-AUC of 0.56. However, as depicted in Fig 3c, the socio-demo-

graphic and the eye-movement-related features contain complementary information, and

thus, the GBDT model developed on all features is the most discriminative, with an ROC-AUC

of 0.65. Note that this difference with regard to the discriminative performance of the model is

substantial, and thus, highlighting the complementary contribution of eye movement features

and socio-demographic features to the predictive model.

Fig 3. ROC curves of the GBDT model on the TüEyeQ data set that was trained on (a) only the features related to

eye-movements, (b) only the socio-demographic features, and (c) on the socio-demographic and eye-movement-

related features. Standard deviations based on the 20 folds of cross-validation are shown in gray. (a) AUC of 0.63. (b)

AUC of 0.56. (c) AUC of 0.65.

https://doi.org/10.1371/journal.pone.0264316.g003
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Explainability results

Fig 4 shows that the features saccadeCount and meanPupilDiameter followed by

meanFixationDuration and fixationCount provide the maximum information

according to their marginal contribution density for the GBDT model that uses only the eye-

movement features. It also becomes apparent that less saccades, a lower mean fixation duration

and a larger mean pupil diameter contribute to the success of solving a item of the CFT.

Fig 5 shows that the features grades_math, mean_grade_degree, online_new-
s_usage followed by background information on digital affinity and parental education/jobs

provide the maximum information according to their marginal contribution density for the

GBDT model that uses only socio-demographic features. Good grades in mathematics and

participants’ current standing in their study subject seem to indicate better performance in the

CFT, while most forms of media consumption imply the contrary.

In Fig 6 we can see that five of the seven most informative features are eye-movement

related—with grades_math and mean_grade_degree being the exceptions. The fea-

ture importances regarding eye movements are very similar to the ones already shown in Fig 4

and again indicate that saccade count, pupil diameter, and fixation duration carry information

about the success while solving individual test items. Additionally, participants’ primary sub-

ject of study and their parents occupation play an important role as highlighted by their distri-

butions. This is also in line with the importances that were presented in Fig 5.

Discussion

Following the structure of the result sections, we will first discuss our findings from the statisti-

cal tests on the eye-movement features, followed by a discussion on the predictive power of

eye movements, socio-demographic information, as well as the overall combined feature set,

respectively.

Fig 4. Summary plot of the approx. Shapeley values, that is, the density of the marginal contributions of the features

in the GBDT model that uses only the eye-movement features. Red denotes high feature values, whereas blue indicates

low feature values, and grey show categorical values or missing values that cannot be assigned a feature value.

https://doi.org/10.1371/journal.pone.0264316.g004
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Fig 6. Summary plot of the approx. Shapeley values, that is, the density of the marginal contributions of the features

in the GBDT model that uses only eye related and socio-demographic features. Red denotes high feature values,

whereas blue indicates low feature values, and grey show categorical values or missing values that cannot be assigned a

feature value.

https://doi.org/10.1371/journal.pone.0264316.g006

Fig 5. Summary plot of the approx. Shapeley values, that is, the density of the marginal contributions of the features

in the GBDT model that uses only the socio-demographic features. Red denotes high feature values, whereas blue

indicates low feature values, and grey show categorical values or missing values that cannot be assigned a feature value.

https://doi.org/10.1371/journal.pone.0264316.g005

PLOS ONE Linking eye movements to IQ task performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0264316 March 29, 2022 16 / 23

https://doi.org/10.1371/journal.pone.0264316.g006
https://doi.org/10.1371/journal.pone.0264316.g005
https://doi.org/10.1371/journal.pone.0264316


Statistics of the eye-movement features

Fixation-related features. As presented in Table 2 and Fig 2a, both fixations-related fea-

tures (i.e., fixation count and mean fixation duration) showed that there was a highly signifi-

cant difference between those items that were solved correctly and those which were not.

During CFT items that were solved correctly, participants showed fewer fixations as compared

with test items that were answered incorrectly, indicating faster processing speed and higher

confidence. Additionally, correctly solved CFT items were characterized by shorter fixation

durations, indicating more confidence in extracting and processing (visual) information. Our

results are well in line with previous work that has reported associations between fixation

duration and memory and processing load [13, 65, 66]. Furthermore, they support the general

literature that has emphasized the relationship between fixation properties and performance in

executive function and fluid intelligence tests, e.g., [13, 67, 68].

Saccade-related features. As reported in Table 2, participants performed significantly less

saccades for test items that were correctly solved than for those CFT items that they answered

incorrectly. Additionally, in the case of correctly solved items, the participants performed sac-

cades with significantly larger amplitude and longer duration. These results are in line with

findings from related work [23], indicating an efficient visual search strategy, and/or successful

retrieval of mental representations [69]. Along this line, Sargezeh et al., [13] also reported a

strong positive correlation between saccade peak velocity and performance in fluid intelligence

tasks [13].

Microsaccade-related features. With regard to the microsaccade-related features (i.e., the

mean number of microsaccades, the mean microsaccade amplitude and duration, and the

mean peak velocity of microsaccades) we found no significant differences between the CFT

items solved correctly and those that were answered incorrectly. Although the relationship

between microsaccades, working memory [46, 70], and task difficulty [47] is gaining increas-

ing research interest, our results did not show significant differences between the items solved

vs. items not solved with regard to these features, despite the fact that the items that were

answered incorrectly were generally more difficult. There might be different explanations for

these results. First, the eye-tracking data provided by the TüEyeQ data set was captured at

250Hz, which might be too low to thoroughly study microsaccade-related features. In addition,

current literature reports inconsistent findings with regard to the underlying nature of micro-

saccades. While the majority of published papers consider this type of eye movements involun-

tary, others show that microsaccades can easily be triggered externally, e.g., [71, 72], and thus

raising the question of how to interpret microsaccades.

Pupil diameter. As shown in Table 2, we found a significant difference in the mean pupil

diameter during problem solving as a function of items that were correctly solved vs. those

answered incorrectly. Chen and Epps [73] report a smaller pupil response for tasks that over-

load participants as compared to tasks that participants successfully perform with very high

load. The smaller pupil diameter that we observed for items that were answered incorrectly

might reflect this cognitive overload.

A machine learning perspective on the data

We trained three GBDT models (i.e., using the eye-movement features, the socio-demographic

information, and all 85 features) from the TüEyeQ data set to investigate the following

questions:

Q1. Are the features related to eye-movements informative enough for predicting the success

of a participant in solving a given CFT item?
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Q2. If the previous question can be positively confirmed, is the information contained in the

eye-movement features complementary to the information contained in the socio-demo-

graphic features? Or, more specifically, is a predictive model developed on both types of

features, i.e., the eye-movement and the socio-demographic features, more discriminative

than the models developed on the single subgroups of features?

The results from the GBDT model trained on only ten eye-movement features show

that information contained in the eye movements is very discriminative (ROC-AUC of

0.63 as shown in Fig 3a). Our findings regarding Q1 are well in line with related literature,

showing, thus, a significant association between eye-movement properties and fluid intelli-

gence [13]. Going beyond previous research which investigated a subset of these features

in a rather fragmented way based on small sample sizes, our findings are based on a

considerably larger sample size and sophisticated machine learning algorithms. With

regard to Q2, we found socio-demographic information as captured by the GBDT model

developed on the remaining 75 socio-demographic features to be less predictive (Fig 3b,

ROC-AUC of 0.56) than the GBDT model on the eye-movement features. The machine

learning model reveals even better predictive performance once all socio-demographic and

eye-movement-related features are included, which confirms our assumption that informa-

tion contained in these feature subsets is complementary and can be combined to signifi-

cantly improve the predictive performance on whether a CFT item will be solved correctly

by an individual.

Our explainability model confirmed that the eye-movement features with the most signifi-

cant differences between both groups (task solved correctly vs. task not solved), i.e., sacca-
deCount, meanPupilDiameter, meanFixationDuration, and fixation
count, have the highest impact for classification. Interestingly, multiple features derived

from the microsaccades were revealed to significantly impact the model’s prediction. However,

we did not find any significant differences between the microsaccade-related features with

regard to the items that were solved vs. those that were not solved, which might be also related

to the fact that the sampling rate of our eye-tracking devices (250 Hz) does not allow to capture

fine-grained information on microsaccades. Fig 4 shows that the features microsaccade-
Count and meanMicrosaccadeAmplitude have a high impact for classification to the

positive class (i.e., item solved correctly). In contrast, meanMicrosaccadePeakVelo-
city has a high impact for classification to the negative class. Further research is needed to

investigate the manifestation of fluid intelligence on microsaccade-related features and their

causality.

The results of our explainability analysis regarding socio-demographic factors are in line

with previous research in the literature [74–76]. Our analyses show a positive association

between parental education level and occupation and an individual’s performance on the CFT.

Furthermore, students’ academic background was also associated with performance on the

CFT, confirming the findings in existing literature as well [25].

Importantly, our results show that a model that combines eye-movement and socio-demo-

graphic features performs significantly better than models trained exclusively on either of the

two, suggesting that these two sources of information are complementary. This is supported

by the explainability analysis that found 9 eye-related features and 11 socio-demographic fea-

tures to be the 20 most predictive features for success in a given item of the CFT. Additionally,

features that performed well in the combined model were also predictive in their respective

single-category model, further backing the conclusion that eye movements and socio-demo-

graphic information contribute differential variance to the model.
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Limitations and future work

Although the overall number of participants in our study is higher than that of related studies,

it is important to note that all participants were university students, and as such, it is unclear

whether the results will generalize to other populations. In our future work, we, therefore, aim

to further investigate the contribution of individual differences on problem solving success in

a more diverse population using eye-movement patterns [77, 78]. Here, we focused primarily

on general eye-related features and investigated their predictive power on solving individual

CFT items. As revealed by our explainability model, multiple features derived from the micro-

saccades significantly influenced the prediction of the machine learning model. Since the sam-

pling rate of our eye-tracking devices was only 250 Hz, these results can only be considered

indications and require further investigations to gain insights on the relationship between

microsaccades and problem solving success. Finally, there are additional sources of variance to

consider that were not included here (but that could be added to the model), and thus, this

work is a first step into using this approach to explain variance in problem solving success

using a broad range of variables. Going one step further, counterfactual explanations [79, 80]

could not only help identify important features/factors for predicting a person’s performance

on a problem, but also help develop individual strategies for efficient problem solving.

Conclusion

We found that specific eye-movement patterns are related to the ability of a participant to suc-

ceed in solving a given CFT item. Moreover, the eye-movement information is complementary

to the socio-demographic information in predicting individual differences in problem solving

success within the context of a standardized fluid intelligence test, suggesting that each source

of information contributes important (but distinct) variance. Our method of analysis is based

on a computational framework with machine learning and explainability at its core and thus,

goes beyond purely correlational results. The sample size that we employed is considerably

larger than what is typical in related research, which allowed the utilization of an extensive and

rich feature set, while still maintaining the validity of our results, as demonstrated by our use

of cross-validation. Overall, our computational framework that relies on a machine learning

and explainability approach, might facilitate and thus contribute more in-depth investigations

of a broad set of factors predicting individual differences in higher cognitive functions using

large populations.
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data set with eye movement, educational and socio-demographic information. Harvard Dataverse.

2020 https://doi.org/10.7910/DVN/JGOCKI.

PLOS ONE Linking eye movements to IQ task performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0264316 March 29, 2022 21 / 23

https://doi.org/10.1167/11.10.10
http://www.ncbi.nlm.nih.gov/pubmed/21926182
https://doi.org/10.1016/j.cogpsych.2016.10.001
http://www.ncbi.nlm.nih.gov/pubmed/27821254
https://doi.org/10.1016/j.ridd.2011.11.009
http://www.ncbi.nlm.nih.gov/pubmed/22186631
https://doi.org/10.3758/s13423-018-1432-y
https://doi.org/10.3758/s13423-018-1432-y
http://www.ncbi.nlm.nih.gov/pubmed/29435963
https://doi.org/10.1126/science.472746
http://www.ncbi.nlm.nih.gov/pubmed/472746
https://doi.org/10.1111/j.1469-8986.2009.00884.x
https://doi.org/10.1111/j.1469-8986.2009.00884.x
http://www.ncbi.nlm.nih.gov/pubmed/19761522
https://doi.org/10.1007/s11858-010-0253-x
https://doi.org/10.1007/s11858-010-0253-x
https://doi.org/10.1016/0160-2896(84)90009-6
https://doi.org/10.1016/0160-2896(84)90009-6
https://doi.org/10.3389/fpsyg.2018.00380
https://doi.org/10.3389/fpsyg.2018.00380
http://www.ncbi.nlm.nih.gov/pubmed/29619002
https://doi.org/10.1371/journal.pone.0149717
https://doi.org/10.1371/journal.pone.0149717
http://www.ncbi.nlm.nih.gov/pubmed/26918704
https://doi.org/10.1093/arclin/acp015
http://www.ncbi.nlm.nih.gov/pubmed/19185449
https://doi.org/10.1016/j.lindif.2010.07.002
https://doi.org/10.1038/nrn2897
https://doi.org/10.1038/nrn2897
http://www.ncbi.nlm.nih.gov/pubmed/20725096
https://doi.org/10.3389/fnins.2014.00276
http://www.ncbi.nlm.nih.gov/pubmed/25249931
https://doi.org/10.1111/desc.12748
http://www.ncbi.nlm.nih.gov/pubmed/30171785
https://doi.org/10.1038/nrn2298
http://www.ncbi.nlm.nih.gov/pubmed/18094706
https://doi.org/10.1146/annurev-neuro-060909-152832
https://doi.org/10.1146/annurev-neuro-060909-152832
http://www.ncbi.nlm.nih.gov/pubmed/22715883
https://doi.org/10.1016/j.chb.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/31447496
https://doi.org/10.1016/j.cognition.2016.03.017
https://doi.org/10.1016/j.cognition.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/27107499
https://doi.org/10.7910/DVN/JGOCKI
https://doi.org/10.1371/journal.pone.0264316


35. Kasneci E, Kasneci G, Appel T, Haug J, Wortha F, Tibus M, et al. TüEyeQ, a rich IQ test performance
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