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Abstract: Ease of design, relatively low cost and a multitude of gene-altering capabilities have all
led to the adoption of the sophisticated and yet simple gene editing system: clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The CRISPR/Cas9
system holds promise for the correction of deleterious mutations by taking advantage of the
homology directed repair pathway and by supplying a correction template to the affected patient’s
cells. Currently, this technique is being applied in vitro in human-induced pluripotent stem cells
(iPSCs) to correct a variety of severe genetic diseases, but has not as of yet been used in iPSCs derived
from patients affected with a lysosomal storage disease (LSD). If adopted into clinical practice,
corrected iPSCs derived from cells that originate from the patient themselves could be used for
therapeutic amelioration of LSD symptoms without the risks associated with allogeneic stem cell
transplantation. CRISPR/Cas9 editing in a patient’s cells would overcome the costly, lifelong process
associated with currently available treatment methods, including enzyme replacement and substrate
reduction therapies. In this review, the overall utility of the CRISPR/Cas9 gene editing technique
for treatment of genetic diseases, the potential for the treatment of LSDs and methods currently
employed to increase the efficiency of this re-engineered biological system will be discussed.

Keywords: CRISPR-Cas9; gene editing; lysosomal storage disease; induced pluripotent stem cells;
genetic disease

1. Lysosomal Storage Diseases

Lysosomal storage diseases (LSDs) are a collection of more than 50 severe genetic diseases
resulting from deleterious mutations that render lysosomal enzymes, necessary for regulating the
endosomal-autophagic-lysosomal system, non-functional [1]. These mutations lead to a cascade of
symptoms due to the relentless accumulation of undegraded substrates, macromolecules and metabolites
within the lysosome. Each one of the diseases comprising the group of LSDs is considered a rare genetic
disease due to a prevalence ranging between 1:57,000 and 1:4,200,000 individuals; however, a combined
prevalence across all LSDs indicates a prevalence as high as 1:5000 [2,3]. Notable symptoms presenting
across this disease class include hepatosplenomegaly, ischemic stroke, seizures, cardiovascular
involvement, and musculoskeletal and neurodegenerative manifestations [4–8]. The most frequently-
occurring LSD, Gaucher disease (GD: OMIM 230800, type 1, non-neuronopathic; OMIM 230900, type 2,
acute neuronopathic; OMIM 231000, type 3, sub-acute neuronopathic), has an autosomal recessive
mode of inheritance, a neurodegenerative component in the most severe forms, and has been shown
to exhibit a marked concurrence with Parkinson’s disease (PD) in patients with GD. An investigation
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into the concurrence of PD and GD by Alcalay and others found that patients with type 1 GD were at
a higher risk of developing PD than heterozygotes for GBA mutations, and both type 1 GD individuals
and GBA mutation heterozygotes were at a higher risk of developing PD than non-carriers, although
the difference in concurrence between type 1 GD individuals and GBA mutation heterozygotes was
not statistically significant [9]. Further investigations have identified a genetic link between other rare
LSDs, such as Niemann-Pick A disease and neuronal ceroid lipofuscinosis, with a far more commonly
occurring disease, PD [10–12]. LSDs including GD, Niemann-Pick A disease, Tay-Sachs disease (TSD)
and mucolipidosis IV are particularly common in Ashkenazi Jewish populations, showing predicted
prevalences as high as 1:640 [13–16]. In this review, we describe LSDs that are suitable for regenerative
therapies utilizing genome editing based on the following criteria: causative mutations are monogenic,
target tissues can successfully uptake and utilize supplemental lysosomal enzymes, and current
available therapies are limited. Although the vast majority of LSDs fit these criteria, we have chosen
Niemann-Pick A disease, Sanfilippo B syndrome, and Pompe disease as typical examples for clarity
and brevity.

1.1. Current LSD Treatments

Currently, multiple approaches to facilitate the treatment of LSDs are available. These treatment
options include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), pharmacological
chaperone therapy (PCT) and hematopoietic stem cell transplantation (HSCT), as well as a multitude
of treatments used in an attempt to keep secondary effects at bay [17]. None of these aforementioned
therapies are currently curative [17]. Treatment of the secondary effects aims to alleviate symptoms
associated with particular LSDs and symptoms that are patient-specific, whereas the intent of ERT,
SRT and PCT is to target and reduce the accumulation of undegraded substrates within the lysosomes.
Where at first, the modification and supplementation of drugs functioning to restore the normal
balance of waste reduction in lysosomes appears to be an overarching solution to these diseases,
many of these drugs cannot penetrate the protective and nutritive capillary system surrounding the
CNS referred to as the blood-brain barrier (BBB), which prevents the passage of large macromolecules
to the tissues of the nervous system. For this reason, the severe neurodegenerative pathology is more
complicated to treat. Exceptions include two small molecule drugs: ambroxol (used as a PCT for
GD) and miglustat (used as a SRT for GD and Niemann-Pick C (NPC) disease), which are capable of
crossing the BBB [18–20]. Some LSDs are also receptive to a combination therapy, whereby SRT and
HSCT acts synergistically to subside disease symptoms [21,22]. LSDs are seen as particularly applicable
candidates for treatment with gene-therapy for two major reasons: many of the affected enzymes can
be secreted into the surrounding extracellular fluid for uptake via the mannose-6-phosphate (M6P)
receptor on diseased cells to act upon and degrade certain target substrates, and the threshold percent
enzyme activity necessary to overcome disease symptoms can be quite low [23–25].

1.2. Drawbacks to Current LSD Treatments

HSCT, the first of the aforementioned treatments available for LSDs, acts as a therapy for patients
by supplementing the missing or defective enzyme through donor cells upon a successful engraftment
of HSCs. The transmigration of HSCs to visceral organs and to the central nervous system is necessary
for these cells to then differentiate into respective, specific cell types [26,27]. Once these cells have
differentiated, the enzyme can be released into the extracellular fluids and transferred to affected cells
by a process known as cross-correction in order to alleviate symptoms in that tissue [24]. An in depth
review demonstrating the utility of HSCT in conjunction with genome editing for potential treatment
of LSDs has been described elsewhere [28]. A drawback associated with HSCT is acute or chronic
graft-versus-host disease (GVHD) or a rejected engraftment resulting from allogeneic hematopoietic
stem cells (HSCs) with an imperfect HLA match. Even in the event that a perfect HLA-matched donor
of HSCs is available, certain LSDs do not benefit therapeutically from HSCT. In the case of I-Cell disease,
defective N-acetylglucosamine-1-phosphate transferase (GlcNAc phosphotransferase) in the Golgi
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apparatus is unable to phosphorylate mannose residues to M6P, a crucial step in tagging lysosomal
enzymes for transport to their destination, the lysosome [29]. Since the production of M6P moieties is
diminished in these patient’s cells, many lysosomal enzymes fail to reach the lysosome thus affecting
numerous pathways of substrate degradation. The delivery of active GlcNAc phosphotransferase via
transplanted HSCs has been speculated to produce limited disease improvement due to the number
of pathways affected, and this lack of pathological improvement has been displayed through clinical
cases of HSCT in I-Cell disease patients [29].

In addition to HSCT, therapies aimed at replacing defective enzymes, modifying non-functional
enzymes, or ‘debulking’ substrate levels have been undertaken. One of these therapies, ERT, has been
successfully used to treat LSDs including type 1 GD, Fabry disease, mucopolysaccharidosis I, II, VI
and Pompe disease (for review, see [30]). In many cases, ERT is a life-long process that requires
patients to receive injections of recombinant enzyme in order to alleviate visceral symptoms associated
with their LSD. ERT cannot, however, reduce neurological symptoms associated with these diseases
because the exogenous enzyme fails to cross the BBB. LSDs are also suitable targets for gene therapy,
which is a form of renewable ERT where a transgene is incorporated into affected cells using viral
vectors for long-term expression of that particular gene product. LSDs can utilize the previously
described cross-correction mechanism, which allows for the transfer of lysosomal enzymes between
neighboring cells [24]. However, these viral gene therapies have their own caveats, such as insertional
mutagenesis, transient gene expression, and the development of adaptive immune responses against
the introduced viral vector [31,32]. Table 1 summarizes a number of LSDs and the currently available
treatment options for patients affected by these diseases.

Table 1. Current treatment options available for a number of lysosomal storage diseases (LSDs).
Potential use of CRISPR/Cas9 for correction of disease causing mutations is indicated for each
LSD listed.

LSD Gene
Affected

Current
Treatment
Options *

Example Drugs Available
(Drug, Company)

Overall
CRISPR/Cas9

Suitability (+/−)
References

Gaucher Disease
(GD) GBA1 ERT; SRT; PCT

Ceredase®, Genzyme
(Cambridge, MA, USA);

Cerdelga®, Genzyme
(Cambridge, MA, USA);
Mucoslovan®; Boehringer

Ingelheim (Biberach, Germany)

+ † [23,33–37]

Sanfilippo
Syndrome
(MPS III)

A SGSH

SRT Genistein ‡ +B Naglu [38]

C HGSNAT

D GNS

Fabry alpha-Gal A ERT Fabrazyme®, Genezyme
(Cambridge, MA, USA)

+ [39–41]

Tay Sachs HexA - - − [42]

I-cell disease GNPTAB - - − § [43]

Niemann-Pick C
Disease (NPC)

NPC1 or
NPC2 SRT Zavesca®, Actelion

(Allschwil, Switzerland)
+ [19,44–46]

MPS I IDUA ERT Aldurazyme®, Genzyme
(Cambridge, MA, USA)

+ [47]

MPS II IDS ERT Hunterase®, CytoBioteck
(Bogota, Colombia)

+ [48]
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Table 1. Cont.

LSD Gene
Affected

Current
Treatment
Options *

Example Drugs Available
(Drug, Company)

Overall
CRISPR/Cas9

Suitability (+/−)
References

MPS VI ARSB ERT Naglazyme®, Biomarin
(San Rafael, CA, USA)

+ [49]

Pompe disease GAA ERT Myozyme® Genzyme
(Cambridge, MA, USA)

+ [50,51]

Niemann-Pick A
disease SMPD1 - - + [52,53]

* Only enzyme replacement therapy (ERT), substrate reduction therapy (SRT), pharmacological chaperone therapy
(PCT) as current treatment options are indicated; † refer to Section 5.4 for GBAP1 complications; ‡ genistein,
a naturally-occurring isoflavone, has been shown to reduce urinary secretions of glycosaminoglycans, but has
yet to be tested at higher, clinically relevant doses for SRT in MPS III patients [38]; § although mutations in
GlcNAc phosphotransferase are suitable targets for CRISPR/Cas9 gene editing, lack of disease amelioration
post-hematopoietic stem cell transplantation (HSCT) indicates that applicability of gene therapy approaches may be
limited in these patients [29].

2. iPSCs: Autologous Stem Cell Transplantation

A proposed mechanism to overcome the disadvantages of existing LSD therapies has resulted
from a capacity to revert a patient’s terminally differentiated cells to a pluripotent state by using
‘reprogramming’ transcription factors. In a ground-breaking study by Takahashi and Yamanaka, these
necessary reprogramming factors were discovered to be c-Myc, Klf4, Oct3/4, and Sox2 (MKOS) [54].
Once reprogrammed, stem cells have a self-renewal capability that renders them useful for
regenerative medicine. iPSCs can be used for disease modeling of a myriad of diseases, including
LSDs and neurodegenerative disorders associated with LSDs, such as PD, or metabolically similar
neurodegenerative disorders, such as NPC disease and Alzheimer’s disease, where both are associated
with an accumulation of tau protein tangles [9,55–57]. Upon the advent of iPSC technology [54], proof of
concept studies quickly emerged [58] demonstrating the therapeutic potential of patient-derived iPSCs
for treatment of blood disorders such as sickle cell anemia, and the differentiation of iPSCs to neural
progenitor cells for CNS engraftment in humanized mouse models [59]. Additionally, the efficacy of
this neural progenitor intracerebral transplantation method has been demonstrated in mouse models
of LSDs such as Niemann-Pick A disease, where disease improvement was noted [60]. The studies
by Hanna et al. [58] and Wang et al. [59] strengthen the line of reasoning behind the use of iPSCs as
a treatment for genetic disease where disease progression affects a host of body systems, such as in
many rare LSDs. The use of gene editing technologies, such as the rapidly advancing CRISPR/Cas9
method, is serving to establish a clinically relevant curative stem cell therapy through the correction of
underlying disease-causing mutations in patient-derived iPSCs, which can then be differentiated to
the desired progenitor cell types for engraftment and cell replacement therapy.

3. CRISPR/Cas9 Gene Editing

3.1. Current Gene Editing Systems

An elegant and easy-to-use gene editing system, CRISPR/Cas9, is a conceivable, alternative
therapeutic option for treating LSDs. This bioengineered tool possesses the ability to selectively target
genes containing mutations that lead to non-functional products and correct the disease-causing
mutations, in vitro and in vivo [61–67]. Despite the interest CRISPR/Cas9 has generated regarding
the potential of gene editing to correct genetic disease [61,63,66–68], this is not the first gene editing
tool proposed for this purpose. Three other gene editing platforms have been explored, including
zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and homing
endonucleases (for reviews, see [69,70]). The utility of these alternative gene editing platforms is
lacking in a number of areas where CRISPR/Cas9 excels. For instance, ZFNs are most effective when
targeting G rich sequences due to a conferred stability through arginine residues and guanine bases in
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the major groove, thus limiting the genomic range for this bioengineered tool [71,72]. In addition to
other associated design limitations, ZFNs are difficult to design and employ due to the complex and
challenging nature of predicting DNA-protein interactions [71]. The CRISPR/Cas9 system makes use
of predictable Watson-Crick base pairing, thus allowing for unprecedented ease-of-design.

3.2. CRISPR/Cas9: Molecular Design

Originally identified as a prokaryotic acquired immune system, CRISPR has undergone certain
modifications in order to refine this system as a gene editing tool [73–75]. In this CRISPR/Cas9 system,
the signature Cas9 protein works in conjunction with two RNAs to home in on a target sequence and
successfully introduce double stranded breaks (DSBs) into the DNA backbone of the target DNA.
These two RNAs include a CRISPR-derived RNA (crRNA) complimentary to the non-target sequence
as well as a trans-activating CRISPR RNA (tracrRNA) that links together the Cas9 endonuclease
and the crRNA (Figure 1) [75]. Cas9 employs HNH and RuvC endonuclease domains, wherein the
former has been found to be responsible for cleavage of the target strand, and the latter responsible
for cleavage of the non-target strand [76,77]. In order for Cas9 to cleave at a target site, a protospacer
adjacent motif (PAM) present in the target DNA is necessary to act as a recognition sequence. This PAM
sequence is in the form of 5′-NGG-3′ (where ‘N’ is defined as any DNA base) and is contained in
the non-target strand [78]. Upon the introduction of a DSB, the inherent cellular repair machinery
can follow one of two pathways: the non-homologous end-joining (NHEJ) pathway or the homology
directed repair (HDR) pathway, the former inducing insertions and deletions at the site of the break,
and the latter allowing for recombination through an area of homology [79,80]. NHEJ is particularly
useful for knocking out genes, whereas HDR can be employed with an exogenous correction template
to induce specific changes in the DNA sequence at the site of the DSB.
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Figure 1. A single guide RNA (gRNA), comprised of CRISPR-derived RNA (crRNA) (purple) and
a trans-activating CRISPR RNA (tracrRNA) (yellow), targets Cas9 endonuclease (light purple) to
a DNA sequence of interest (black). Cas9 creates a double-stranded break (DSB) in the DNA backbone,
instigated by the protospacer-adjacent motif (PAM; light grey) recognition sequence present in the DNA
sequence of interest. The DNA strands have been designated as non-target versus target, and proximal
versus distal, based on their relative orientation to the gRNA and to the PAM sequence, respectively
(adapted from Richardson et al. [81]).

4. Proof of Concept Studies: CRISPR/Cas9 for Correction of Genetic Disease

4.1. Compound Heterozygous Mutation Correction in β-Thalassemia

Although this technology has not, as of yet, been used for the treatment of LSDs, an abundance of
studies have been conducted using CRISPR/Cas9 RNA-guided nucleases (CRISPR/Cas9-RGNs)
and HDR to correct disease-associated mutations in human iPSCs and in animal models since
2013 when the technique was adopted [61–64,66]. One such example is the use of CRISPR/Cas9
and a piggyBac construct to correct mutations implicated in β-thalassemia [61]. β-thalassemia
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is a severe form of anemia resulting from mutations in the β-globin gene HBB that leads to
a reduction in hemoglobin production. Currently, treatment for β-thalassemia includes repeat blood
transfusions, subsequent iron chelation therapy, and, for some, HSCT in cases where a suitable
donor is available [61]. Ideally, gene editing in iPSCs derived from the patient, differentiation to
multipotent HSCs, and subsequent transplantation back into the patient would overcome the disease
state in full. In their study, Xie et al. used Cas9 double strand cleavage at a location flanked by
both mutations leading to β-thalassemia in the patient, allowing for HDR to occur between areas of
homology within the target sequence and the piggyBac correction template [61]. Clones that successfully
underwent HDR contained a puromycin and thymidine kinase marker, allowing for selection through
the use of puromycin, application of transposase to remove the piggyBac transposon upon selection,
and thymidine kinase negative selection to eliminate clones that inadvertently integrate the piggyBac
transposon at other genomic sites [61]. Confirmation of HDR through PCR amplification and Southern
blot analysis showed gene correction in 23.5% of the clones, thus indicating a substantial degree of gene
editing and repair [61]. A similar approach using a plasmid-based correction template and multiple
gRNAs for mutation correction in patients with a compound (bi-allelic) heterozygous genotype would
be especially useful in LSDs where cross-correction mechanisms exist.

4.2. Mutation Correction in Other Inherited Monogenic Diseases

CRISPR/Cas9 has also been used for the correction of a mutation in the Crygc gene, which leads to
the generation of cataracts in mice [63]. In contrast to the study by Xie et al. [61], Wu et al. used mouse
zygotes for the injection of Cas9 mRNA and a gRNA complimentary to the specified Crygc mutation
and successfully identified fertile, recombinant mice who transferred the newly corrected allele to their
offspring, and in which only a small minority had off-target binding events [59]. Duchenne muscular
dystrophy (DMD), an X-linked genetic disorder that results in progressive muscle weakness and
a characteristically shortened lifespan, has also been the aim for repair using CRISPR/Cas9 technology
in a mouse disease model [64]. DMD occurs in humans at a similar frequency as LSDs, with a rate
of 1:3600 to 1:6000 live male births [82]. The specific gene target in the study by Long and colleagues
was the Dmd gene, in which mdx mice harbor a disruptive mutation in exon 23 [64]. Similar to the
study by Wu et al. [63], the mouse zygotes were injected with gRNA, Cas9 and the correction template
necessary to generate HDR [64]. Long et al. noted that gene editing produced genetically mosaic
mice with between 2% and 100% Dmd correction and very few off-target effects were noted [64].
Recently, a mouse model of hemophilia B was both created and corrected using CRISPR/Cas9 in vivo,
thus demonstrating the success of this gene editing system [66]. These applications of this gene editing
technique encompass the breadth of CRISPR/Cas9’s medical relevance through the potential for
genetic mutation correction in disease-modeling organisms and are projected methods for correcting
mutations associated with genetic disease in humans.

5. Clinical Potential, Prospective Applications, and Challenges Using CRISPR/Cas9

5.1. CRISPR/Cas9 in Clinical Trials

As previously mentioned, a curative option for patients with LSD is that of CRISPR/Cas9-RGNs
for the restoration of enzyme activity in autologous, patient-derived cells. For somatic-cell applications,
terminally differentiated cells can be harvested from the patient, cultured, and reprogrammed to iPSCs
via the aforementioned pathway described in Takahashi and Yamanaka’s work on reprogramming
terminally differentiated cells to iPSCs [54]. Clinical trials have not yet commenced for the treatment
of genetic disease using CRISPR/Cas9-RGNs; however, phase I clinical trials, where T cells are
re-engineered to combat lethal diseases, have begun. Although the use of CRISPR/Cas9-RGNs is
still in the pre-clinical and early clinical stages, the modification of human cells using other gene
editing platforms has made its way to clinical applications in recent years. One such study by
Perez et al. nullified M-tropic strain HIV-1 recognition of CCR5 co-receptors in CD4+ human T cells by
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introducing NHEJ in the endogenous CCR5 through the employment of ZFNs, effectively mimicking
the naturally occurring homozygous ∆32 mutation that normally protects an individual from certain
HIV-1 infections [83]. A follow-up study was performed, where autologous CCR5-modified CD4+
human T cells were introduced to HIV-positive patients and resulted in a selective advantage, thereby
reducing the viral load within these patients [84]. These investigators have now been approved to use
CRISPR/Cas9-RGNs in T cells derived from cancer patients in order to edit these cells, enabling the
cells to target and destroy the cancer [85]. The first clinical trials using CRISPR/Cas9-RGNs to create
a PD-1 knock-out in T cells has been approved for the treatment of muscle-invasive bladder cancer,
castration resistant prostate cancer, metastatic renal cancer, and metastatic non-small cell lung cancer,
and phase I clinical trials commenced in 2016 [86].

5.2. Off-Targeting Risks: CRISPR/Cas9 Mechanistic Hurdles

ZFNs, as used in the studies by Perez et al. [83] and Tebas and colleagues [83], are recognized
as relatively low-risk for causing off-target mutations when SSB-inducing nickase domains are
employed [87]. This drives the cellular repair machinery to repair the break using a region of
homology, thus eliminating the risk of unwarranted DNA modifications at off-target sites [87].
In stark contrast, CRISPR/Cas9-RGNs have been critiqued for the number of genome locations
that, depending on the construction of the gRNA and version of Cas9 protein, are potential
off-targeting candidates [88–90]. However, there is also a CRISPR-Cas9 counter-part, CRISPR-D10A
Cas9, which has single-stranded nickase activity, akin to ZFN nickases. CRISPR-D10A Cas9 results in
no off-target activity, unlike Cas9 alone [91,92]. If Cas9 cleavage is triggered in an unintended location,
chromosomal aberrations [93], the down-regulation of a tumor-suppressor gene or the up-regulation
of an oncogene [94], or an unforeseen deleterious mutation in a housekeeping gene [95] could be
realized post-reintroduction of the edited cells to a patient, where all such events could lead to the
establishment of unregulated tumor growth. Off-target effects have been shown to occur when five
mismatches exist between the gRNA and the target site [88], but more recently a study by Wang
and colleagues identified an off-target site where the target sequence (within the human SH2D1A
gene) differed by 13 bases to the gRNA, but this may have been due to single-nucleotide skipping
establishing only a single mismatch [91]. A number of studies have shown that mismatches between
the gRNA and target site when using CRISPR/Cas9-RGNs may be tolerable at the PAM-distal, but not
the PAM-proximal end of the crRNA-portion of the gRNA [74,96–98]; however, Fu et al. [88] found
that mismatches throughout the length of the gRNA are well tolerated when targeting multiple sites on
the EGFP reporter gene within human cells (see Figure 1 for PAM-proximal/PAM-distal orientations).
Fu and colleagues also targeted four endogenous human genes, VEGFA, EMX1, RNF2, and FANCF
and concluded that VEGFA was highly susceptible to off-target mutations. Some gRNAs used to
target VEGFA in this study differed in sequence at the PAM-proximal end, and still led to mutations
in the protein-coding region of the VEGFA gene [88]. Others have also noted a dosage-dependent
relationship between Cas9:gRNA and off-target activity [91], where a reduction in the concentration
or Cas9:gRNA complexes transfected into the cells greatly increases the cleavage specificity [90].
These findings indicate that certain aspects of off-targeting activity have yet to be defined, with regards
to the mismatch frequency and specific distribution between target sequence and gRNA, including
investigations into the tolerance of specific RNA:DNA base-pairing interactions [91]. This corroborates
a need of vigilance when utilizing CRISPR/Cas9-RGNs in vivo and suggests that differing regions of
the human genome may be more susceptible to off-target effects of CRISPR/Cas9-RGNs than others.

5.3. Suppression of NHEJ and Induction of HDR

In addition to controlling off-target activity in CRISPR/Cas9-RGNs, the overall efficiency of the
HDR pathway must be optimized to ensure precise genetic change at DNA sites of interest. One method
currently being investigated is the suppression of NHEJ in cells targeted for gene editing [99,100].
Li et al. discovered a deficiency in NHEJ activity in HMGA2-expressing cells and suggested the
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overexpression of HMGA2 as an NHEJ-suppressor; however, an underlying oncogenic nature of
HMGA2 prevents the overexpression of this gene as a method for inducing HDR over NHEJ for clinical
applications [99]. In a study by Chu and colleagues, a main proponent in the NHEJ pathway, DNA
Ligase IV, was silenced in order to assess the effect of this silencing event on CRISPR/Cas9-induced DSB
repair [100]. Chu et al. determined that DSB repair is in favor of HDR, and that NHEJ is suppressed
when DNA Ligase IV has been silenced, thus providing a tangible method for enhancing precise
editing events in human cells [100]. Furthermore, recent investigations have been concerned with
increasing HDR activity by implementing modifications to the exogenous correction template [81,101].
In cases where mutations occur in the heterozygous form, use of an exogenous correction template
may not be necessary due to the efficiency of HDR when an endogenous region of homology exists,
namely the unaffected allele [63]. This endogenously induced HDR cannot be employed in cases
where mutations exist in the homozygous form, making correction templates necessary for these cases.
In previous studies, the correction template utilized has varied in multiple aspects, including symmetry
around the Cas9 cut site [63,81,102]. In a thorough study by Richardson and colleagues, a number of
single-stranded donor templates were analyzed for HDR efficiency [81]. Richardson et al. identified
a process at the Cas9 cut site whereby the PAM-distal strand is available for correction template
interaction [81]. Upon this discovery, various designs of correction templates with respect to the
Cas9 cut site were posited, and further investigation led to the conclusion that asymmetric donor
DNA (36 bp PAM-distal, 91 bp PAM-proximal), complimentary to the non-target strand, yields the
highest HDR frequencies [81]. Going forward, similar exogenous correction template designs should
be verified in conjunction with CRISPR/Cas9-RGNs for the correction of deleterious mutations in LSD
patient-derived cell lines.

5.4. CRISPR/Cas9 Application to LSDs

Although underlying disease-specific challenges must be evaluated and addressed accordingly,
this previously discussed CRISPR/Cas9 system in conjunction with iPSCs is a practical method of
treatment for the majority of LSDs. A number of LSDs qualify as candidates for gene editing due to the
specific disease (a) resulting from mutations in a single gene; (b) having mechanisms in place whereby
supplemental lysosomal enzymes can be taken up and utilized in target tissues; and (c) having limited
available therapies. For example, Sanfilippo B syndrome is a rare LSD caused by the mutations in
N-acetyl glucosaminidase (NAGLU) and characterized by progressive neurodegeneration with no
current effective treatment [103]. Since Sanfilippo B syndrome is monogenic, and has been shown
to utilize the aforementioned cross-correction pathways, CRISPR/Cas9-RGNs could be used to
target private mutations in NAGLU using patient-derived iPSCs, followed by differentiation to
neural progenitors and intracerebral transplantation back to the patient for disease amelioration [60].
Pompe disease is caused by mutations in the gene encoding the lysosomal hydrolase acid-alpha
glucosidase and is characterized by progressive myopathy [104]. Patients with Pompe disease can
benefit from the ERT Myozyme®; however, ERT (as discussed in Section 1.2) is an expensive, lifelong
treatment. HSCT using CRISPR/Cas9 corrected HSCs derived from the patients themselves would
allow for alleviation of the disease symptoms in patients with Pompe disease, for HSCT has been
described as a successful regenerative therapy in mouse models by van Til et al. [105]. A third
LSD that is a potentially suitable target for this technique is Niemann-Pick A disease due to the
monogenic nature and successful downstream applications of neural progenitors via intracerebral
transplantation in mouse models [60]. Although not explicitly discussed here, many other LSDs are
justifiable targets for this aforementioned regenerative therapy using CRISPR/Cas9-RGNs and iPSCs
(see Table 1 for examples).

5.5. LSD-Specific Gene Editing Hurdles

In cases where many disease-causing private mutations exist for a particular disease, CRISPR/
Cas9-RGNs must be individually designed and tested for that patient’s genotype. This specificity
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is exacerbated when genotypes exist in the compound heterozygous form, thus calling for multiple
applications of CRISPR/Cas9-RGNs to target and correct the underlying mutations or more
complicated CRISPR/Cas designs, such as the piggyBac transposon method [61]. Correction of both
existing mutations may not be necessary, however, in cases where the disease threshold is low and
requires only a small percentage of normal enzyme activity, such as in Hurler syndrome where patients
with as little as 0.13% normal alpha-L-iduronidase activity results in a mild phenotypic form [25]. In GD,
the most common LSD, the use of CRISPR/Cas9 gene editing is particularly challenging, for GBA1
implicated in GD shares 96% sequence similarity with a pseudogene (GBAP1) 16 kb downstream [106].
In the reverse direction, the sequence of GBAP1 constitutes part of the coding sequence of metaxin
1 (MTX1), an essential gene that encodes a mitochondrial outer membrane protein. This further
complicates the use of CRISPR/Cas9-RGNs for targeting of GBA1 because of the high probability
of also targeting GBAP1/MTX, which could result in a decreased efficiency of GBA1 editing and
disruption in the MTX1 sequence [107,108]. In addition to the complexities of gene editing methods
due to diversity of disease-causing mutations, heterozygosity and other aforementioned hurdles,
downstream applications of mutation-corrected cells must still be addressed. Tay Sachs disease (TSD),
an LSD resulting from mutations in HexA, the gene that encodes hexosaminidase A, initially seems
to be a suitable candidate for CRISPR/Cas9 gene editing based on the monogenic nature of the
disease. However, studies that have shown variability in efficacy of cross-correction mechanisms
in this disease pathway indicate that other downstream methods may need to be developed and
employed to overcome the disease state in vivo [109–112]. In addition, varied reversibility of disease
progression in TSD patients may be seen post-treatment with CRISPR/Cas9 edited cells, depending
on the age and disease severity at the time of treatment [113]. These hurdles must also be taken into
consideration when evaluating the suitability of gene therapies for other LSDs.

6. Conclusions

In conclusion, CRISPR/Cas9 is an effective and relatively inexpensive gene editing technique that
shows promise as a novel treatment option for genetic disease where currently available treatment
options fall short. This system has been proven to correct mutations in vitro associated with diseases,
such as β-thalassemia and cystic fibrosis, and is currently being used in vivo through phase I clinical
trials for cancer therapy and the reduction of viral load in patients with HIV. Many LSDs arise from
mutations in a single gene, have mechanisms in place for the transfer of lysosomal enzymes from
edited cells post-transplant and currently lack alternative treatment options. The use of mutation
correction in iPSCs through CRISPR/Cas9 gene editing and subsequent differentiation of these cells
to progenitors for engraftment can overcome the lack of therapeutic options currently available for
patients with LSDs. Although there are underlying issues in this gene editing system that must be
considered and overcome, novel methods to improve this system are rapidly emerging.
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