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ABSTRACT

Single particle analysis, which can be regarded as an
average of signals from thousands or even millions of
particle projections, is an efficient method to study the
three-dimensional structures of biological macro-
molecules. An intrinsic assumption in single particle
analysis is that all the analyzed particles must have
identical composition and conformation. Thus specimen
heterogeneity in either composition or conformation has
raised great challenges for high-resolution analysis. For
particles with multiple conformations, inaccurate align-
ments and orientation parameters will yield an averaged
map with diminished resolution and smeared density.
Besides extensive classification approaches, here based
on the assumption that the macromolecular complex is
made up of multiple rigid modules whose relative orien-
tations and positions are in slight fluctuation around
equilibriums, we propose a new method called as local
optimization refinement to address this conformational
heterogeneity for an improved resolution. The key idea is
to optimize the orientation and shift parameters of each
rigid module and then reconstruct their three-dimen-
sional structures individually. Using simulated data of
80S/70S ribosomes with relative fluctuations between the
large (60S/50S) and the small (40S/30S) subunits, we
tested this algorithm and found that the resolutions of
both subunits are significantly improved. Our method
provides a proof-of-principle solution for high-resolution

single particle analysis of macromolecular complexes
with dynamic conformations.

KEYWORDS cryo-electron microscopy, single particle
analysis, conformational heterogeneity, rigid module, local
optimization refinement

INTRODUCTION

Single-particle analysis (SPA) of electron cryo-microscopy
(cryo-EM) has become an efficient method to reveal struc-
tural information of macromolecular complexes. In theory, it
is possible to solve a 3 Å resolution structure when thou-
sands of single particle images are averaged (Henderson,
1995). Nowadays, with improved detectors and image pro-
cessing techniques, the prediction comes true with not only
large, highly symmetrical viruses (Wang et al., 2014; Zhang
et al., 2010) or asymmetrical ribosome (Fischer et al., 2015),
but also small membrane proteins (Liao et al., 2013)
(TRPV1), whose structures were resolved at near-atomic
resolutions.

Besides the rapid progress in pushing resolution, how-
ever, intrinsic sample heterogeneity in composition or con-
formation is becoming a threshold stopping us obtaining
higher-resolution structure. The current solution to deal with
both heterogeneity problems is to divide the data set into
different classes with each class corresponding to one
homogenous composition/conformation (Leschziner and
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Nogales, 2007). A couple of classification methods have
been developed, such as the normal mode analysis (NMA)
method that uses simulated models as references for multi-
reference supervised classification (Brink et al., 2004; Jin
et al., 2014), 3D multivariate statistical analysis (MSA) that
projects a 3D mask of the area with the most variance to a
series of 2D images in the same orientation and performs
classification focusing on the masked highly varied regions
(Penczek et al., 2006a; Penczek et al., 2006b; Zhang et al.,
2008), and a Bayesian based 3D classification method
(Scheres, 2012b). These classification methods can work
well upon the assumption that the heterogeneous sample
only contains a finite number of compositions/conformations.

In practice, for many macromolecular complexes that
exhibit heterogeneity with dynamic conformations and thereby
an infinite conformational states, the above classification
methods may not produce a good result. A typical scenario is
that the macromolecular complex comprises a number of
stable modules (such as domains, subunits, or sub-com-
plexes) that can be treated as rigid bodies, the overall flexi-
bility of the complex is due to the dynamic slight fluctuations of
the relative orientations and positions between rigid modules.
In these cases, the conventional SPA approach will yield a 3D
reconstruction with smeared densities (i.e. a decreased res-
olution) because SPA approach assumes that all the particles
within a class have an identical structure while this is not
correct for such flexible complexes and the assigned
parameters could be inaccurate for all of the modules. In
addition, conventional classification approaches are also not
able to classify the infinite continuous conformations of the
complex into a finite number of discrete states with enough
homogeneity within a class. Examples for these kinds of
macromolecular complexes include the ribosome containing
two subunits with relative motion (Bai et al., 2013) and the
splicesome with substantial flexibility among subunits that is
still poorly resolved by cryo-EM SPA approach (Azubel et al.,
2004). Besides developing new sample preparation and
freezing procedures to reduce the flexibility and heterogeneity,
there is a great need of new image-processing algorithms to
adequately treat the dynamic conformation problem.

Here we report a new image-processing algorithm that
can yield a better resolution by resolving the accurate ori-
entation and shift parameters of each individual structural
module respectively. Since the orientation and shift param-
eters of each module are searched within a local range and
only the local area of the particle image is counted, we call
this method as the local optimization refinement algorithm
(LO-refinement). In a test case, we used the ribosome (80S
or 70S) that has two rigid modules (60S/50S or 40S/30S)
with the fluctuating relative orientations and positions to
prove the concept of this method.

THEORY AND ALGORITHM

The LO-refinement is based on the assumption that the
imaged macromolecular complex comprises a number of

rigid modules with slightly varying relative orientations and
positions between different modules. The relative orientation
and position between any two modules can fluctuate due to
module rotation and shift. The goal of the LO-refinement is to
resolve a higher resolution structure of each rigid module.

In initial step, we use conventional SPA routine to process
the raw images of particles and obtain a refined 3D map and
full set of preliminary alignment parameters. The resolution
of the refined map is restrained due to the inaccuracy of the
alignment that is caused by the heterogeneity of the parti-
cles. Then we separate the refined map into different mod-
ules according to prior knowledge under the assumption that
the resolution of the refined map has been high enough to
discriminate different modules. Starting from the preliminary
alignment parameters, we focus on a single rigid module,
optimize its orientation and position and thereafter compute
a new reconstruction with the refined parameters. Since the
orientation and position of the target module is now deter-
mined more accurately, the resolution of the final recon-
structed map is improved for that module but likely
decreased for other modules due to the even lower accuracy
of their parameters. By applying the same operation proce-
dure to each individual module, the resolutions of all the
reconstructed modules could be improved. To optimize the
orientation of each individual module, we consider all the
possible positions and orientations of the target module
within a local range that is caused by conformational
dynamics in 3D space and then search the optimized
parameters by maximizing the cross-correlation coefficient
(CCC) between the projections of the 3D models and the raw
particle image. The main conception of the method is shown
in Fig. 1.

The rationality of using cross-correlation coefficient

The cross-correlation coefficient (CCC) of two images f 1(r j)
and f 2(r j) is defined as (Frank, 1996):

ρ12 =
∑J

j=1 f1(rj) --\f1[
� �

f2(rj) --\f2[
� �

∑J
j=1 [ f1(rj) --\f1[] 2 ∑J

j=1 [ f2(rj) --\f2[] 2
n o1=2

ð1Þ

Where, f (rj) is the value of the j-th pixel in the image of J

dimension, \fi[ =1=J ∑
J

j=1
fi(rj); i = 1,2. This formula is

composed of a numerator representing the similarity
between two images and a denominator for normalization,
resulting -- 1�ρ12 � 1.

Assuming that a molecular complex comprises two
modules A and B, the projection of the whole complex f (r j) is
the summation of the projections of two modules fA(r j) and
fB(r j).

f (r j) = fA(r j) + fB(r j) ð2Þ
To optimize the orientation of module A, for every exper-

imental particle image f1(r j), we have
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f1(r j) = f1A(r j) + f1B(r j) ð3Þ
At the same time, we can generate a series of simulated

model by setting every possible position and orientation of
module A within a local region around its preliminary
parameters and get the simulated projections f2(r j), we have

f2(r j) = f2A(r j) + f2B(r j) ð4Þ
Where, f2A(r j) is the projection of module A with adjusted
position and orientation and f2B(r j) is the projection of module
B with its preliminarily determined parameters of orientation
and shift.

The cross-correlation coefficient ρ12 between the simu-
lated projection f2(r j) and corresponding experimental parti-
cle image f1(r j) can be computed by using formula (1), and
the numerator of ρ12 can be written as

∑
J

j=1
f1A(rj) --\f1A[
� �

f2A(rj) --\f2A[
� � ð5Þ

+ ∑
J

j=1
f1A(rj) --\f1A[
� �

f2B(rj) --\f2B[
� � ð6Þ

+ ∑
J

j=1
f1B(rj) --\f1B[
� �

f2B(rj) --\f2B[
� � ð7Þ

+ ∑
J

j=1
f1B(rj) --\f1B[
� �

f2A(rj) --\f2A[
� � ð8Þ

Where term (5) represents the cross-correlation of projections
between experimental and simulated module A. Searching
the optimized parameters of module A is equivalent to maxi-
mizing this term. Term (6) represents the cross-correlation of
projections between experimental module A and pre-deter-
mined module B, which is invariant during optimizing. Term (7)
represents the cross-correlation of projections between
experimental and pre-determined module B, which is also
invariant. Term (8) represents the cross-correlation of projec-
tions between experimental module B and simulated module
A, which varies during searching the parameters of module A.
However, since module A and module B have different
structures, shapes, positions and orientations, the variance of
Term (8) is small during the optimization of module A, espe-
cially when applying an appropriate mask to module A. As a
result, maximizing ρ12 is approximately equivalent to maxi-
mizing term (5), which is our target. That is to say, although
the information of an individual module can not be explicitly
separated from that of other modules within one particle
projection, maximizing the cross-correlation coefficient
between the experimental and simulated whole projections to
search the parameters of the target module can, with most
probability, yield more precise parameters for the orientation
and position of target module in the experimental projection.

Search range of the target module orientation
and position

For the orientation of a rigid module, there are five param-
eters to be optimized, three orientation angles φ, θ, ψ and

two in-plane translations x, y. Here, φ, θ define the projection
direction in 3D space, ψ is the in-plane rotation angle and x,
y determine the position of the projection in the plane. In an
experimental projection, for molecular complexes with lim-
ited module motion, the optimal parameters of the target
module should be near the preliminarily determined global
ones from conventional SPA procedures, resulting in a
constrained space for optimizing those five parameters (φ, θ,
ψ, x, y) of the target module.

Here, for convenience, we use the coordinate system with
a fixed object at the origin and a moving camera on the
surface of a unit sphere (Fig. 2). As shown in Fig. 2A, sup-
posing that the camera plane is always perpendicular to the
projection direction, the position of the camera plane is
defined by the projection direction with two spherical angles
φ and θ. And the in-plane rotation angle ψ of the camera is
defined as the angle between the camera and the meridian
AB with ec reflecting the final orientation of the camera. The
projection direction (φ, θ) can be represented by the unit
vector er with the following formula,

er = (sin(θ) cos(φ) , sin(θ) sin(φ) , cos(θ)) ð9Þ
In Fig. 2B, OB is the preliminary projection direction (φ0,

θ0). OC is a projection direction (φi, θi) near OB. For the pre-
determined preliminary projection direction er0 and the
projection direction eri within the search range, the span
angle α by these two directions can be determined with the
formula,

α = arccos [ er0 � eri ] = arccos [ sin(θ0) sin(θi) cos(φ0 --φi)

+ cos(θ0) cos(θi) ]

ð10Þ
Thus, the range of optimization search for projection

direction (φi, θi) can be confined locally with a pre-defined
maximum span angle α0 as follows,

(φi , θi) | arccos sin(θ0) sin(θi) cos(φ0 --φi)½f
+ cos(θ0) cos(θi)� �α0 , (φi , θi) 2 Dg ð11Þ

Here, D is a set of evenly distributed projection directions
and can be generated by SPIDER command VO NEA.

During the projection direction changed, the apparent in-
plane rotation of the camera ψ in the above defined coordi-
nate system will change and the center of the search region
of the in-plane rotation angle ψi should be recomputed at
every new projection direction (φi, θi). As shown in Fig. 2B,
the way to move camera from B to C with zero in-plane
rotation of camera in the coordinate system of camera itself
is to keep its angle with the arc BC unchanged during
movement. As a result, the apparent in-plane rotation angle
ψi in our defined coordinate system is changed and can be
determined with the following relation,

Ψi --Ψ0 =\DCE --\DBC ð12Þ
By considering every possible situation on a sphere, we

obtain:
When |φi − φ0| ≤π
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Experimental 
particle with 
parameter  
(φ0, θ0, Ψ0, x0, y0)  

Aligned to the shifted 3D model
according to the project direction

Comparison using CCC

Projected with
parameters around

(φ0, θ0, 0, 0, 0)

Projected with
(φ0, θ0, 0, 0, 0)

Divided into modules and
shifted with the target
module in the center

Combine

Reconstruction using optimized 
parameters (φ, θ, Ψ, x, y)

Optimize  another module in the
same way and then combine all

optimized parts into a final model

Iteration

(φ0, θ0, 0, 0, 0)

A model with the target
module in an improved

resolution

With pre-determined
orientation (φ0, θ0, 0, 0, 0)

• • •

• • •

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll

49

EM reconstruction algorithm for flexible complex RESEARCH ARTICLE



Ψi =Ψ0 -- (π --\B --\C)(φi --φ0)= |φi --φ0 | ð13Þ
When |φi − φ0| >π

Ψi =Ψ0 + (π --\B --\C)(φi --φ0)= |φi --φ0 | ð14Þ
Where, ∠B and∠C are the internal angles of spherical
triangle Δ ABC that is composed by great circle arcs on a
sphere. In case of that A, B and C do not constitute a triangle

but locate on a same great circle arc, a simple relationship
can be obtained with ψi = φ0 + ψ0 − φi. Finally, the search
range of ψ for a particular (φi, θi) is

fΨi + d1n | n 2 Z , -- t1 � n� t1g ð15Þ
Where d1 is the search step size and t1 is the number of
search steps.

The in-plane shift parameters x and y of the camera are
exhaustively searched by

fd2n | n 2 Z , -- t2 � n� t2g ð16Þ
Where d2 is the search step size and t2 is the number of
search steps.

Over all, we optimize the orientation of the target module
by searching all five parameters (φ, θ, ψ, x, y) in a confined
range defined by (11), (15) and (16).

Procedure of local orientation optimization

We propose the following procedure to optimize the orien-
tation of the target module (Figs. 1, 3). Firstly, the preliminary
model reconstructed from the conventional SPA procedure is
divided into two parts, the target module to be optimized and
the remaining region, by using a pre-determined mask. Then
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Figure 2. Coordinate system used for searching the optimized orientation of the target module. (A) Definition of the position

and orientation of a moving camera in the coordinate system with the object fixed at the origin. The camera plane is assumed

perpendicular to the projection direction (OB). Therefore, the position of the camera can be defined by the angle pair (φ, θ) or the

spherical unit vector er, and its relative in-plane rotation can be defined by the angle ψ between the camera and the meridian (AB).

(B) With the preliminary projection direction of OB, the search range of the camera direction is defined by a cone with the semi-angle

α0 around the preliminary direction OB. When the position of the camera changes from B to C, the direct way for the camera’s moving

is along the great arc BC by keeping its angle with the arc unchanged (parallel condition) during move. The difference between the

relative in-plane rotation angles ψ0 and ψi is equal to the difference between the angles of ∠DCE and ∠DBE.

Figure 1. Schematic illustration of the LO-refinement

method. The model reconstructed from the last iteration of

conventional SPA is split into modules. Then the model is

shifted with the target module in the center. Thereafter, the

target module is projected with the parameters around the

preliminary determined ones while the other module is pro-

jected with the preliminary determined parameters. Then the

projections are combined into a set of simulated projections. A

comparison using cross correlation coefficient (CCC) between

the simulated and experiment projections is performed and only

the region inside the mask of the target module is counted. The

refined parameters of the target module are determined with the

highest CCC. A new reconstruction is performed using these

newly refined parameters. The same procedure is performed for

the other modules and all the refined modules are combined

together to yield an update model for the next iteration.

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll

50

RESEARCH ARTICLE Hong Shan et al.



the entire model is shifted so that the center of the target
module is placed at the center of the volume/box. The
parameters (φ, θ, ψ, x, y) of all experimental particles from
the conventional SPA procedure are transformed according
to the model shift, to make all particle aligned with the shifted
model, thereby yielding the preliminary parameters of the
target module for every experimental image. The reason for
placing the target module at the origin is to keep the in-plane
x-y shift search independent from the orientation angles
search. This has the advantage of saving computation
resources. In addition, 3D reconstruction of the target mod-
ule can be improved due to a better tolerance for angular
parameter errors at the center area (Zhang and Ren, 2012).

With the preliminary parameters for each particle, all of
possible parameters defined by (11), (15) and (16) are
considered for the target module. The target module is
transformed with all possible orientation parameters (φ, θ, ψ,
x, y) and then combined together with the rest part of the
model to generate a series of simulated projections, which
are compared with the experimental image by using CCC
defined by (1). The optimized orientation parameters of the
target module for each particle are determined according to
the highest CCC. All of the operations (rotations and
shift/translations) will be combined to minimize interpolation
errors. With the optimized parameters for target module, a
new and improved 3D reconstruction can be generated
using the conventional 3D reconstruction method (e.g. WBP,
SIRT or Fourier method).

Here we develop two procedures to search the optimized
parameters of the target module. The first one is to perform
an exhaustive search of angle parameters (φ, θ, ψ) and shift
parameters (x, y) simultaneously, which requires to generate
simulating images with every combination of angle and shift
parameters to make comparison (Fig. 3A). The second
procedure is to separate shift parameter searching from
angle parameter searching (Fig. 3B). We randomly choose n
sets of angle parameters within the constriction defined by
(11) and (15) and then search all possible shift parameters
defined by (16). As a result, n sets of optimized shift
parameters are obtained, which are averaged to reduce
error. Thereafter, an exhaust search of the angle parameters
within the defined ranges is performed with the pre-opti-
mized shift parameters.

RESULTS

To test our LO-refinement algorithm, we generated two
datasets, using the 80S and 70S ribosomes as the test
samples. The relative orientation and position between the
large subunit and the small subunit are randomly varied
within a small range. The first dataset contains projections of
ribosomes (80S, PDB code: 4V7H) with various levels of
Gaussian noises added to yield signal-to-noise ratios (SNR)
of 0.25, 0.11 and 0.06 (Fig. 4A). The second one contains
the ribosome (70S, PDB code: 4V7C) projections that are
generated by using the electron microscopy simulation

software InSilicoTEM (Vulovic et al., 2013), with the effects
of contrast transfer function (CTF) and camera taken into
account (Fig. 4B).

Reconstruction and LO-refinement for the datasets
with Gaussian noise

With the conventional SPA procedure, the 3D density map of
the 80S ribosome was reconstructed from the datasets with
Gaussian noise. The resolution was assessed at FSC = 0.5
by calculating the FSC curve between the reconstructed
map and the ground-truth map generated from the PDB file.
For the dataset with SNR of 0.25, the conventional SPA
procedure produced a final reconstruction with the resolution
of 11.5 Å (Fig. 4C). For the dataset with SNR of 0.11, the
resolution of the final density map was assessed to be at
13.5 Å (Fig. 4D). However, for the dataset with SNR of 0.06,
our conventional SPA procedure could not yield a good
reconstruction due to the extremely low SNR. As a result, in
the following LO-refinement procedure, only the datasets
with SNR of 0.25 and 0.11 were tested.

For the small subunit in the dataset of SNR 0.25,the LO-
refinement method yielded a less-noisy density map that fits
better with the ground-truth structure in comparison with the
reconstruction from the conventional SPA procedure
(Fig. 5A). The LO-refinement also improved the resolution
(FSC = 0.5) from 13.4 Å to 11.2 Å for the exhaustive
searching strategy and from 13.4 Å to 11.1 Å for the separate
searching strategy (Fig. 5B and Table 1). The improvement
by LO-refinement method was further analyzed and con-
firmed by ResMap (Kucukelbir et al., 2014) that computes
the local resolution of the reconstructed map. It is clear to
observe that the local resolution of the small subunit is sig-
nificantly improved after LO-refinement while that of the large
subunit is compensated as we predicted (Fig. 5C).

For the large subunit in the dataset of SNR 0.25,the LO-
refinement method also yielded a less-noisy density map
with a better fit to the ground-truth structure (Fig. 5D) and
improved the resolution (FSC = 0.5) from 11.1 Å to 10.6 Å for
the exhaustive searching strategy and from 11.1 Å to 10.4 Å
for the separate searching strategy (Fig. 5E and Table 1),
which is further proved by local resolution analysis using
ResMap (Kucukelbir et al., 2014).

For the dataset of SNR 0.11, we also observed a signifi-
cant improvement by using the LO-refinement method. The
resolution (FSC = 0.5) of the small subunit was improved
from 15.5 Å to 12.8 Å for the exhaustive searching strategy
and from 15.5 Å to 12.2 Å for the separate searching strategy
(Fig. 6A–C and Table 1). And the resolution (FSC = 0.5) of
the large subunit was improved from 13.1 Å to 11.7 Å for the
exhaustive searching strategy and from 13.1 Å to 11.6 Å for
the separate searching strategy (Fig. 6D–E and Table 1).

We observed that, after LO-refinement, the quality of the
density map and the assessed resolution at FSC = 0.5 for
the target subunit were significantly improved while those for
the non-target subunit became worse (Figs. 5C, 5F, 6C and
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6F). The reason for this observation is that the LO-refine-
ment procedure increases the accuracy of the parameters
for the target module and thereby at the same time the
accuracy of those for the non-target module is decreased

due to the varied relative position and orientation between
the target (refined) and non-target modules (not refined).

We also observed that, LO-refinement improves the
reconstruction more significantly for the small subunit than

A B
Preliminary model and alignment parameters

 from normal SPA

Target module Other modules

Split preliminary model by modules, move to the center of the
target module, and then align experiment particles accordingly

Prepare local search 
parameter sets (φ, θ, Ψ, x, y)

Project with all
parameter sets

Project with preliminary
parameters

Combine to generate a set of
simulated  projections

Compare with experimental image by CCC to
search for the real parameters of target module.

Align and reconstruction with new
parameters of the target module

Model with target
module resolved

Cycle with particles in a 
projection classCycle with all the 

projection classes

Preliminary model and alignment parameters
 from normal SPA

Target module Other modules

Split preliminary model by modules, move to the center of the
target module, and then align experiment particles accordingly

Combine to generate a set of simulated projections

Randomly select n sets of
angle parameters (φ, θ, Ψ)

For one angle parameter
set, project with all shift

parameter (x,y)

Prepare local search 
parameter sets (φ, θ, Ψ, x, y)

Project with preliminary
parameters

Compare with experimental image by CCC to
search for the shift parameters of target module

Average n sets of shift parameters to obtain an
optimized shift parameters 

With known shift parameters, search angle
parameters in the same way

Cycle 
for n 
sets

Align and reconstruction with new
parameters of the target module

Model with target
module resolved

Cycle with particles in a 
projection classCycle with all the 

projection classes

Figure 3. Diagram showing the local optimization procedures with two different strategies. (A) The procedure for searching the

shift (x, y) and angle parameters (φ, θ, ψ) simultaneously and exhaustively. (B) The procedure for searching the shift (x, y) and angle

parameters (φ, θ, ψ) separately.
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for the large subunit (Table 1). This is likely due to that the
large subunit has more weight to contribute to the final pro-
jection, leading to a smaller error of orientation determina-
tion. As a consequence, the room for improvement in the
accuracy of orientation determination is smaller for the large
subunit than for the small subunit.

Furthermore, we found that the two different optimization
strategies yield different reconstruction resolutions for the

same target module (Table 1). The separate searching
strategy (Fig. 3B) had a slightly better result than the
exhaustive simultaneous searching strategy (Fig. 3A). One
reason for this is that for the separate searching strategy the
final shift parameters are the average of ten optimized val-
ues from ten randomly selected trial angles, which over-
comes the limitation of sampling only in integer steps,
thereby increasing the accuracy of shift parameter

Without noise SNR = 0.25 SNR = 0.11 SNR = 0.06
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Figure 4. Simulated datasets and their FSC convergences during reconstruction refinements by conventional SPA

procedure. (A) Every two columns represent the simulated projections of artificial ribosome with Gaussian noise added in different

SNR levels. The left two columns represent the original projections. (B) Simulated projections of artificial ribosome generated from

InSilicoTEM (Vulovic et al., 2013) in different defocus from −2.0 μm to −4.0 μm. (C), (D) and (E) The FSC curves of those simulated

datasets ((C) is for the dataset in (A) with SNR of 0.25, (D) for the one in (A) with SNR of 0.11 and (E) for the one in (B)) during

reconstruction refinement iterations by conventional SPA procedure. The FSC was calculated between the reconstructed map and

the ground-truth map generated from PDB files (PDB code 4V7H for the datasets with Gaussian noise in (A), and PDB codes 4V7C

for the dataset generated from InSilicoTEM in (B)). The final assessed resolutions at FSC = 0.5 by the conventional SPA procedure

are indicated and also shown in Table 1.
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determination. It is worth noting that, the separate searching
strategy is also more efficient, requiring less intensive com-
putation than that of the exhaustive simultaneous searching
strategy.

Reconstruction and optimization for the datasets
generated by InSilicoTEM

For the 58,542 particles generated by InSilicoTEM, the
conventional SPA procedure yielded a final reconstruction
with a resolution of 9.3 Å (Fig. 4E). Further LO-refinement
yielded a less-noisy density map with a better fit to the
ground-truth structure in comparison with the reconstruction
from the conventional SPA procedure for both the small and
the large subunits (Fig. 7A and 7D). The resolution (FSC =
0.5) of the small subunit was improved from 9.7 Å to 9.1 Å for
the exhaustive searching strategy and from 9.7 Å to 8.9 Å for
the separate searching strategy (Fig. 7A–C and Table 1).
And the resolution (FSC = 0.5) of the large subunit was
improved from 9.1 Å to 8.9 Å for the exhaustive searching
strategy and from 9.1 Å to 8.7 Å for the separate searching
strategy (Fig. 7D–E and Table 1). It should be noted that, the
apparent inconsistency between all the reconstructed maps
and the ground-truth structure in low frequency (Fig. 7B and
7E) is likely due to the insufficient defocus groups during
dataset generation using InSilicoTEM.

In addition, similar to the above datasets with Gaussian
noise, besides a better reconstruction resolution, the separate
searching strategy here is also faster than the exhaustive
simultaneous searching strategy (Fig. 7C and 7F, Table 2).

All of above, for the dataset close to experimental electron
microscopic conditions with CTF modulation and camera
effect, the LO-refinement algorithm can still work effectively
to improve the map quality and the reconstruction resolution
of the target module.

DISCUSSION

The conventional method in single particle analysis of
heterogeneous sample with multiple conformations is to
perform 2D or 3D classifications to try to separate different
conformations into independent classes. The success of the
conventional method is based on the assumption that the
target macromolecular complex could only exhibit a small
number of conformations. However, this assumption is
challenged by the fact that many macromolecular complexes
behave in a dynamic equilibrium with continuous confor-
mational changes.

The work presented herein describes an image-process-
ing algorithm, named as local optimization refinement (LO-
refinement), to improve the reconstruction quality and reso-
lution in single particle analysis of macromolecular com-
plexes with infinite conformations. The assumption of LO-
refinement is that the macromolecular complex can be

treated as a combination of multiple modules, with each
module exhibiting a relatively rigid conformation within our
interested resolution. And the multiple conformations of the
complex can be regarded as slightly varied relative positions
and orientations among different rigid modules. Although the
assumption is demanded, we realize that it reflects the nat-
ure of many macromolecular machines and is applicable to a
large number of cases.

The main idea of the LO-refinement procedure is to focus
on each rigid module and optimize its orientation and posi-
tion individually. By maximizing the cross correlation coeffi-
cient (CCC) between the experimental projection and a
series of simulated projections that are comparable to the
experimental projection with varied orientation and position
of the target module, we could obtain optimized parameters
to improve the reconstruction of the target module. During
the calculation of CCC, we apply a mask around the target
module to reduce the contribution from the non-target mod-
ules, thereby increasing the accuracy of parameter deter-
mination for the target module. For parameters searching,
we used two strategies, the exhaustive search for both
angles and shifts and the separate search for angles and
shifts, which is similar to the previously reported image
alignment algorithms (Joyeux and Penczek, 2002). For the
reconstruction step, we move the focused part to the center
of the volume where the resolution is always higher than the
surrounding since a better tolerance for the errors of angular
parameters.

For a proof of principle of our LO-refinement procedure,
we generated two types of datasets using the structures of
ribosomes with two relative rigid modules (large and small
subunits). One dataset incorporated Gaussian noises of
different levels into the projections. The other dataset was
generated using the program InSillicoTEM (Vulovic et al.,
2013) to incorporate near experimental microscopic effects
including contrast transfer function and detective quantum
efficiency of camera. Testing the LO-refinement procedure
against both types of datasets showed significant
improvements on both the map quality and the assessed
resolution.

Besides the ribosome molecules with two assumed rigid
modules, this LO-refinement procedure could in principle
be applicable to the complexes with multiple modules. In
these cases, the non-target modules can be treated as one
integral part with their parameters of orientations and
positions unchanged. With this procedure, all the modules
of the complex can be reconstructed into a better resolu-
tion. Furthermore, it is clear that this LO-refinement pro-
cedure can be iterated to further optimize the parameters of
all the target modules and improve the resolutions of their
reconstructions.

It should be pointed out that our LO-refinement procedure
requires the modules of a complex in rigid conformations
within a specific resolution. In reality, various degrees of
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conformational variations likely exist for any given module,
which can be further affected by the changes between
modules, especially at higher resolutions. This may limit the
improvement by this LO-refinement procedure to achieve
atomic resolution in some cases. Nonetheless, in many
cases the rigid module assumption is valid to atomic reso-
lutions, from extensive experience learned from the practice
of multi-domain/module non-crystallography symmetry
(NCS) averaging in X-ray crystallographic studies. The
challenge may be the appropriate identification of the rigid
modules, which could be facilitated by the recently reported
normal mode analysis method (Jin et al., 2014) that can
analyze the internal conformational flexibility of a target
module and a new analytical approach for determining the
free-energy landscape and the continuous trajectories of
molecular machines (Dashti et al., 2014). In addition, another
challenge is to clearly define the interaction interfaces
among different modules, which may not be resolved by this
LO-refinement procedure.

This LO-refinement procedure could be further improved
in the following aspects. First, the assumption of that both
the terms (1) and (5) can reach maxima simultaneously at
the same orientation of target module may not be valid in
many cases. The inference of other non-target modules,
term (8), during calculating CCC should be avoided in the
next improvement. One solution to this problem is to remove
the information of non-target modules from the experimental
particle image. Besides, the real experimental particle image
involves CTF (contrast transfer function) modulation of the
particle projection while the CTF effect in the simulated
model projection image has been corrected. One could not
compare the experimental image and simulated image
directly without considering the CTF effect. Thus, the theory
of LO-refinement from term (1) to term (8) can be adapted
and improved as follows.

The experimental image of particle projection with two
modules A and B can be described as,

f1(r j) = p1A(r j)� PSF +p1B(r j)� PSF ð17Þ
Where, p1A(r j) and p1B(r j) are the projections of module A
and B respectively, PSF is the Fourier transform of CTF and
� represents convolution.

s Figure 5. The improvement by the LO-refinement procedure

for the dataset with Gaussian noise of SNR = 0.25. All the

density maps for comparison are shown in the same threshold.

(A) Comparison of the small subunit maps reconstructed from

conventional SPA procedure (left in grey), LO-refinement proce-

dure with the simultaneous parameter-searching strategy (middle

in red, see also Fig. 3A) and the LO-refinement procedure with

the separate parameter-searching strategy (right in blue, see

also Fig. 3B). Top, 3D density maps of small subunits and the

edges between small and large subunits are depicted with white

dashed lines. Bottom, a zoom-in view of the reconstructed small

subunit at the area indicated with the black dashed lines on the

top. The maps are corrected with EM-BFACTOR (Fernandez

et al., 2008) to 11.1 Å for emphasizing the information near the

target resolution and then fitted with the crystal structures. The

improvements of the density quality after LO-refinement are

indicated with black arrows. (B) The FSC curves between the

reconstructed map of the small subunit and the ground-truth map

generated from the PDB file (PDB entry 4V7H). (C) Local

resolution analysis of the reconstructed density map. The map

(up row) is colored according to the corresponded local resolu-

tion that is computed by ResMap (Kucukelbir et al., 2014). One

representative slice of the map with local resolution colored is

shown below accordingly. (D) Comparison of the large subunit

maps reconstructed from conventional SPA procedure (left in

grey), LO-refinement procedure with the simultaneous parame-

ter-searching strategy (middle in red, see also Fig. 3A) and the

LO-refinement procedure with the separate parameter-searching

strategy (right in blue, see also Fig. 3B). Top, 3D density maps of

large subunits and the edges between large and small subunits

are depicted with white dashed lines. Bottom, a zoom-in view of

the reconstructed large subunit at the area indicated with the

black dashed lines on the top. The maps are corrected with EM-

BFACTOR (Fernandez et al., 2008) to 10.4 Å for emphasizing

the information near the target resolution and then fitted with the

crystal structures. The improvements of the density quality after

LO-refinement are indicated with black arrows. (E) The FSC

curves between the reconstructed map of the large subunit and

the ground-truth map generated from the PDB file (PDB entry

4V7H). The assessed resolutions at FSC = 0.5 by different

procedures are indicated and also shown in Table 1. (F) Local

resolution analysis of the reconstructed density map with the

same scheme in (C).

Table 1. Assessed resolutions at FSC = 0.5 of reconstructions from three simulated datasets by conventional SPA procedures and
LO-refinement procedures

Dataset Subunit Conventional SPA
reconstruction before
LO-refinement

LO-refinement by searching
shifts and angles
simultaneously

LO-refinement by
searching shifts and
angles separately

With Gaussian noise at SNR = 0.25 Small 13.4 Å 11.2 Å 11.1 Å

Large 11.1 Å 10.6 Å 10.4 Å

With Gaussian noise at SNR = 0.11 Small 15.5 Å 12.8 Å 12.2 Å

Large 13.1 Å 11.7 Å 11.6 Å

Generated from InSilicoTEM Small 9.7 Å 9.1 Å 8.9 Å

Large 9.1 Å 8.9 Å 8.7 Å
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The projected image of particle model with two modules A
(target module) and B (non-target module) can be described
as,

p2(r j) =p2A(r j) + p2B(r j) ð18Þ

Where p2A(r j) is the projection of module A with adjusted
position and orientation and p2B(r j) is the projection of
module B with its preliminarily determined parameters of
orientation and shift. Both p2A(r j) and p2B(r j) can be explicitly
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Figure 6. The improvement by the LO-refinement procedure for the dataset with Gaussian noise of SNR = 0.11. The scenario

is same as that in Fig. 5. In brief, (A) and (D) are the comparisons of reconstructions for small subunits (A) and large subunits (D).

(B) and (E) are the corresponding FSC curves respectively. (C) and (F) are the local resolution analyzes of the reconstructed density

maps. For detailed descriptions, see Fig. 5.
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computed from the 3D module of the particle. There is no
CTF modulation in term (18).

The information of module B in term (17) can be removed
by minus a CTF modulated projection of module B.

f1A(r j) = p1A(r j)� PSF +p1B(r j)� PSF -- k � p2B(r j)� PSF

ð19Þ
Since the parameters of orientation and shift for module B

are preliminarily determined in certain accuracy, p1B(r j) and
p2B(r j) are roughly similar and the term

ΔB = p1B(r j)� PSF -- k � p2B(r j)� PSF ð20Þ
can be minimized close to zero by selecting appropriate
scaling factor k.

Thus, the target CCC between experimental and simu-
lated data can be written as

ρA
12 =

∑J
j=1 f1A(rj) --\f1A[

� �
f2A(rj) --\f2A[
� �

∑J
j=1 [ f1A(rj) --\f1A[] 2 ∑J

j=1 [ f2A(rj) --\f2A[] 2
n o1=2

ð21Þ
Where f1A(rj) is defined in term (19) and

f2A(rj) =p2A(r j)� PSF ð22Þ
Considering terms (19), (20) and (22), the numerator of

ρA
12 in term (21) can be further written as

∑
J

j=1
p1A(r j)�PSF --\p1A(r j)�PSF[
� �

p2A(r j)�PSF
�

--\p2A(r j)�PSF[
�

ð23Þ

+ ∑
J

j=1
ΔB --\ΔB[½ � p2A(r j)� PSF --\p2A(r j)� PSF[

� � ð24Þ

Where term (24) is close to zero and term (23) can reach the
maxima together with the correlation between p1A(r j) and
p2B(r j),

∑
J

j=1
p1A(r j) --\p1A(r j)[
� �

p2A(r j) --\p2A(r j)[
� � ð25Þ

As the result, the target CCC defined in term (21) can
reach the maxima only if the cross-correlation of projections
between experimental and simulated module A defined in
term (25) reaches the maxima. This improved theory of LO-
refinement described from term (17) to term (25) can fully
avoid the inference of non-target modules and account the
effect of CTF modulation, and thereby would yield further
improved reconstruction of the target modules, especially
when dealing with the real experimental data.

In addition, besides back projection, other reconstruction
algorithms, i.e. SIRT (Bangliang et al., 2000) and NUFFT
(Chen and Förster, 2014), can be applied. Furthermore,
maximum likelihood probability (Dempster et al., 1977) and
Bayesian analysis (Scheres, 2012a) could also be imple-
mented in this LO-refinement procedure.

During the revision of the present paper, we noticed that
the recent publication by Liu and Cheng (2015), where they
developed an image processing method to reconstruct the
high-resolution map of viral internal structure within the
capsid, described the detailed math of how to subtract the
information of viral internal structure from the raw experi-
mental whole virus particle. The idea of their information
subtraction is similar to our proposed adjusted LO-refine-
ment theory in this discussion from term (17) to term (25).

Furthermore, we also noticed that Nguyen et al. recently
reported the cryoEM structure of pre-assembled spliceoso-
mal complex and they developed an image processing
approach called “multi-body refinement” to improve the
density for the flexible arm domain (Nguyen et al., 2015).
The idea of their “multi-body refinement” is similar to our LO-
refinement but implemented differently in Fourier space and
combined together with Bayesian approach. The success of
their “multi-body refinement” approach has become another
proof of the idea described in this paper. By implementing
the adapted LO-refinement theory with improved codes for
efficient computation, our LO-refinement algorithm will pro-
vide an alternative solution in real space to deal with the
conformational flexibility of macromolecular complexes for
single particle analysis.

MATERIALS AND METHODS

Test the datasets with Gaussian noise

A 3D map of the 80S ribosome (Taylor et al., 2009) was generated

from PDB file (PDB entry 4V7H) by using the command e2pdb2mrc.

py in EMAN2 (Ludtke et al., 1999) with a pixel size of 4 Å. Subse-

quently, a rotation around an axis through the subunit center and a

shift in 3D space were applied to each subunit independently using

the commands CG, ROT L and SH in SPIDER (Frank et al., 1996).

For simulating the scenario of slight and random flexibility

between the large and small subunits, the direction of the rotational

axis was selected randomly, and the rotational angle was assigned

randomly in a normal distribution with an average value of 0° and a

standard deviation of 1.67°. The shifts x, y, z were also assigned

randomly in a normal distribution with an average value of 0 pixel

and a standard deviation of 1 pixel. The two randomly moved sub-

units were then combined together to generate a whole 80S mole-

cule. In total, 50,000 density maps were generated in this way and

each map was projected once with the projection direction randomly

selected. As a result, we simulated a dataset of a molecular complex

with multiple conformations that are fixed in ice with random

orientations.

In the final step of generating the simulation data, we added

Gaussian noise into each projection by using the commands FS, MO

and ADD in SPIDER (Frank et al., 1996). Three different (0.25, 0.11

and 0.06) SNR of noises were used according to previous studies

(Baxter et al., 2009), yielding three datasets with different levels of

noises (Fig. 4A).

To carry out 3D reconstruction, we first applied a conventional

SPA routine using a customized SPIDER script in the Liu lab (Huang
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et al., 2012) to perform reconstruction refinement against the above

simulated datasets. The density map of the whole ribosome that was

generated from the corresponding PDB file was low-pass filtered to

20-Å resolution as an initial model. For each cycle of the refinement,

the FSC (Fourier shell correlation) curve between the refined map

and the PDB-generated density map was calculated by using the

command FSC in SPIDER.

After the conventional SPA refinement became converged

(Fig. 4C and 4D), we applied the LO-refinement to both the small

and large subunits respectively. Both procedures of the LO-refine-

ment described above (Fig. 3) were tested. The subunits were

segmented using Chimera (Pettersen et al., 2004). A round mask

with a diameter of 30 pixels for the small subunit, or 40 pixels for the

large subunit was used during CCC computation to select the target

module while excluding the background noise and the signal from

the non-target module. The projection direction of the target module

was searched within a cone of 10° and the in-plane shift was

searched within a range from −4 to 4 pixels. For the second opti-

mization strategy (Fig. 3B), the number of randomly selected angles

was set to 10. To ensure that the improvement by using this LO-

refinement was not due to increased sampling rate, both the angular

and the shift sampling steps were kept the same (2° and 1 pixel

respectively) as the last cycle of refinement in the conventional SPA

procedure. Similarly, the 3D reconstruction methods were also kept

the same as the weighted back projection (WBP) that was carried

out using the command BP 32F in SPIDER.

After one iteration of LO-refinement, the density of the target

module was segmented using a soft mask in the shape of the

module, and the FSC curve was calculated against the density map

generated from PDB file for comparison and further analysis

(Scheres and Chen, 2012).

Test the dataset generated from InSilicoTEM

We further validated our LO-refinement by using a simulated dataset

with experimental conditions considered. We used the software

package InSilicoTEM (Vulovic et al., 2013) to generate a new

dataset of ribosome projections. This procedure takes into account

the most relevant physical parameters of cryo-electron microscopy

including both contrast transfer function and camera factors.

In this test, the coordinates of the 70S ribosome subunits (PDB

entry 4V7C) (Brilot et al., 2013) were rotated and shifted respectively

in the same way described above for the Gaussian type dataset on

the 80S ribosome. The randomly moved subunits were then com-

bined into a whole structure of the 70S ribosome.

In total, 58,542 ribosome structures were generated and each of

them represents a slightly different conformation. Thereafter, the

generated coordinates were submitted to InSilicoTEM for projection

generation using the condition of 200 kV acceleration voltage and

2 Å/pixel in a CCD camera. 58,542 projections in 9 different defocus

groups were generated, with each projection corresponding to a

random conformation of ribosome in a random orientation. The

parameters of InSilicoTEM are summarized in Table 3 and the rep-

resentative projections generated from InSilicoTEM are shown in

Fig. 4B.

s Figure 7. The improvement by the LO-refinement proce-

dure for the dataset generated by InSilicoTEM. The scenario

is same as that in Fig. 5. In brief, (A) and (D) are the

comparisons of reconstructions in different views for small

subunits (A) and large subunits (D). (B) and (E) are the

corresponding FSC curves respectively. (C) and (F) are the

local resolution analyzes of the reconstructed density maps.

Differently, the ground-truth structures here are from another

PDB file (PDB entry 3J5T) for the small subunit (A and B) and

the one (PDB entry 3J5U) for the large subunit (D and E). The

maps at the second and fourth row in (A) and (D) are corrected

with EM-BFACTOR (Fernandez et al., 2008) to 8.9 Å and 8.7 Å

respectively for emphasizing the information near the target

resolution. The significant fluctuations in the low frequency part

of FSC curves in (B) and (E) are due to the oscillation of

contrast transfer function. For detailed descriptions, see Fig. 5.

Table 2. Computation consumptions during optimizing parameters of the InSilicoTEM generated dataset for the two parameter-
searching strategies

Simultaneous search strategy Separate search strategy

Node configuration (CPU type, MHZ, cache size,
memory)

Intel Xeon X5650, 2.67 GHz, 12 MB,
36 GB

Intel Xeon X5650, 2.67 GHz, 12 MB,
36 GB

Number of processors per node 12 12

Number of nodes 7 7

Network (I/O) 1GB Ethernet 1GB Ethernet

Storage NFS Disk array (SATA II, 7200 rpm,
raid5)

NFS Disk array (SATA II, 7200 rpm,
raid5)

Number of particles 58542 58542

Size of particle 128 × 128 128 × 128

Number of projections 5000 5000

Computation time of LO-refinement for the small
subunit

36.7 h 7.8 h

Computation time of LO-refinement for the large
subunit

37.6 h 8.1 h
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CTF correction (phase flipping) of the dataset generated from

InSilicoTEM was performed using the command e2ctf.py in EMAN2.

Then a conventional SPA procedure (Fig. 4E) and subsequent LO-

refinement for each subunit were performed in the same way as

described above for the Gaussian type dataset. Slightly differently, a

binning factor of 2 was used for two-dimensional image alignment to

reduce the computation time, while the reconstruction was calcu-

lated without binning. During LO-refinement, the angle and shift

sampling steps (2° and 1 pixel respectively) and the reconstruction

method (WBP using BP 32F in SPIDER) were kept the same as

those in the last cycle of refinement in the conventional SPA

procedure.

After one iteration of LO-refinement, the density of the target

module was segmented using a soft mask in the shape of the

module, and the FSC curve was calculated against the density map

from PDB file for comparison and further analysis (Scheres and

Chen, 2012). All the reconstructed maps were analyzed by ResMap

(Kucukelbir et al., 2014).
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