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Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play
crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While
theA. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity ofmetabolic networks
is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence,
structure, and function for annotation of A. oryzaemetabolic transporters. Sequence-based analysis with manual curation showed
that 58 genes of 12,096 total genes in theA. oryzae genome encodedmetabolic transporters. Under consensus integrative databases,
55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven
transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of
homologymodeling andmolecular dynamics simulation was implemented to assess the relationship between sequence to structure
and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was
selected as a representative case study ofmultilevel linkage annotation. Our developed strategy can be used for enhancingmetabolic
network reconstruction.

1. Introduction

Aspergillus oryzae belongs to a group of filamentous fungi that
has long been used for the commercial production of different
industrial enzymes, such as alpha-amylases [1], proteases [2],
glucoamylases [3], xylanases [4], other hydrolytic enzymes
[5], and organic acids [6]. Not only does A. oryzae produce
various biological compounds, but also it has beneficial
features, such as acting as a robust host system with high
production yields and acclimatization to environmental and
nutritional duress [7]. In 2005, the whole genome of A.

oryzae strain RIB40 was sequenced and annotated [8]. Very
recently, the quality of the genome sequence was improved
and verified using next-generation sequencing platforms,
such as SOLiD [9] and Illumina MiSeq [10]. Moreover,
the advancement of multilevel omics integrative analysis
(genomics, transcriptomics, and proteomics) has enabled
the interpretation of high-throughput data for functional
annotation. In addition, the number of annotated genes in
A. oryzae was enhanced using expressed sequence tags data
[11]. Clusters of genes were then identified and annotated by
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oligonucleotide microarrays [12, 13] and mRNA sequencing
technology [14].

Using a systems biology approach, a genome-scale
metabolic network of A. oryzae was reconstructed based
on annotated genomic data, which contains 1,314 enzyme-
encoding genes including 53 metabolic transporter-
associated genes [11]. Modeling of the genome-scale
metabolic network of A. oryzae has been used to evaluate
fungal biological processes and cellular physiology. However,
the connectivity of metabolic networks remains incomplete
because of the poor annotation of transporter genes.
Among the 161 unique transport reactions, only 33% of
annotated genes were identified and used in the network
[11]. In metabolic pathways, transporters appear to play
crucial roles in controlling the flux of molecules into and
out of cells [6, 15, 16]. Additionally, several transporters
regulate metabolic energy generation, delivery of essential
nutrients, waste product elimination, and survival under
environmental changes [17].

The techniques used for transporter annotation are often
performed by sequence-based analysis using pairwise and
multiple sequence alignment. Many studies of fungal trans-
porters have relied on similarity searching between orthol-
ogous sequences using the BLASTP algorithm [18], such as
investigating the gene encoding glucose transporter (hxtB–
E) in the genome of Aspergillus nidulans. In particular, use
of the ClustalW program [19] allowed for the clustering and
the identification of conserved sequences and evolutionary
relationship among orthologs of fungal transporters. In a
study of amino acid uptake in rust fungi (plant pathogenic
fungi), 60 genes were identified from rust fungal genomes
and then clustered into three different transporter families,
including 33 genes in yeast amino acid transporters, 20
genes in amino acid/choline transporters, and 7 genes in
L-type amino acid transporters [20]. This study indicated
several transporter genes in rust fungal genomes, which
may play a role in interactions between plant and rust
fungi [20]. However, sequence-based analysis is limited
to functional annotation. For example, there is a case of
two proteins, which have overall identical protein folds
implying their closely related functions, but no statistically
significant degree of sequence identity was observed [21].
To address such this case, structural studies through three-
dimensional (3D) structure from crystallography have greatly
enhanced our understanding of the potential protein func-
tion. As an example case presented in yeast, the structure
of V-ATPase from Saccharomyces cerevisiae was determined
using electron cryomicroscopy wherein the conformational
changes for three functional states were observed during
proton translocation [22]. Recently, the crystal structure of
the phosphate transporter from Piriformospora indica was
determined using X-ray crystallography, suggesting both
proton and phosphate exit pathways and the mechanism of
phosphate transport [23]. However, the number of molecules
with unsolved 3D structures and unknown functions is
increasing rapidly because the experimental assays to deter-
mine these properties are time-consuming and expensive.
Computational approaches enable functional annotation and
can be used to overcome these limitations. As observed

in A. nidulans, the relationship between the structure and
function of the subfamily of urea/H+ membrane transporter
for the UreA gene was studied [24]. Homology models
of the urea transporter were developed from the crystal
structures of other organisms [25, 26] as templates combined
with site-directed and classical random mutagenesis. This
computational approach can be used to identify critical
residues for urea transport and understand the binding,
recognition, and translocation of urea [24]. However, the
structure-based approaches generally rely on single static
structure and do not involve dynamic information. In fact,
structural dynamics can enhance functional prediction, in
which the homology modeling and molecular dynamics
(MD) simulation have already been extensively used as tools
to further access possible functions of several specific fungal
transporters (e.g., proline permease [27] and purine and
pyrimidine transporters [28]). Moreover, dynamic informa-
tion fromMD simulation revealed the molecular mechanism
of the proton pump related to conformational changes during
proton translocation through H+-ATPase [29, 30].

As described above, current approaches can only be
performed manually and specifically and cannot be used
to describe the relationship between sequence, structure,
and function for annotating high-throughput data of trans-
porters. Based on experimental data of A. oryzae, very few
reports involved in metabolic transporters, such as maltose
permease [31, 32], sulphate permease [33], malic acid trans-
porter [6], C

4
-dicarboxylate transporter [34], and uric acid-

xanthine permease [35], existed. Therefore, the advanced
annotation approaches can be used to increase the efficiency
of transporter annotation. In this study, we developed a
metabolic annotation strategy to determine the relation-
ship between sequence, structure, and function to annotate
metabolic transporters in the A. oryzae genome. Sequence-
based analysis is used to predict transporter genes. Next,
candidate transporter genes were subjected to functional
classification.The transporters involved in metabolic process
weremanually curated by integrative analysis (i.e., integrative
databases, phylogenetics, protein domains, or transporter
components). In addition, the combination of homology
modeling and MD simulation was used to determine the
relationship between sequence to structure and structure to
function.This proposedmetabolic annotation strategy can be
used to improve the genome-scale metabolic network of A.
oryzae and relevant fungi.

2. Materials and Methods

2.1. Sequence Alignment Analysis for Transporter Gene Pre-
diction. To identify all possible candidate transporter genes,
12,096 protein sequences from A. oryzae genome [8] were
searched against protein sequences from two different trans-
porter databases that are available that is, transporter classi-
fication database (TCDB) [36] and TransportDB [37] using
BLASTP (version 2.2.29+) [18] under bidirectional best-hit
and sensitivity analysis [38] as shown in Figure 1 (1st panel).
For TCDB, it is a curated transporter database of factual
information from over 10,000 published references. Unique
proteins in TCDB are deposited over 10,000 sequences
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Figure 1: Diagram shows overall framework of a metabolic annotation strategy for linkage between sequence, structure, and function for
annotating metabolic transporters in A. oryzae genome. In the 1st panel, Sets A and B indicate A. oryzae protein sequences searched against
TCDB and TransportDB databases, respectively, under bidirectional best-hit analysis (BBH) and sensitivity analysis (SA). In the 4th panel,
dash line implies themanual selection of ametabolic transporter from unambiguous function group as a representing case study of multilevel
linkage annotation. SM and MD stand for SWISS-MODEL and molecular dynamics simulation, respectively.
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which are classified into over 800 transporter families based
on the transporter classification (TC) system according to
functional and phylogenetic information [39]. In contrast,
TransportDB is a relational database describing the predicted
transporters based on automated annotation tool for organ-
isms whose complete genome sequences are available [40].

2.2. Functional Classification of Candidate Transporter Genes.
For functional classification, the candidate transporter genes
obtained were submitted as dataset queries using the
BlastKOALA and GhostKOALA annotation tools [41] as
shown in Figure 1 (2nd panel). These are KEGG internal
annotation tools for assignment of KEGG Orthology (K)
number to the query protein sequences by BLAST searching
against a nonredundant set of KEGG GENES, which was
determined using a 50% identity cut-off [42, 43]. It is noted
that GhostKOALA is suitable for annotating a large amount
of metagenome sequence data by GHOSTX searching using
a cut-off GHOSTX score of 100. After the submission of
queries, the annotation data with assigned K numbers was
downloaded and used for KEGG Mapper analysis to deter-
mine the full details of the assigned K numbers for each
candidate transporter gene [41]. The function of candidate
transporter gene was then manually classified into two
main categories, including (i) metabolic process and (ii)
nonmetabolic process. Candidate transporter genes involved
in various metabolisms (i.e., energy, lipid, nucleotide, amino
acid, glycan, and others) and metabolic transport processes
(i.e., solute carrier family, nutrient uptake, and ion chan-
nel) were categorized into the metabolic process. Candidate
transporter genes related to signaling, cellular, and genetic
information were categorized into the nonmetabolic process.
Candidate transporter genes with unclassified functions were
categorized into the unclassified process. Only candidate
transporter genes associated with the metabolic process were
subsequently performed by manual curation.

2.3. Manual Curation of Transporters Associated with
Metabolism. Candidate transporter genes categorized into
the metabolic process were manually curated functions
using integrative databases, including TCDB [36], KEGG
[42, 43], and PFAM [44], as shown in Figure 1 (3rd panel).
If transporters showed the same functions in all the three
databases, they were categorized into the unambiguous
function group. Otherwise, they were included in the
hypothetical function group. These further required
additional manual curation for transporter function. Such
phylogenetic analysis combined ClustalW [45] with MEGA6
(Molecular Evolutionary Genetics Analysis, version 6.0)
[46] and was manually performed to reveal evolutionary
relationship of hypotheticalmetabolic transporter gene based
on the maximum likelihood approach [47]. Alternatively,
protein domain analysis was performed. Hypothetical
metabolic transporter gene was manually submitted to
HMMER [48] and MEME [49] and then searched for
protein domains using the hidden Markov models [44, 50].
Otherwise, transporter component analysis was done.
Hypothetical metabolic transporter gene was manually
searched against protein sequences in TCDB based on

sequence similarity to identify transporter components.
Each component was afterwards curated against several
protein databases (e.g., carbohydrate-active enzymes
database (CAZy) [51] and Universal Protein Resource
(UniProt) database [52]). Transporters showing ambiguity
remained in the ambiguous function group.

2.4. Structure and Function Relationship Analysis. Protein
structure is more evolutionarily conserved than amino acid
sequence.Therefore, the analysis of 3D structures is a promis-
ing method for the functional annotation of transporters.
Homologymodelingwas performed as shown in Figure 1 (4th
panel). Initially, A. oryzae protein sequences belonging to the
unambiguous function group were submitted as queries to
the SWISS-MODEL [53] for searching the template against
the Protein Data Bank (PDB) [54]. Next, a metabolic trans-
porter from unambiguous function group that showed the
highest quality with the best-identified structural template
(i.e., sequence identity and percent coverage) was manually
selected as the representative case study of multilevel linkage
annotation. For structure-based sequence alignment of the
query and template, the conserved residues between the
query and template were retained in the homology model
using ProMod II [55]. Remodeling was carried out by substi-
tution of the appropriate amino acids. In order to obtain the
homology protein structure, MD simulation was conducted
using GROMACS version 4.5.5 [56]. Protein topology was
created using the standard GROMOS96 force field parameter
set 53a6 [57] and solvated based on the simple point charge
water model [58]. To remove steric conflicts between atoms
and to avoid high energy interactions, system energy was
minimized for 2,000 steps. MD simulation was afterwards
run in the NVT (constant particle number, volume, and
temperature) ensemble for 100 ns with an integration time
step of 1 fs. The temperature was kept constant at 298K using
the V-rescale algorithmwith a time constant of 0.1 ps [59–61].
Periodic boundary conditions were applied in all directions.
The real-space part of the electrostatic and Lennard-Jones
interaction was set at a 1.0 nm cut-off. Long-range electro-
statics were calculated using particle-mesh Ewald [62, 63]
with a 0.12 nm grid and the cubic interpolation of order
four in the reciprocal-space interactions. To avoid physical
artifacts, the tested protocol was employed [64–66]. All bond
lengths were constrained using the LINCS algorithm [67].
System visualization was performed using Visual Molecular
Dynamics software [68]. The structural template was used as
the reference, in which the homology model was created and
simulated for comparison. At equilibrium, the trajectories
were determined as the stability of global protein structure
by calculating the root mean square deviation (RMSD) and
root mean square fluctuation (RMSF).

3. Results and Discussion

Using our developedmetabolic annotation strategy for trans-
porters, we achieved four main results as described in the
following. First, we describe the assessment of candidate
transporter genes. Next, we present the classified functions of
candidate transporter genes. Focusing on metabolic process
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Table 1: Number of candidate transporter genes identified by
sequence alignment analysis.

Database-based
annotation 𝐸-value∗ Number of candidate

transporter genes
TCDB 6𝐸 − 09 112
TransportDB 5𝐸 − 04 18

123
∗Suitable estimated cut-off values.

category, we describe the manually curated transporters
associated in metabolism. To this end, the structure and
function relationship assessment of unambiguous metabolic
transporter is discussed.

3.1. Assessment of Candidate Transporter Genes. Candidate
transporter genes were identified by sequence alignment
analysis using 12,096 protein sequences of A. oryzae against
protein sequences in TCDB and TransportDB. We identified
129 and 23 protein sequences with one-to-one homologous
relationship by bidirectional best-hit analysis in TCDB and
TransportDB, respectively. These results were subsequently
subjected to sensitivity analysis by varying the 𝐸-values
as cut-offs. The 𝐸-values of 6𝐸 − 09 and 5𝐸 − 04 were
selected as the suitable estimated cut-off values. Hereby,
we obtained 112 and 18 possible transporter genes from
TCDB and TransportDB, respectively. All possible trans-
porter genes under statistical significance were overlapped
and removed duplicate data. Consequently, 123 candidate
transporter genes of A. oryzae were obtained as presented in
Table 1. Full list of candidate transporter genes is provided
in Table S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/8124636.

3.2. Classified Functions of Candidate Transporter Genes.
A total of 123 candidate transporter genes were submitted
as dataset queries to the BlastKOALA and GhostKOALA
annotation tools. Based on the KEGG database results, 87
of the 123 submitted queries were assigned K numbers,
which were manually classified into the metabolic process
and nonmetabolic process categories (Table S2). As shown in
Figure 2, the major category (65 of 123 candidate transporter
genes) was in the metabolic process (Table S3), which was
divided into seven subcategories, including 41 genes involved
in metabolic transport processes, 15 genes involved in energy
metabolism, 4 genes involved in glycan metabolism, and 5
genes involved in another four subcategories (Figure 2). In
contrast, 17 candidate transporter genes were classified in the
nonmetabolic process category, which was divided into two
subcategories. These were 8 genes involved in signaling and
cellular process and 9 genes involved in genetic information
process. It has been reported that transporter genes involved
in genetic information and cell signaling process are impor-
tant in regulation level which can trigger cellular response
process by transporting transcription factors, DNA binding
protein, mRNA, miRNA, and other related genetic factors
across compartments [69]. For candidate transporter genes
with unclassified functions (41 genes), they were separated
into unclassified process category.

3.3. Manually Curated Transporters Associated with
Metabolism. Initially, 65 candidate metabolic transporter
genes were manually curated to determine their functions
using integrative databases, including TCDB, KEGG, and
PFAM (Table S4). The results showed that the transporter
functions were classified into three assigned function
groups, namely, unambiguous, hypothetical, and ambiguous
functions.

For the unambiguous function group, 55 of the 65
transporter genes were manually curated and found to be
overlapped among the integration of three databases as sum-
marized in Table 2. The 55 transporter genes were clustered
into three classes using the TC system. Seven of the 55
transporter genes were involved in ammonium, magnesium,
copper, and water transporters, which belonged to channels
and pores (class 1). Most of the unambiguous function group
(33 of 55 transporter genes) were involved in electrochemical
potential-driven transporters (class 2), such as carbohydrate,
amino acid, and nutrient uptake transporters. As example in
class 2, AO090009000688 gene was curated as a nucleotide
sugar transporter involved in transporting GDP-mannose,
which was synthesized in the cytosol and nucleus and trans-
ported to the endoplasmic reticulum and the Golgi apparatus
formannosylation process [70].Dean et al. demonstrated that
a mutation in the gene encoding GDP-mannose transporter
(VRG4) in S. cerevisiae caused a loss of mannosylation in
vrg4mutants, leading to cell death [71]. For gene orthologs of
VRG4 identified inAspergillus fumigatus [72] andA. nidulans
[73], they were also found to be associated with polysaccha-
ride synthesis during spore germination. In addition, three
zinc transporter genes (AO090005000026, AO090011000831,
and AO090026000441) corresponded to zinc tolerance and
accumulation in A. oryzae [74]. Interestingly, large amounts
of zinc could be accumulated in mycelial cells of A. oryzae
[74]. Accordingly, this suggests that zinc transporter can
be used to improve the absorption capacity of A. oryzae
towards pollutant metals. For the other remaining manually
curated genes, 15 of 55 transporter genes were functionally
assigned for the primary active transporters (class 3). As
seen in class 3, observably most of the transporter func-
tion utilized energy from ATP hydrolysis to transport ions
through cellular membranes against a concentration gradient
[29] (Table 2). For instance, AO090102001037 gene encoding
proton-translocating transhydrogenase can hydrolyze ATP
to transport proton through cellular membrane. Notably,
this AO090102001037 gene showed evolutionary relationship
among Aspergillus species in terms of gene sequence and
expression [75].

For the hypothetical function group, 3 of the 65 trans-
porter genes (i.e., AO090001000747, AO090023000801, and
AO090005000980) were manually curated for individual
transporter function by either phylogenetic, protein domain,
or transporter component analysis, respectively.

Performing phylogenetic analysis, the hypothetical met-
abolic transporter gene, for example, AO090001000747 in A.
oryzae and oligosaccharyl transferase (OST3) in S. cerevisiae,
showed a closer evolutionary relationship than magnesium
transporter (MAGT1) in Homo sapiens as illustrated in Fig-
ure 3. As a result, it is promising that AO090001000747 gene
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Figure 2: Doughnut chart illustrates different functional categories of A. oryzae candidate transporter genes. Outer layer shows three main
functional categories (i.e., metabolic, nonmetabolic, and unclassified processes). Inner layer shows seven subcategories distributed into
metabolic process and two subcategories distributed into nonmetabolic process. Ring size reflects the relative ratio of genes identified in
each category.

Mus musculus (house mouse)

Rattus norvegicus (norway rat)

Homo sapiens (human)

Danio rerio (zebrafish)

Anas platyrhynchos (mallard)

Xenopus laevis (frog)

Saccharomyces cerevisiae (baker’s yeast)

Aspergillus oryzae
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Figure 3: Horizontal cladogram shows an evolutionary relationship of oligosaccharyltransferase (OST3) and magnesium transporter
(MAGT1) among A. oryzae and 7 different model organisms (i.e., Mus musculus, Rattus norvegicus, H. sapiens, Danio rerio, Anas
platyrhynchos, Xenopus laevis, and S. cerevisiae). The figure is generated by the MEGA6 [46] and ClustalW [45].

is potentially encoded for the endoplasmic reticulum resi-
dent oligosaccharide transporter involved in N-glycosylation
according to the function of OST3 in S. cerevisiae [76].
Previously, it has been reported that OST3 is a gate keeper
for the secretory pathway [77] and it can catalyze the priority
step in protein secretion [78]. Therefore, the significant tran-
scriptional upregulation of AO090001000747 gene (OST3
ortholog) was accordingly reported in an A. oryzae alpha-
amylase overproducing strain [1]. Our finding implies that
AO090001000747 gene is contributed for transporting and
encompassing secretory proteins, which is favorable for
increasing the efficiency of commercial protein secretion in
A. oryzae. Full details of horizontal cladogram can be seen in
Figure S1.

Considering protein domain analysis, it is an alternative
way for manual curation of transporter function. Once
HMMER [48] and MEME [49] were used for searching
the protein domains of hypothetical metabolic transporter
gene, for example, AO090023000801, observably this gene
contains the conserved carboxylase domain which represents
a conserved region in pyruvate carboxylase and oxaloacetate
decarboxylase. A report by Knuf et al. supported that
AO090023000801 gene encoding pyruvate carboxylase was
involved in organic acid production [6]. Besides, a manual
sequence searching by TCDB [36] also supported that
AO090023000801 gene encoding oxaloacetate decarboxylase
was involved in sodium transport. These results thus imply
that the AO090023000801 gene may have two transporter
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Table 2: List of manually curated transporter genes and functions in unambiguous function group.

Name of transporter gene TCID Name of transporter function∗

Class 1: channels and pores
AO090023000569 1.A.1.7.1 Outward-rectifier potassium channel
AO090038000314 1.A.11.3.2 Ammonium transporter
AO090003001402 1.A.35 Magnesium transporter
AO090120000141 1.A.35.5.1 Magnesium transporter
AO090120000214 1.A.56.1.4 Copper transporter
AO090011000329 1.A.8.8.8 Aquaporin
AO090023000895 1.B.8.1.1 Voltage-dependent anion channel porin

Class 2: electrochemical potential-driven transporters
AO090003000050 2.A.1.7.1 L-fucose permease
AO090012000623 2.A.1.8.5 Nitrate transporter
AO090010000135 2.A.100.1.3 Iron-regulated transporter
AO090010000229 2.A.17.2.2 Proton-dependent oligopeptide transporter
AO090026000828 2.A.19.4.4 Sodium/potassium/calcium exchanger
AO090009000637 2.A.2.6.1 Alpha-glucoside permease
AO090003001404 2.A.20 Phosphate transporter
AO090012000901 2.A.20.2.2 Phosphate transporter
AO090103000274 2.A.22.3.2 Sodium and chloride dependent GABA transporter
AO090009000405 2.A.29.1.3 Mitochondrial adenine nucleotide translocator
AO090005000114 2.A.3.10.2 Amino acid transporter
AO090009000636 2.A.36.1.12 Sodium/hydrogen exchanger
AO090005000019 2.A.39.3.1 Allantoin permease
AO090005000455 2.A.40.5.1 Purine permease
AO090003000443 2.A.41.2.7 H+/nucleoside cotransporter
AO090003000920 2.A.47.2.2 Phosphate transporter
AO090026000432 2.A.49.1.3 Chloride channel
AO090005000026 2.A.5.1.1 Zinc transporter
AO090011000831 2.A.5.5.1 Zinc transporter
AO090026000441 2.A.5.7.1 Zinc transporter
AO090011000817 2.A.52.1.3 Nickel transporter
AO090003000798 2.A.53.1.2 Sodium-independent sulfate anion transporter
AO090003001119 2.A.55.1.1 High-affinity metal uptake transporter
AO090003001233 2.A.57.3.1 Nucleoside transporter
AO090005001332 2.A.59.1.1 Arsenite transporter
AO090120000217 2.A.6.6.5 Hydroxymethylglutaryl-CoA reductase
AO09M000000016 2.A.63 NADH-ubiquinone oxidoreductase
AO090001000748 2.A.66 Polysaccharide exporter
AO090010000775 2.A.7.10.2 UDP-xylose/UDP-N-acetylglucosamine transporter
AO090009000400 2.A.7.11.1 UDP-galactose transporter
AO090009000688 2.A.7.13.2 GDP-mannose transporter
AO090026000255 2.A.72.3.2 Potassium transporter
AO090005001455 2.A.97.1.4 Potassium and hydrogen ion antiporter

Class 3: primary active transporters
AO090009000651 3.A.1.201.11 Multidrug resistance protein 1
AO090038000399 3.A.1.31.1 Possible ABC transporter permease for cobalt
AO090003000688 3.A.19.1.1 Arsenite-translocating ATPase
AO090010000482 3.A.2 V-type ATPases
AO09M000000001 3.A.2.1.3 F-type ATPase
AO090012000797 3.A.2.2.3 V-type ATPase
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Table 2: Continued.

Name of transporter gene TCID Name of transporter function∗

AO090038000088 3.A.3.1.7 P-type ATPase
AO090012000773 3.A.3.10.1 P-type ATPase
AO090038000322 3.A.3.2.2 P-type ATPase
AO090005000842 3.A.3.3.6 Plasma membrane proton ATPase
AO09M000000013 3.D.1.2.1 NADH dehydrogenase
AO09M000000015 3.D.1.6.2 NADH-ubiquinone oxidoreductase
AO090102001037 3.D.2.4.1 Proton-translocating transhydrogenase
AO090010000475 3.D.3.2.1 Cytochrome b-c1 complex subunit Rieske
AO09M000000014 3.D.4.8.1 Cytochrome oxidase
∗Names of transporter functions are based on KEGG, PFAM, and UniProt databases.

functions related to the conserved region. For the other
transporter component analysis, the hypothetical metabolic
transporter gene, for example, AO090005000980, was
manually searched against protein sequences in TCDB
[36] based on sequence similarity to identify transporter
components. Accordingly, AO090005000980 gene was
identified as potassium transporter (Ktr) containing three
different components (i.e., the potassium-translocating
protein (KtrB), regulatory protein (KtrA), and Slr1508
protein). Using CAZy [51] and UniProt [52], the protein
function of Slr1508 was glycosyl transferase involved in
glycosylphosphatidyl inositol anchor formation. After using
PFAM[44], the results also supported that the Slr1508 protein
has glycosyl transferase function. These suggest that the
AO090005000980 gene may have two transporter functions
relevant to the transporter components. Transporter genes
showing functional ambiguity remained in the ambiguous
function group (7 of 65 transporter genes), namely, genes
AO090005001300, AO090120000224, AO090011000320,
AO090020000415, AO090020000492, AO090010000212,
and AO090012000733.

3.4. Structure and Function Relationship Assessment of Unam-
biguous Metabolic Transporter. To ensure the functional role
of the unambiguous metabolic transporter, a combination
of homology modeling and MD simulation was used to
assess the relationship between sequence to structure and
structure to function, which provides stronger evidence
for functional conservation and annotation of transporter
beyond sequence-based analysis. To do this, a metabolic
transporter from unambiguous function group wasmanually
selected based on the central transporter role in metabolism
of A. oryzae with the highest sequence identity and coverage
from sequence alignment analysis between the query (e.g.,
metabolic transporter gene) and the well-known structure
and function of transporter in PDB. Among the unam-
biguous metabolictransporters, favorably AO090005000842
gene encoding for H+-ATPase was selected as a represen-
tative case study of multilevel linkage annotation due to
the highest sequence identity and percent coverage between
AO090005000842 gene and the well-known structure and
function of theH+-ATPase ofNeurospora crassa. To elaborate,
AO090005000842 gene was initially submitted as a query
onto the SWISS-MODEL for template searching against the

PDB. According to the highest quality results among the
top 10 identified templates (Table S5), the electron crys-
tallography structure of H+-ATPase in N. crassa (PDB ID:
1MHS) [30] showed the highest sequence identity (77.47%)
and percent coverage (94%). Therefore, 1MHS was used
as a template for the homology modeling of A. oryzae
H+-ATPase. Thus, the model was generated with detailed
sequence alignment between H+-ATPase in A. oryzae and
N. crassa (Figures 4(a) and S2). Overall, 681 residues in the
five principal domains were identical in both proteins, as
shown in Figure 4(b).The most homologous domain was the
phosphorylation (P) domain (92.12%), followed by the cluster
of 10 transmembrane helices (M1-2, M3-4, andM5–10) in the
membrane domain (80.52%), the nucleotide-binding domain
(72.30%), the actuator domain (64.13%), and the regulatory
domain (60.53%). Additional details are shown in Table S6.

In addition to the analysis of static structures by homol-
ogy modeling, MD simulation was carried out in order to
evaluate structural stability during dynamics simulation and
the changes in the stability of proton-transporting regions
compared with template structures.The dynamics systems of
bothH+-ATPasemodels were created under theGROMOS96
force field and solvated in a simple point charge water model
without constraints. These systems were then subjected to
MD simulation for 100 ns while monitoring equilibration by
examining the stability of the geometrical property (RMSD)
of the H+-ATPase models. Subsequently, the RMSD and
RMSF were calculated using the trajectories to quantify the
stability and the fluctuation of the protein. The RMSD of
global structures of the H+-ATPase in A. oryzae and N.
crassa reached equilibrium after 50 ns using the quantities
as shown in Figure S3. Indeed, all five principal domains in
the A. oryzae and N. crassa H+-ATPases shared the same
average RMSD over the equilibrium which indicated that
the dynamic behavior of functional domains was conserved
among these species (Table S7).

In fact, the proton-transport region (M-domain) of H+-
ATPase is embedded in membrane environment. Therefore,
M-domain of A. oryzae H+-ATPase embedding in palmitoyl
oleoylphosphatidylcholine (POPC) lipid bilayer was con-
ducted using theMD simulation.The insertion of M-domain
into membrane was done as followed by Kandt et al. [79, 80]
(Figure S4).The simulation was performed under NPT (con-
stant particle number, pressure, and temperature) ensemble.
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Figure 4: Diagram shows sequence alignment between the H+-ATPase in A. oryzae (Ao) and N. crassa (Nc) (PDB ID: 1MHS) [30] in (a)
and structural template with five principle domains distinguished with different colors in (b). For both (a) and (b), A1-2 indicates actuator
(A) domain shaded in green, P1-2 indicates the phosphorylation (P) domain shaded in blue, N indicates the nucleotide-binding (N) domain
shaded in red, M1-2, M3-4, and M5–10 indicate the transmembrane (M) domain shaded in pink, and R indicates the regulatory (R) domain
of the H+-ATPase shaded in grey.

Semi-isotropic pressure was applied by the Berendsen algo-
rithm, at a pressure of 1 bar in both the 𝑥𝑦-plane and the 𝑧-
direction (bilayer normal) with a time constant of 3.0 ps and
a compressibility of 4.5 × 10−5 bar−1 [59–61]. The simulation
was run for 25 ns and the last 15 ns was used for analysis.
The results showed that the average RMSD of the proton-
transporting regions, M-domain embedding in POPC of A.
oryzae, H+-ATPase was 0.398 ± 0.007 nm (Figure S5). This
RMSD result supported that the M-domain embedding in
POPC of A. oryzae H+-ATPase was consistently preserved
with the corresponding regions in the initial structure of N.
crassaH+-ATPase.

In addition, the proton-transporting unit of the H+-
ATPase is defined by the presence critical proton-binding
sites along proton translocation path in M-domain [81].
Such mutational H+-ATPase studies in plants demonstrated
that substitution of Asp684 with Asn led to a defect in the
conformational change for transporting protons but did not
abolish the ability to bind to nucleotides and hydrolyze ATP
[82]. Consistently, the substitutions of Asp730 in N. crassa
H+-ATPase disrupted a salt bridge between Asp730 and
Arg695, preventing the transport of protons along the proton
cavity [83]. Similar structural arrangements in the proton-
transporting path included positions for each conserved
polar and charged residue, which may promote efficient
proton transport [81].Thus, the overall equivalent residues for
proton translocation must conserve in identity and position.
Therefore, fluctuations in the corresponding proton-binding
sites in the A. oryzae H+-ATPase, including basic side chains
(Arg705 and His711 on M5), acidic side chains (Asp740 on
M6, Glu815 on M8), and polar side chains (Tyr704 and
Ser709 on M5,Thr743 on M6), were expected to show RMSF
values comparable to those of the N. crassa H+-ATPase
(Figure 5).The RMSF of individual equivalent residues in the
A. oryzaeH+-ATPase also matched with their corresponding

sites in the N. crassaH+-ATPase (Table S8). For instance, the
acidic side chain Arg705 and the basic side chain Asp740
in the A. oryzae H+-ATPase fluctuated with the RMSF by
approximately 0.0737 nm and 0.1530 nm, respectively, which
are the corresponding sites in the N. crassa H+-ATPase,
Arg695 (0.0770 nm), and Asp730 (0.1118 nm).

In accordance with the overall comparable geometrical
properties, the A. oryzae and N. crassa H+-ATPase models
were substantiated for their structural conservation at the
dynamic level. Taken together, the integrative results derived
fromhomologymodeling andMD simulation supported that
the proton-transporting role along the proton-transporting
path in transmembrane domain was structurally conserved
between H+-ATPases in A. oryzae andN. crassa, where func-
tional conservation for the proton transporter is expected.

4. Conclusion

For the integrative multilevel annotation of metabolic trans-
porters, we propose a metabolic annotation and assess-
ment strategy based on sequence, structure, and function
relationship as a platform for increasing the functional
efficiency of transporter annotation. Of 12,096 total genes
in the A. oryzae genome, our strategy could be used to
identify 58 metabolic transporter genes. Under consensus
integrative databases, 55 unambiguous metabolic transporter
genes were distributed into channels and pores (7 genes),
electrochemical potential-driven transporters (33 genes), and
primary active transporters (15 genes).The remaining 3 hypo-
thetical metabolic transporter genes were manually curated
transporter functions by phylogenetic, protein domain, and
transporter component analysis. Among the unambiguous
metabolic transporter genes, the H+-ATPase or proton pump
encoded by the AO090005000842 gene was selected as a
representative case study of multilevel linkage annotation in
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Figure 5: Diagram shows the comparable RMSF between the A. oryzae and N. crassaH+-ATPases. This graph is generated using the data in
Table S8.

order to reveal the transporter functional role in A. oryzae
metabolism. Our metabolic annotation strategy can be used
for improving functional annotation and enhancing cellular
metabolic network and modeling in A. oryzae and relevant
fungi.
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[30] W. Kühlbrandt, J. Zeelen, and J. Dietrich, “Structure, mecha-
nism, and regulation of the Neurospora plasma membrane H+-
ATPase,” Science, vol. 297, no. 5587, pp. 1692–1696, 2002.

[31] T. Hiramoto, M. Tanaka, T. Ichikawa et al., “Endocytosis
of a maltose permease is induced when amylolytic enzyme
production is repressed in Aspergillus oryzae,” Fungal Genetics
and Biology, vol. 82, pp. 136–144, 2015.

[32] W. Vongsangnak, M. Salazar, K. Hansen, and J. Nielsen,
“Genome-wide analysis of maltose utilization and regulation in
aspergilli,”Microbiology, vol. 155, no. 12, pp. 3893–3902, 2009.

[33] Y. Toyoshima, A. Takahashi, H. Tanaka et al., “Lethal and
mutagenic effects of ion beams and 𝛾-rays inAspergillus oryzae,”
Mutation Research—Fundamental and Molecular Mechanisms
of Mutagenesis, vol. 740, no. 1-2, pp. 43–49, 2012.

[34] S. H. Brown, L. Bashkirova, R. Berka et al., “Metabolic engineer-
ing of Aspergillus oryzae NRRL 3488 for increased production
of L-malic acid,” Applied Microbiology and Biotechnology, vol.
97, no. 20, pp. 8903–8912, 2013.

[35] Y. Higuchi, T. Nakahama, J.-Y. Shoji, M. Arioka, and K.
Kitamoto, “Visualization of the endocytic pathway in the fila-
mentous fungusAspergillus oryzae using anEGFP-fused plasma
membrane protein,”Biochemical and Biophysical Research Com-
munications, vol. 340, no. 3, pp. 784–791, 2006.

[36] M. H. Saier Jr., V. S. Reddy, D. G. Tamang, and Å.
Västermark, “The transporter classification database,” Nucleic
Acids Research, vol. 42, no. 1, pp. D251–D258, 2014.

[37] Q. Ren, K. Chen, and I. T. Paulsen, “TransportDB: a compre-
hensive database resource for cytoplasmic membrane transport
systems and outer membrane channels,”Nucleic Acids Research,
vol. 35, supplement 1, pp. D274–D279, 2007.

[38] M. Huynen, B. Snel, W. Lathe III, and P. Bork, “Predicting
protein function by genomic context: quantitative evaluation
and qualitative inferences,” Genome Research, vol. 10, no. 8, pp.
1204–1210, 2000.

[39] M. H. Saier Jr., V. S. Reddy, B. V. Tsu, M. S. Ahmed, C. Li, and
G.Moreno-Hagelsieb, “TheTransporterClassificationDatabase
(TCDB): recent advances,”Nucleic Acids Research, vol. 44, no. 1,
pp. D372–D379, 2016.

[40] Q.Ken and J. T. Pauisers, “Comparative analyses of fundamental
differences in membrane transport capabilities in prokaryotes
and eukaryotes,” PLoS Computational Biology, vol. 1, no. 3,
article e27, 2005.

[41] S. Okuda, T. Yamada, M. Hamajima et al., “KEGG Atlas
mapping for global analysis of metabolic pathways,” Nucleic
Acids Research, vol. 36, pp. W423–W426, 2008.

[42] M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi,
and M. Tanabe, “Data, information, knowledge and principle:
back to metabolism in KEGG,” Nucleic Acids Research, vol. 42,
no. 1, pp. D199–D205, 2014.

[43] M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes
and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30,
2000.



12 BioMed Research International

[44] R. D. Finn, J. Mistry, B. Schuster-Böckler et al., “PFAM: clans,
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by proton pumps,” Pflügers Archiv, vol. 457, no. 3, pp. 573–579,
2009.

[82] M. J. Buch-Pedersen, K. Venema, R. Serrano, and M. G.
Palmgren, “Abolishment of proton pumping and accumulation
in the E1P conformational state of a plant plasma membrane
H+-ATPase by substitution of a conserved aspartyl residue in
transmembrane segment 6,”The Journal of Biological Chemistry,
vol. 275, no. 50, pp. 39167–39173, 2000.

[83] S. S. Gupta, N. D. DeWitt, K. E. Allen, and C. W. Slayman,
“Evidence for a salt bridge between transmembrane segments 5
and 6 of the yeast plasma-membrane H+-ATPase,” The Journal
of Biological Chemistry, vol. 273, no. 51, pp. 34328–34334, 1998.


