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Abstract
Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A 
significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by “clas-
sical” anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better toler-
ated. Bruton’s tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell 
activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many 
different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of 
autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great effi-
cacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target 
effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investiga-
tion of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling 
pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated 
in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well 
as available results from completed trials.
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Key Points 

Bruton’s tyrosine kinase (BTK) is a crucial signaling 
protein that links signals from the B-cell antigen receptor 
to the activation, proliferation, and survival of B cells.

Together with the emergence of very specific small-
molecule BTK inhibitors, this makes BTK an interest-
ing therapeutic target in the treatment of autoimmune 
diseases.

Here, we discuss the role of BTK in autoimmunity and 
the current status of BTK inhibition in clinical trials of 
systemic autoimmune diseases.

1 Introduction

Autoimmune disorders are driven by a loss of self-toler-
ance, often involving aberrant selection and activation of 
autoreactive B cells and subsequent auto-antibody produc-
tion [1]. Each B cell harbors a unique antigen receptor, 
the B-cell receptor (BCR), that can recognize a specific 
antigen, thereby activating the B cell. Bruton’s tyrosine 
kinase (BTK) is a crucial signaling protein that directly 
links BCR signals to B-cell proliferation and survival 
[2] (Fig.  1). The gene encoding BTK was discovered 
as the gene affected in X-linked agammaglobulinemia 
(XLA) patients [3, 4]. Because of the lack of functional 
BTK protein, mature B cells and antibodies are almost 
completely absent in these patients. The importance of 
BCR signaling in autoimmunity is underlined by stud-
ies in animal models showing that single-gene defects 
and changes in expression of BCR signaling molecules 
or inhibitory co-receptors can lead to autoimmunity [5, 
6]. Furthermore, in human autoimmune diseases, genetic 
susceptibility loci include genes encoding BCR signaling 
molecules, for example LYN, BLK, BANK1, PTPN22, and 
PXK [7–12]. The efficacy of B-cell-depleting therapy in 
autoimmune patients has prompted the search for more 
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specific B-cell-targeting therapies, leading to the devel-
opment of small-molecule inhibitors of BCR signaling 
molecules including BTK.

In addition to B cells, BTK is expressed by most hemat-
opoietic cells, including the monocyte/macrophage/dendritic 
cell lineage, granulocytes, mast cells, platelets, osteoclasts, 
and erythroid cells [3, 4, 13–20]. Although rarely BTK 
expression has been reported in mouse T and natural killer 
(NK) cells [21, 22], it is generally accepted that these cells 
do not express BTK protein (search BTK at http:// rstats. 
immgen. org/ Skyli ne/ skyli ne. html) [2–4, 20]. BTK also 
plays a role in many other key immune signaling pathways, 
including B-cell-activating factor receptor (BAFFR), Toll-
like receptor (TLR), chemokine receptor, and Fc receptor 
(FcR) signaling (Fig. 1) [20].

The first-in-kind inhibitor of BTK kinase activity to 
reach the clinic was ibrutinib (Imbruvica, PCI-32765), 
which obtained US Food and Drug Administration (FDA) 
approval in 2013 for mantle cell lymphoma (MCL) patients, 
and subsequently for chronic lymphocytic leukemia (CLL) 
patients upon successful phase II trials [23, 24]. The efficacy 
of ibrutinib in CLL may not only be attributed to inhibition 

of BTK, affecting survival and homing of CLL cells, as 
changes in the tumor microenvironment through off-target 
effects, such as reducing T-cell exhaustion and promoting 
an anti-tumor Th1 phenotype, might contribute to its effi-
cacy [25]. Off-target kinase inhibition may not be beneficial 
in autoimmunity and may be associated with significant 
side effects, making ibrutinib less suitable for treatment of 
chronic autoimmune diseases. These findings prompted the 
development of more specific BTK inhibitors with a favora-
ble safety profile for the treatment of autoimmune diseases.

The first BTK inhibitor reported for the treatment of a 
chronic inflammatory disorder was evobrutinib (M2951), 
in a clinical trial with active relapsing-remitting multiple 
sclerosis (MS) patients [26]. At a dose of 75 mg once daily, 
this BTK inhibitor significantly reduced the number of 
enhancing lesions from 12 through 24 weeks of treatment 
compared to placebo. Efficacy was maintained for 2 years 
with a reduction in annual relapse rate and increased time 
until first relapse [27].

A large number of experimental models support the effi-
cacy of BTK inhibition in MS. In experimental autoimmune 
encephalomyelitis (EAE) mouse models of MS, evobrutinib 

Fig. 1  Role of BTK in B-cell signaling. Overview of BCR signal-
ing and other important signaling modules for B cells. Upon BCR 
engagement, LYN will activate and phosphorylate Ig-α and Ig-β, 
subsequently activating SYK. Together with CD19-mediated activa-
tion of PI3K, this leads to the activation of SLP65, BTK, and PLCγ2. 
This in turn activates downstream signaling pathways crucial for 
proliferation and survival, including engagement of ERK, NF-κB, 
and downstream mediators of AKT like S6, and anti-apoptotic pro-
teins like BCL-2. Signaling downstream of TLRs and BAFFR also 
involves BTK phosphorylation, leading to activation of these same 
proliferation and survival factors. Other receptor signaling pathways 
like chemokine receptor signaling also contribute to migration, pro-
liferation, and survival of B cells. BTK Bruton’s tyrosine kinase, BCR 

B-cell receptor, Ig immunoglobulin, PTPN22 protein tyrosine phos-
phatase non-receptor type 22, SYK spleen tyrosine kinase, PI3K phos-
phoinositide 3-kinase, SLP65 Src homology 2 domain-containing leu-
kocyte adaptor protein of 65 kDa, CIN85 Cbl-interacting protein of 
85 kDa, PLCγ2 phospholipase Cγ2, DAG diacylglycerol, IP3 inositol 
triphosphate, PKC-β protein kinase C β, TRAF3 TNF receptor-associ-
ated factor 3, NIK NF-κB-inducing kinase, IKKα inhibitor of NF-κB 
kinase, MyD88 myeloid differentiation factor 88, MAL MyD88 
adaptor-like, IRAK2 interleukin-1 receptor-associated kinase 2, ERK 
extracellular signal-related kinase, NFAT nuclear factor of activated 
T cells, BCAP B-cell adaptor for PI3K, PTEN phosphatase and ten-
sin homolog, SHIP1 SH-2 containing inositol 5' polyphosphatase 1, 
BCL-2 B-cell lymphoma-2
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prophylactically reduced disease severity [28], and evobru-
tinib treatment in mice with established symptoms resulted 
in reduced leptomeningeal inflammation [29]. Hereby, the 
numbers of meningeal B cells were reduced, but myeloid cell 
infiltrates appeared to persist. BTK is expressed in microglia 
and astrocytes, and treatment with evobrutinib resulted in a 
significant reduction in astrocytosis in the cortex surround-
ing the areas of meningeal inflammation [29]. Likewise, 
ibrutinib treatment decreased the proliferative response 
of microglia cells upon injection of anti-myelin oligoden-
drocyte glycoprotein monoclonal antibodies in mice [30]. 
BTK inhibition resulted in improved remyelination in vitro 
in demyelinated cerebellar slices, as well as in vivo in a 
transgenic Xenopus laevis model [31]. Furthermore, evo-
brutinib was shown to inhibit activation of B cells, reduc-
ing pro-inflammatory cytokine RNA expression, and limit-
ing expression of proteins involved in antigen presentation 
[28]. However, T cells were also indirectly affected, and 
evobrutinib reduced disease severity in a B-cell independ-
ent MS mouse model [32]. In addition, GM-CSF-induced 
M1 macrophage differentiation and cytokine expression 
were reduced in vitro [33]. Taken together, these findings 
suggest that the therapeutic efficacy of BTK inhibition in 
MS patients may partly be due a substantial impact on the 
myeloid compartment, and thus beyond effects on B-cell 
activity.

The positive results of BTK inhibition obtained in MS 
patients, together with the promising efficacy in pre-clinical 
animal models of rheumatoid arthritis (RA) and systemic 
lupus erythematosus (SLE) [34, 35], make BTK inhibition 
an interesting therapeutic option in systemic autoimmune 
disorders. This notion is further supported by various human 
in vitro studies. In this review, we discuss the role of BTK in 
key signaling pathways involved in autoimmunity, as well as 
the various inhibitors that are currently being investigated in 
clinical trials in patients with systemic autoimmune disease.

2  Bruton’s Tyrosine Kinase (BTK) 
in Signaling Pathways

2.1  BTK in B‑Cell Receptor Signaling

In the context of autoimmune disease, B cells can have 
various pathogenic characteristics (Fig. 2). Autoreactive B 
cells can initiate and/or enhance the autoimmune response 
by presenting auto-antigens on major histocompatibility 
complex II (MHC-II) molecules, and by providing activat-
ing signals through co-stimulatory factors, such as CD80 
and CD86, to autoreactive T cells. In turn, B cells can dif-
ferentiate, in a T-dependent or -independent manner, into 
plasma cells that produce autoreactive antibodies. B cells 
can be the source of large quantities of cytokines, includ-
ing the pro-inflammatory cytokine IL-6. These support an 
inflammatory and autoimmune environment by activating 
surrounding cells and stimulating proliferation and sur-
vival. Finally, B cells are involved in stimulating the devel-
opment and maintenance of tertiary lymphoid structures 
by producing soluble factors, such as lymphotoxin α1β2 
[36, 37]. These structures may contain germinal centers 
and are often found in the affected organs of autoimmune 
disease patients.

B cells are generated in the bone marrow, where gene 
rearrangement of immunoglobulin V, D, and J elements 
in developing B cells leads to the expression of a unique 
BCR. Only those B cells expressing a functional BCR sur-
vive and subsequently undergo negative selection as they 
are checked for autoreactivity. This selection mainly takes 
place during development in the bone marrow and during 
the transitional stage in the circulation and is dependent 
on BCR signaling strength [38]. The BCR converts extra-
cellular activation by cognate antigen into intracellular 
signals, mostly dominated by phosphorylation of protein 
kinases (Fig. 1). Following antigen binding to the BCR, 

Fig. 2  The four main patho-
genic roles of B cells in the 
context of systemic autoim-
mune disease. (I) Initiation 
or enhancement of autoim-
mune responses by presenting 
auto-antigens to T cells and 
concomitantly providing co-
stimulatory signals. (II) B cells 
can differentiate into autoanti-
body-producing plasma cells. 
(III) B cells can produce pro-
inflammatory cytokines. (IV) B 
cells are involved in stimulating 
the development and mainte-
nance of these tertiary lymphoid 
structures
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the recruitment of the Src-family tyrosine protein kinase 
Lck/yes novel tyrosine kinase (LYN) and phosphorylation 
of the IgM-associated heterodimers Igα and Igβ are early 
events in this cascade, leading to the phosphorylation of 
spleen tyrosine kinase (SYK) [39]. BTK is then recruited 
to the cell membrane by phosphoinositide 3-kinase (PI3K) 
through the formation of phosphatidylinositol-3,4,5-
triphosphate  (PIP3) [40]. This recruitment enables SYK to 
phosphorylate BTK at tyrosine Y551 in its kinase domain 
[41–45]. SYK concomitantly phosphorylates the B-cell 
linker (BLNK) protein, also known as SLP65, which 
serves as a scaffolding protein by interacting with vari-
ous signaling molecules including BTK and PLCγ2 [46]. 
Upon BCR engagement, multiple SLP65 molecules are 
recruited to CIN85 trimers, resulting in the assembly of 
large CIN85-SLP65 macromolecular signaling complexes 
[47]. As a result, BTK is fully activated and autophos-
phorylation at Y223 follows, although this event does not 
appear to be crucial for BTK function in mouse B cells 
[48]. Active BTK in turn phosphorylates phospholipase 
Cγ2 (PLCγ2) [49], leading to cytoplasmic calcium influx 
and the activation of several downstream signaling path-
ways and transcription factors, important for survival, 
proliferation, and differentiation, including nuclear factor 
(NF)-κB [50, 51].

The rapid and stronger response of IgG-expressing 
memory B cells is thought to be, at least partially, depend-
ent on the presence of the immunoglobulin tail tyrosine 
(ITT) motif in the cytoplasmic tail of membrane IgG [52]. 
The ITT motif can be phosphorylated by SYK, resulting 
in the recruitment of BTK via the adaptor protein Grb2. 
The dual activation pathway of BTK is thought to result 
in an amplification of IgG-induced calcium mobilization 
in memory B cells.

2.2  BTK and B‑Cell‑Activating Factor Receptor 
(BAFFR) Signaling

Survival and homeostatic proliferation of mature B cells are 
dependent on tonic BCR signaling and B-cell activating fac-
tor (BAFF), which is a cytokine that belongs to the tumor 
necrosis factor (TNF) ligand family [53, 54]. BAFF can 
bind three receptors: B-cell maturation antigen (BCMA), 
transmembrane activator and CAML interactor (TACI), and 
BAFF receptor (BAFFR). In addition to activating the non-
canonical NFκB pathway, the latter transduces survival sig-
nals via the canonical NF-κB pathway by co-opting the BCR 
signaling pathway through SYK and BTK (Fig. 1) [55–57]. 
Activation of these downstream signaling pathways fuels 
B-cell survival in a direct and indirect fashion: directly by 
enhancing the expression of pro-survival factors and damp-
ening the expression of pro-apoptotic factors [58, 59], and 
indirectly by driving the expression of the receptors for 

BAFF and their downstream signaling substrates [60–62]. 
In addition, during B-cell activation BAFF supports class 
switching and differentiation into plasma cells [63].

Murine studies have shown that a disbalance in either of 
these signals can cause an altered B-cell selection and can 
thereby result in an autoimmune phenotype. For example, 
overexpression of BAFF in mice leads to the development 
of a Sjögren/SLE-like phenotype [64]. Similarly, B-cell-spe-
cific overexpression of BTK leads to a systemic autoimmune 
phenotype in mice [6]. In human systemic autoimmune dis-
ease, increased BAFF levels in serum and enhanced BCR 
signaling in circulating B cells are also observed [63, 65], 
possibly allowing the escape of autoreactive B cells from 
negative selection. Increased levels of BAFF may rescue 
autoreactive B cells from anergy and promote the formation 
of a mature follicular dendritic cell network, allowing sub-
sequent affinity maturation and differentiation in germinal 
centers (GC) [66, 67].

2.3  BTK in Other Signaling Pathways

Next to its well described role in BCR signaling, BTK is 
also involved in signaling downstream of TLRs (Fig. 1), 
specifically TLR3, 4, 7, 8, and 9 both in B cells and in other 
hematopoietic cell types [68]. Although evidence exists 
for the involvement of BTK kinase activity in downstream 
TLR signaling [69], BTK is mainly thought to function as 
a linker protein for the recruitment of myeloid differentia-
tion primary response 88 (MyD88) and MyD88 adaptor-like 
(MAL) to the receptor [70]. TLR stimulation leads to the 
activation of interferon-regulatory factors and/or the NF-κB 
pathway, resulting in expression of co-stimulatory receptors 
and adhesion molecules, the production of pro-inflammatory 
cytokines and antigen presentation. In B cells, TLR activa-
tion leads to B-cell survival by similar mechanisms as previ-
ously described for BCR and BAFF signaling [71]. There-
fore, TLR signaling can lead to synergistic effects when B 
cells are simultaneously stimulated by the BCR [72].

BTK is also involved in FcR signaling [73, 74]. The acti-
vation of the FcεR promotes histamine release in mast cells 
and FcγR activation leads to pro-inflammatory cytokine 
production and enhances antigen presentation by myeloid 
cells [75]. BTK links RANK (receptor activator of NF-κΒ) 
activation together with co-stimulation, for example by 
FcRs, to drive osteoclast differentiation [76]. This can play 
a pathogenic role in systemic autoimmune diseases such as 
RA [76, 77]. BTK is involved in downstream signaling of 
several chemokine receptors, including CXCR4 [78], and 
in the intracellular signal transduction required for integrin 
activation and upregulation [79–81]. Therefore, in leuko-
cytes it is important for the attraction towards and infiltra-
tion into the site of inflammation. BTK may also play an 
antibody-independent role in autoimmunity through its 



1609BTK Inhibition in Systemic Autoimmune Disease

interaction with transcription factor Bright/ARID3a, which 
is implicated in Ig heavy chain transcription [82]. Mice over-
expressing Arid3a display autoimmunity, and SLE patients 
show increased ARID3a expression in B cells, although this 
did not correlate with autoantibody production [83–85]. In 
this context, it is of note that both ARID3a and interferon 
(IFN)α were induced in B cells upon TLR9 stimulation [86].

Taken together, the wide expression and functional profile 
of BTK implies that modulating BTK activity could be of 
benefit by restraining these inflammatory and autoimmune 
processes by targeting multiple pathways in multiple cell 
types simultaneously.

2.4  BTK Structure and Inhibitor Target Sites

BTK is a member of the highly conserved family of cyto-
plasmic TEC kinases, which also includes tyrosine kinase 
expressed in hepatocellular carcinoma (TEC), interleukin-2 
inducible T-cell kinase (ITK), bone marrow-expressed 
kinase (BMX), and resting lymphocyte kinase (RLK) [19].

BTK consists of 659 amino acids and contains five 
domains with two phosphorylation sites. It is transiently 
recruited to the cell membrane upon BCR activation through 
the activity of PI3K, which results in the generation of  PIP3, 
which interacts with the N-terminal pleckstrin homology 
(PH) domain of BTK. In addition, it contains a Tec homol-
ogy (TH), a SRC homology 3 (SH3), and an SH2 domain, 
as well as a C-terminal kinase domain. The proline-rich 
TH domain is important for optimal activity and stabil-
ity of the protein, but also has the capacity to bind other 
kinases including LYN. The SH3 domain contains the Y223 
autophosphorylation site and interacts with various signal-
ing molecules via binding to proline-rich regions. The SH2 
domain has the capacity to bind to phosphorylated tyrosine 
residues of signaling molecules, in particular SLP65.

Because many human diseases, particularly malignancies, 
involve dysregulation of one of the 518 identified protein 
kinases [87], these enzymes have become important drug 
targets. Nearly all currently FDA-approved small-molecule 
kinase inhibitors have a competitive mechanism of action. 
Such reversible inhibitors are classified as type I-V, based on 
their interaction with the ATP-binding pocket of an active 
or inactive kinase conformation or binding to a site distinct 
from the active site [88]. In contrast, many BTK inhibitors, 
including the prototypic irreversible inhibitor ibrutinib [34, 
35], are classified as type VI, and form a covalent bond with 
Cys-481 within the ATP-binding site of the kinase domain. 
They generally have a high specificity, because the Cys-
481 amino acid residue is poorly conserved among kinases 
(Table  1). More recently developed inhibitors, such as 
acalabrutinib, poseltinib, spebrutinib, and tirabrutinib, also 
interact irreversibly with Cys-481 [89] (Table 1). Although 

rilzabrutinib (PRN-1008) forms a covalent bond with Cys-
481, inhibition is reversible [90].

Other reversible BTK inhibitors, including RN486, 
CGI1746, and fenebrutinib [75, 91, 92], are classified as type 
II inhibitors, because they stabilize an inactive non-phos-
phorylated form of BTK [93]. These inhibitors target the 
H3 pocket (a network of three hydrogen bonds involving the 
residues K430, G414, and T474), which is immediately adja-
cent to the region occupied by ATP. Thereby, these inhibitors 
sequester the Y551 residue and prevent its phosphorylation 
[94]. Interestingly, the ability to sequester Y551 was shown 
to determine the potency for inhibition of FcγR and FcεR 
signaling, but not of BCR signaling, perhaps providing 
an added benefit in autoimmune and allergic indications, 
respectively [94]. Very recently, another BTK inhibitor was 
developed, remibrutinib (LOU064), which also stabilizes an 
inactive BTK conformation by selectively targeting the H3 
pocket by forming a covalent bond [95]. An obvious impor-
tant benefit of covalent inhibitors is their ability to reach 
higher and more sustained BTK occupancy, compared with 
reversible inhibitors that need to be present in the circulation 
at high levels to allow for effective inhibition.

It has been well documented that many CLL patients 
treated with ibrutinib develop drug resistance due to a 
C481S mutation that disrupts the binding of this BTK inhib-
itor to the cysteine residue [96]. Several BTK inhibitors can 
effectively counteract ibrutinib-resistant C481S-BTK. These 
include the type II inhibitors CGI-1746 and fenebrutinib, 
as well as XMU‐MP‐3, which has a unique binding mode 
and interacts with the M477, E445, and S538 residues of 
BTK. Likewise, the irreversible inhibitor ZYBT1 inhibits 
both wild-type and C481S-BTK but binds to the same site as 
ibrutinib [75, 92, 97, 98]. Altogether, the current number of 
BTK inhibitors and the obtained knowledge on their biologi-
cal activity is overwhelming, given that already by the end of 
February 2017 almost 1,500 small-molecule inhibitors had 
been developed, involving over 300 BTK-inhibitor-related 
patents [89].

3  Evidence For a Critical Role of BTK 
in Autoimmunity

3.1  Animal Models

Many animal studies have indicated a critical role of BTK in 
autoimmunity, in both B cells and myeloid cells. Btk-defi-
cient Xid mice are protected against the development of (full 
blown) autoimmunity in several disease models, including 
collagen-induced arthritis (CIA) for RA and the NZBxNZW 
model for SLE [20, 99, 100]. Vice versa, overexpression of 
BTK specifically in murine B cells is sufficient to induce 
a spontaneous autoimmune phenotype resembling human 
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Table 1  Characteristics of the Bruton’s tyrosine kinase (BTK) inhibitors first to be developed and in autoimmune disease clinical trials

BLK B lymphocyte kinase, BMX bone-marrow expressed kinase, Cys481 cysteine 481, EGFR epidermal growth factor receptor, ERBB4 Erb-B2 
receptor tyrosine kinase 4, FGR Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog, IC50 half maximal inhibitory concentration, 
ITK interleukin-2 inducible T-cell kinase, JAK-3 Janus kinase-3, LYN Lck/yes novel tyrosine kinase, RLK resting lymphocyte kinase, SRC proto-
oncogene tyrosine-protein kinase Src, TEC tyrosine kinase expressed in hepatocellular carcinoma, TXK TXK tyrosine kinase
*No data available

Inhibitor (other names) Interaction type Interaction site Other targets References

Ibrutinib (Imbruvica/PCI-32765) Irreversible, covalent Cys481  IC50 = 0.5 nM BMX  IC50 = 0.8 nM [35]
EGFR  IC50 = 5.6 nM
ITK  IC50 = 11 nM
TEC  IC50 = 78 nM
LYN  IC50 = 200 nM

Acalabrutinib (Calquence/ACP-196) Irreversible, covalent Cys481  IC50 = 3 nM ERBB4  IC50 = 16 nM [160]
BMX  IC50 = 46 nM
TEC  IC50 = 126 nM
TXK  IC50 = 368 nM

BMS-986142 Reversible, covalent Cys481  IC50 < 0.5 nM TEC  IC50 = 10 nM [105]
ITK  IC50 = 15 nM
BLK  IC50 = 23 nM
TXK  IC50 = 28 nM
BMX  IC50 = 32 nM

Branebrutinib (BMS-986195) Irreversible, covalent Cys481  IC50 = 0.1 nM TEC  IC50 = 0.9 nM [139]
BMX  IC50 = 1.5 nM
TXK  IC50 = 5.0 nM
ITK  IC50 = 100 nM

Elsubrutinib (ABBV-105) Irreversible, covalent Cys481  IC50 = 180 nM BLK  IC50 = 5940 nM [125]
JAK-3  IC50 = 8640 nM
TXK  IC50 = 9180 nM
EGFR  IC50 = 14400 nM

Evobrutinib (M2951) Irreversible, covalent Cys481  IC50 = 9 nM BMX  IC50 = 20 nM [126]
TEC  IC50 = 7300 nM

Fenebrutinib (G DC-0853/RG7845) Reversible, non-covalent K430, M477, and D539  IC50 
= 2.3 nM

SRC  IC50 = 302 nM [92]
BMX  IC50 = 351 nM
FGR  IC50 = 387 nM

Orelabrutinib (ICP-022) Irreversible, covalent Cys481  IC50 = 1.6 nM * [161]
Poseltinib (HM71224/LY-3337641) Irreversible, covalent Cys481  IC50 = 1.95 nM BMX  IC50 = 0.64 nM [103]

TEC  IC50 = 4.57 nM
TXK  IC50 = 4.62 nM
EGFR  IC50 = 4.96 nM
BLK  IC50 = 13.5 nM

Remibrutinib (LOU064) Irreversible, covalent Cys481  IC50 = 1.3 nM * [95]
Rilzabrutinib (PRN1008) Reversible, covalent Cys481  IC50 = 1.3 nM TEC  IC50 = 0.8 nM [132]

BMX  IC50 = 1.0 nM
RLK  IC50 = 1.2 nM
BLK  IC50 = 6.3 nM

Spebrutinib (CC-292/AVL292) Irreversible, covalent Cys481  IC50 < 0.5 nM BMX  IC50 = 0.7 nM [104]
TEC  IC50 = 6.2 nM
TXK  IC50 = 8.9 nM
ITK  IC50 = 36 nM

TAS5315 Covalent* Cys481  IC50 < 0.15 nM * [141, 142]
Tirabrutinib (ONO/GS-4059) Irreversible, covalent Cys481  IC50 = 2 nM BMX  IC50 = 6 nM [162]

TEC  IC50 = 48 nM
TXK  IC50 = 92 nM
BLK  IC50 = 300 nM
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SLE and Sjögren’s syndrome (SjS), featuring spontaneous 
GC and plasma cell formation, autoantibody production and 
immune infiltration in lungs, kidneys, and salivary glands 
[6]. This phenotype depends on B–T cell interaction and 
TLR signaling, and can be ameliorated by in vivo Btk inhi-
bition [6, 101, 102].

In murine CIA, Btk inhibition in vivo reduces disease 
severity in a dose-dependent fashion, even after onset of 
arthritis, comparable to standard-of-care therapeutics such 
as dexamethasone (Table 2) [35, 92, 103, 104]. Furthermore, 
Btk inhibition enhances the effects of standard-of-care thera-
peutics when administered together [105]. Inhibitors may 
target multiple cell types involved in the pathogenesis of 
disease, including B cells, myeloid cells, and osteoclasts, 
thereby reducing autoantibody formation, pro-inflammatory 
cytokine production and bone destruction. Similar to CIA, 
Btk inhibition also protects against severe progressive dis-
ease in a number of murine lupus models, including mice 
with a mutation in Fas (MRL/lpr) [2]. The efficacy depends 
on inhibition of both B cells and myeloid cells. Interestingly, 
lupus nephritis or kidney damage is often reduced, despite 
persistence of autoantibodies in the serum, particularly anti-
RNA antibodies [106].

Other non-autoimmune disease models provide evidence 
of a role for BTK in cell types and pathogenic mechanisms 
that may be relevant in autoimmune diseases. For example, 
Btk is essential in the crosstalk between TLR4 and FcγRIIa 
signaling leading to activation of alveolar neutrophils in an 
LPS/immune complex-mediated model of acute respiratory 
distress syndrome (ARDS) [107]. Furthermore, Btk inhibi-
tion inhibited neutrophil extracellular trap release into the 
lungs upon influenza infection in mice [108]. BTK may also 
be protective in some diseases. In bone marrow-derived 
macrophages in mice (and monocytes in humans), Btk 
deficiency or Btk inhibition leads to increased NLR family 
pyrin domain-containing 3 (NLRP3) activation, increasing 
susceptibility for inflammatory bowel disease (IBD) [109]. 
Together these studies emphasize the therapeutic potential 
of BTK inhibition in autoimmunity and may explain side 
effects observed in patients treated with BTK inhibitors.

3.2  Human Studies

BTK protein and phosphorylated BTK levels are increased 
in circulating B cells of RA, SjS, and granulomatosis with 
polyangiitis (GPA) patients [65, 110]. This increase was 
already evident in new emerging B cells, i.e., transitional 
and naïve B cells, and was associated with active disease. 
BTK protein and phosphorylation levels correlated with 
autoantibodies and with numbers of pathogenic T cells in the 
circulation, as well as with immune infiltrates in the salivary 
glands of SjS patients [110, 111].

In vitro treatment of macrophages in synovial explants 
of RA and psoriatic arthritis patients with RN486, a highly 
selective, reversible inhibitor of BTK, showed that BTK 
is required for cytokine production in macrophages upon 
FcR or CD40 stimulation [112]. Enhanced BTK expres-
sion, through BTK-encoding adenovirus transduction of 
macrophages, increased IL-6 production upon CD40 or 
FcγR stimulation [112]. In a co-culture system of activated 
platelets with primary human fibroblast-like synoviocytes 
(FLS), cytokine production was inhibited by RN486 in a 
dose-dependent manner [113].

Similarly, pro-inflammatory cytokine production by effec-
tor B cells of systemic sclerosis (SSc) patients is inhibited by 
ibrutinib treatment in vitro, as is anti-topoisomerase autoan-
tibody production [114]. In B cells from GPA patients, 
in vitro BTK inhibition with BMS-986142 also reduced 
BCR-mediated cytokine production, but appeared to be less 
effective in B cells from patients with active GPA, compared 
to B cells from patients in remission and healthy controls 
[65]. Furthermore, in vitro memory B cell and plasma cell 
formation and antibody production were inhibited in patients 
in remission, but not in patients with active GPA. These 
findings indicate that although BTK inhibition can inhibit 
effector functions of B cells in autoimmune patients, B cells 
from patients with active disease may be less susceptible to 
BTK inhibition.

Based on the observation that BTK inhibition protects 
against fatal lung injury in acute respiratory distress syn-
drome mouse models [107, 108], as well as the rather 
mild course of Coronavirus disease 2019 (COVID-19) in 
XLA patients and BTK inhibitor-treated leukemia patients 
[115–119], acalabrutinib was administered in a prospec-
tive study in COVID-19 patients. Clinical recovery of 
COVID-19 was seen and inflammatory markers normal-
ized, indicating that BTK inhibition has the capacity to cor-
rect the dysregulated and damaging inflammatory response 
by macrophages [120]. Although a randomized phase 
II clinical trial of acalabrutinib in hospitalized patients 
(NCT04346199, available at clinicaltrials.gov) failed to 
meet the primary endpoint according to an Astra Zeneca 
press release on 12 November 2020, other BTK inhibitors, 
including abivertinib (NCT04528667; NCT04440007) and 
ibrutinib (NCT04439006), are currently under investigation 
in clinical trials. Interestingly, very recently, evidence was 
provided that during severe COVID-19, the SYK inhibitor 
fostamatinib can counteract the critical pro-inflammatory 
role of aberrantly glycosylated anti-spike IgG that acti-
vates macrophages via FcγRs [121]. Blocking signaling of 
the FcγRIIa-SYK axis in platelets using fostamatinib may 
additionally prevent platelet aggregation and vascular com-
plications in COVID-19 patients [122]. These findings may 
have implications for the treatment of autoimmune disorders, 



1612 S. F. H. Neys et al.

Ta
bl

e 
2 

 P
re

cl
in

ic
al

 d
at

a 
fo

r B
ru

to
n’

s t
yr

os
in

e 
ki

na
se

 (B
TK

) i
nh

ib
ito

rs
 e

va
lu

at
ed

 in
 c

lin
ic

al
 tr

ia
ls

 fo
r a

ut
oi

m
m

un
e 

di
so

rd
er

s

A
ni

m
al

 m
od

el
s

H
um

an
 in

 v
itr

o 
stu

di
es

Re
fe

re
nc

es

Ac
al

ab
ru

tin
ib

–
B

 c
el

ls
: I

nh
ib

iti
on

 o
f B

-c
el

l a
ct

iv
at

io
n 

(C
D

69
 e

xp
re

ss
io

n)
[1

60
]

BM
S-

98
61

42
CA

IA
: T

re
at

m
en

t f
ro

m
 th

e 
st

ar
t, 

do
se

-d
ep

en
de

nt
 re

du
ct

io
n 

of
 c

lin
ic

al
 sc

or
es

C
IA

 (m
ic

e)
: T

re
at

m
en

t p
rio

r t
o 

di
se

as
e 

on
se

t, 
do

se
-d

ep
en

de
nt

 re
du

ct
io

n 
of

 d
is

ea
se

 se
ve

rit
y;

 
tre

at
m

en
t s

ta
rt 

at
 ti

m
e 

of
 b

oo
st 

(d
ay

 2
1)

, d
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

of
 d

is
ea

se
 se

ve
rit

y 
an

d 
jo

in
t 

de
str

uc
tio

n.
 E

nh
an

ce
s e

ffi
ca

cy
 o

f s
ta

nd
ar

d-
of

-c
ar

e 
ag

en
ts

G
PA

: R
ed

uc
ed

 c
yt

ok
in

e 
ex

pr
es

si
on

, b
ut

 n
ot

 m
em

or
y 

ce
ll/

 p
la

sm
a 

ce
ll 

fo
rm

at
io

n 
an

d 
an

tib
od

y 
pr

od
uc

tio
n 

in
 B

 c
el

ls
 fr

om
 a

ct
iv

e 
pa

tie
nt

s. 
In

 B
 c

el
ls

 fr
om

 p
at

ie
nt

s i
n 

re
m

is
si

on
, t

he
se

 e
ffe

ct
or

 
fu

nc
tio

ns
 w

er
e 

in
hi

bi
te

d 
by

 B
M

S-
98

61
42

[6
5,

 1
05

]

Br
an

eb
ru

tin
ib

C
IA

 (m
ic

e)
: T

re
at

m
en

t a
t i

m
m

un
iz

at
io

n,
 d

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 c
lin

ic
al

 sc
or

es
, r

ed
uc

ed
 jo

in
t 

de
str

uc
tio

n,
 a

lm
os

t c
om

pl
et

e 
pr

ot
ec

tio
n 

at
 h

ig
he

st 
do

se
N

ZB
/W

: R
ed

uc
ed

 m
or

ta
lit

y,
 d

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 p
ro

te
in

ur
ia

, a
nt

i-d
sD

N
A

, r
ed

uc
ed

 g
lo

-
m

er
ul

on
ep

hr
iti

s (
co

m
pa

ra
bl

e 
to

 p
re

dn
is

ol
on

e)

H
ea

lth
y 

B
 c

el
ls

/P
B

M
C

: I
nh

ib
its

 B
C

R-
m

ed
ia

te
d 

pr
ol

ife
ra

tio
n 

an
d 

ac
tiv

at
io

n 
of

 B
 c

el
ls

, F
cR

-m
ed

i-
at

ed
 T

N
Fα

 p
ro

du
ct

io
n 

by
 P

B
M

C
[1

39
]

El
su

br
ut

in
ib

N
P-

im
m

un
iz

at
io

ns
: N

P-
LP

S:
 n

o 
si

gn
ifi

ca
nt

 e
ffe

ct
 o

n 
an

tib
od

y 
de

ve
lo

pm
en

t; 
N

P-
Fi

co
ll:

 re
du

ce
d 

Ig
M

 a
nd

 Ig
G

3;
 N

P-
K

LH
: r

ed
uc

ed
 Ig

M
 a

fte
r b

oo
st,

 h
ig

h 
do

se
 re

du
ce

d 
Ig

G
1

Va
cc

in
e 

re
sp

on
se

 (p
ne

um
oc

oc
ca

l, 
Pr

ev
na

r)
: n

o 
si

gn
ifi

ca
nt

 e
ffe

ct
 o

n 
an

tib
od

y 
le

ve
ls

C
IA

 (r
at

s)
: T

re
at

m
en

t a
t o

ns
et

 d
is

ea
se

, d
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

in
 c

lin
ic

al
 sc

or
e,

 b
on

e 
lo

ss
IF

N
-α

-a
cc

el
er

at
ed

 N
ZB

/W
 F

1:
 T

re
at

m
en

t p
rio

r t
o 

on
se

t p
ro

te
in

ur
ia

, d
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

in
 

m
or

ta
lit

y,
 p

ro
te

in
ur

ia
, a

nd
 a

nt
i-d

sD
N

A
 (o

nl
y 

hi
gh

 d
os

es
)

H
ea

lth
y 

B
 c

el
ls

/P
B

M
C

/e
os

in
op

hi
ls

: I
nh

ib
its

 B
C

R-
m

ed
ia

te
d 

B
-c

el
l a

ct
iv

at
io

n,
 Ig

E-
m

ed
ia

te
d 

hi
st

a-
m

in
e 

re
le

as
e 

by
 e

os
in

op
hi

ls
 a

nd
 F

cR
- a

nd
 T

LR
-m

ed
ia

te
d 

cy
to

ki
ne

 p
ro

du
ct

io
n 

by
 P

B
M

C
[1

25
]

Ev
ob

ru
tin

ib
C

IA
 (m

ic
e)

: T
re

at
m

en
t b

ef
or

e 
on

se
t o

f d
is

ea
se

, d
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

of
 in

ci
de

nc
e 

an
d 

se
ve

rit
y 

of
 a

rth
rit

is
, a

nd
 h

ist
op

at
ho

lo
gi

ca
l s

co
re

s o
f j

oi
nt

 in
fla

m
m

at
io

n/
de

str
uc

tio
n

C
IA

 (r
at

s)
: t

re
at

m
en

t a
t o

ns
et

 o
f d

is
ea

se
, d

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 c
lin

ic
al

 a
nd

 h
ist

op
at

ho
lo

gi
-

ca
l s

co
re

IF
N

-α
-a

cc
el

er
at

ed
 N

ZB
/W

 F
1:

 D
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

of
 p

ro
te

in
ur

ia
 a

nd
 k

id
ne

y 
da

m
ag

e,
 

re
du

ce
d 

pl
as

m
a 

ce
ll 

nu
m

be
rs

 a
nd

 B
- a

nd
 T

-c
el

l a
ct

iv
at

io
n

EA
E:

 B
ef

or
e 

on
se

t: 
D

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 d
is

ea
se

 se
ve

rit
y,

 c
yt

ok
in

e 
ex

pr
es

si
on

, r
ed

uc
ed

 B
- 

an
d 

T-
ce

ll 
in

fil
tra

tio
n 

in
 C

N
S,

 re
du

ce
d 

A
g-

de
pe

nd
en

t B
-c

el
l d

iff
er

en
tia

tio
n,

 a
nt

ig
en

 p
re

se
nt

at
io

n

H
ea

lth
y 

B
 c

el
ls

: I
nh

ib
iti

on
 o

f B
C

R-
in

du
ce

d 
B

-c
el

l a
ct

iv
at

io
n 

(c
om

pa
ra

bl
e 

to
 M

S 
B

 c
el

ls
), 

in
hi

bi
-

tio
n 

of
 B

C
R-

 a
nd

 T
LR

9-
in

du
ce

d 
cy

to
ki

ne
 p

ro
du

ct
io

n
M

S 
B

 c
el

ls
: B

TK
 p

ro
te

in
 le

ve
ls

 in
cr

ea
se

d 
in

 m
em

or
y 

C
D

27
+

 B
 c

el
ls

, n
o 

di
ffe

re
nc

es
 in

 B
TK

 
ph

os
ph

or
yl

at
io

n 
w

ith
 h

ea
lth

y 
B

 c
el

ls
.

[2
8,

 1
26

, 1
63

]

Fe
ne

br
ut

in
ib

C
IA

 (r
at

s)
: T

re
at

m
en

t s
ta

rte
d 

af
te

r o
ns

et
 o

f a
rth

rit
is

, d
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

of
 a

nk
le

 th
ic

kn
es

s, 
in

fla
m

m
at

io
n 

in
 th

e 
jo

in
ts

 a
nd

 jo
in

t d
es

tru
ct

io
n

H
ea

lth
y 

B
 c

el
ls

: I
nh

ib
its

 a
nt

i-I
gM

-in
du

ce
d 

B
C

R
 si

gn
al

in
g,

 a
nt

i-I
gM

- a
nd

 C
D

40
L-

in
du

ce
d 

pr
ol

if-
er

at
io

n
H

ea
lth

y 
C

D
14

+
 m

on
oc

yt
es

: p
re

ve
nt

s F
cR

-m
ed

ia
te

d 
TN

Fα
 p

ro
du

ct
io

n

[9
2]

O
re

la
br

ut
in

ib
C

IA
 (r

at
s)

: D
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

in
 d

is
ea

se
 sc

or
e,

 p
ro

in
fla

m
m

at
or

y 
cy

to
ki

ne
 p

ro
du

ct
io

n,
 a

nd
 

hi
sto

pa
th

ol
og

ic
al

 sc
or

e
M

R
L/

lp
r: 

In
cr

ea
se

d 
su

rv
iv

al
 o

f t
re

at
ed

 m
ic

e,
 re

du
ct

io
n 

in
 a

nt
i-d

sD
N

A
 a

nt
ib

od
ie

s a
nd

 IF
N

α 
le

ve
ls

 
in

 se
ru

m
, u

rin
e 

pr
ot

ei
n 

le
ve

ls

*
¥

Po
se

lti
ni

b
C

IA
 (m

ic
e)

: T
re

at
m

en
t s

ta
rte

d 
10

 d
ay

s a
fte

r b
oo

st,
 re

du
ce

d 
w

ei
gh

t l
os

s a
nd

 se
ve

rit
y 

of
 a

rth
rit

is
, 

re
du

ce
d 

IL
-6

 a
nd

 Ig
G

 se
ru

m
 le

ve
ls

 a
nd

 re
du

ce
d 

bo
ne

 e
ro

si
on

/b
on

e 
lo

ss
M

R
L/

lp
r:

 T
re

at
m

en
t s

ta
rte

d 
at

 8
 w

ee
ks

 o
f a

ge
, r

ed
uc

ed
 B

-c
el

l a
ct

iv
at

io
n,

 re
du

ce
d 

an
ti-

D
N

A
 Ig

G
, 

re
du

ce
d 

sk
in

 le
si

on
s, 

im
pr

ov
ed

 re
na

l f
un

ct
io

n
N

ZB
/W

 F
1:

 T
re

at
m

en
t s

ta
rte

d 
at

 1
8 

w
ee

ks
 o

f a
ge

, r
ed

uc
ed

 G
C

 B
-c

el
l/p

la
sm

a 
ce

ll 
fo

rm
at

io
n,

 
im

pr
ov

ed
 re

na
l f

un
ct

io
n,

 in
cr

ea
se

d 
su

rv
iv

al
 a

t h
ig

he
r d

os
es

H
ea

lth
y 

B
-c

el
ls

: I
nh

ib
its

 si
gn

al
in

g 
an

d 
ac

tiv
at

io
n

H
ea

lth
y 

C
D

14
+

 M
on

oc
yt

es
: d

os
e-

de
pe

nd
en

t i
nh

ib
iti

on
 o

f c
yt

ok
in

e 
pr

od
uc

tio
n 

up
on

 F
cR

 a
nd

 T
LR

 
sti

m
ul

at
io

n.
 In

du
ct

io
n 

of
 o

ste
oc

la
st 

fo
rm

at
io

n 
in

hi
bi

te
d.

[1
03

, 1
30

]



1613BTK Inhibition in Systemic Autoimmune Disease

an
ti-

ds
D

NA
 a

nt
i-d

ou
bl

e 
str

an
d 

D
N

A
, a

nt
i-G

BM
 a

nt
i-g

lo
m

er
ul

ar
 b

as
al

 m
em

br
an

e,
 B

C
R 

B
-c

el
l 

re
ce

pt
or

, B
U

N
 b

lo
od

 u
re

a 
ni

tro
ge

n,
 C

AI
A 

co
lla

ge
n 

an
tib

od
y-

in
du

ce
d 

ar
th

rit
is

, C
IA

 c
ol

la
ge

n-
in

du
ce

d 
ar

th
rit

is
, C

N
S 

ce
nt

ra
l n

er
vo

us
 s

ys
te

m
, E

AE
 e

xp
er

im
en

ta
l a

ut
oi

m
m

un
e 

en
ce

ph
al

om
ye

lit
is

, F
cR

 F
c 

re
ce

pt
or

, G
C

 g
er

m
in

al
 c

en
te

r, 
G

PA
 g

ra
nu

lo
m

at
os

is
 w

ith
 p

ol
ya

ng
iit

is
, I

FN
α 

in
te

rfe
ro

n 
α,

 I
TP

 im
m

un
e 

th
ro

m
bo

cy
to

pe
ni

a,
 K

C
 k

er
at

in
oc

yt
e-

de
riv

ed
 c

he
m

ok
in

e,
 M

-C
SF

 m
ac

ro
ph

ag
e-

co
lo

ny
-s

tim
ul

at
in

g 
fa

ct
or

, M
IP

-1
α 

m
ac

ro
ph

ag
e 

in
fla

m
m

at
or

y 
pr

ot
ei

n 
α,

 M
RL

/lp
r 

M
ur

ph
y 

Ro
th

s 
La

rg
e 

ly
m

ph
op

ro
lif

er
at

iv
e,

 M
S 

m
ul

tip
le

 s
cl

er
os

is
, N

P-
K

LH
 4

-h
yd

ro
xy

-3
-n

itr
op

he
ny

la
ce

ty
l-k

ey
ho

le
 li

m
pe

t, 
N

P-
LP

S 
4-

hy
dr

ox
y-

3-
ni

tro
ph

en
yl

ac
et

yl
-li

po
po

ly
sa

ch
ar

id
e,

 P
BM

C
 p

er
ip

he
ra

l b
lo

od
 

m
on

on
uc

le
ar

 c
el

l, 
RA

N
K

L 
re

ce
pt

or
-a

ct
iv

at
or

 o
f n

uc
le

ar
 fa

ct
or

 k
ap

pa
 B

 li
ga

nd
, R

AN
TE

S 
Re

gu
la

te
d 

up
on

 A
ct

iv
at

io
n 

N
or

m
al

 T
 C

el
l E

xp
re

ss
ed

 a
nd

 P
re

su
m

ab
ly

 S
ec

re
te

d,
 S

RB
C

 s
he

ep
 re

d 
bl

oo
d 

ce
ll,

 T
LR

 to
ll-

lik
e 

re
ce

pt
or

, T
N

Fα
 tu

m
or

 n
ec

ro
si

s f
ac

to
r α

, N
ZB

/W
 N

ew
 Z

ea
la

nd
 b

la
ck

 ×
 N

ew
 Z

ea
la

nd
 w

hi
te

*N
o 

da
ta

 av
ai

la
bl

e
¥  U

np
ub

lis
he

d 
da

ta
 fr

om
 c

om
pa

ny
 p

re
se

nt
at

io
n 

(h
ttp

s:
// w

w
w.

 in
no

c a
re

ph
 ar

m
a.

 co
m

/ m
ed

ia
/ 1

41
9/

 in
no

c a
re

- p
ha

rm
a-

 in
ve

s to
r- p

re
se

 nt
at

i o
n-

 20
19

. p
df

)

Ta
bl

e 
2 

 (c
on

tin
ue

d)

A
ni

m
al

 m
od

el
s

H
um

an
 in

 v
itr

o 
stu

di
es

Re
fe

re
nc

es

Re
m

ib
ru

tin
ib

SR
B

C
 Im

m
un

iz
at

io
n 

(r
at

s)
: t

re
at

m
en

t a
t t

im
e 

of
 im

m
un

iz
at

io
n,

 d
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

in
 A

g-
sp

ec
ifi

c 
Ig

M
 a

nt
ib

od
ie

s
C

IA
 (r

at
s)

: T
re

at
m

en
t a

fte
r o

ns
et

 o
f d

is
ea

se
, r

ed
uc

tio
n 

of
 c

lin
ic

al
 sc

or
e 

an
d 

jo
in

t i
nfl

am
m

at
io

n 
an

d 
de

str
uc

tio
n

B
lo

od
 B

 c
el

ls
: R

ed
uc

ed
 B

C
R-

m
ed

ia
te

d 
C

D
69

 e
xp

re
ss

io
n

B
lo

od
 b

as
op

hi
ls

: R
ed

uc
ed

 F
cε

R-
m

ed
ia

te
d 

C
D

63
 e

xp
re

ss
io

n
H

um
an

 m
on

oc
yt

e 
ce

ll 
lin

e:
 R

ed
uc

ed
 F

cγ
R-

m
ed

ia
te

d 
IL

-8
 p

ro
du

ct
io

n

[9
5]

Ri
lz

ab
ru

tin
ib

Pa
ss

iv
e 

ar
th

us
 re

ac
tio

n 
(r

at
s)

: D
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

of
 in

tra
de

rm
al

 d
ye

 e
xt

ra
va

sa
tio

n
A

nt
i-G

B
M

 n
ep

hr
iti

s:
 D

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 k
id

ne
y 

in
fla

m
m

at
io

n 
an

d 
im

pr
ov

em
en

t o
f 

ki
dn

ey
 fu

nc
tio

n
A

nt
i-C

D
41

-m
ed

ia
te

d 
IT

P:
 P

re
tre

at
m

en
t d

os
e 

de
pe

nd
en

tly
 re

du
ce

d 
pl

at
el

et
 lo

ss
C

IA
 (r

at
s)

: T
re

at
m

en
t a

t d
is

ea
se

 o
ns

et
, d

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 c
lin

ic
al

 a
nd

 h
ist

op
at

ho
lo

gi
ca

l 
sc

or
es

; t
re

at
m

en
t a

fte
r d

is
ea

se
 o

ns
et

, r
ev

er
sa

l o
f d

is
ea

se
C

an
in

e 
pe

m
ph

ig
us

: I
m

m
ed

ia
te

 a
nd

 ra
pi

d 
cl

in
ic

al
 im

pr
ov

em
en

t

B
 c

el
ls

: R
ed

uc
ed

 B
C

R-
m

ed
ia

te
d 

ac
tiv

at
io

n 
an

d 
pr

ol
ife

ra
tio

n,
 re

du
ce

d 
C

D
40

/IL
-2

1R
- o

r T
LR

9-
m

ed
ia

te
d 

an
tib

od
y 

pr
od

uc
tio

n
M

on
oc

yt
es

: R
ed

uc
ed

 F
cγ

R-
m

ed
ia

te
d 

TN
Fα

 p
ro

du
ct

io
n

B
as

op
hi

ls
/m

as
t c

el
ls

: R
ed

uc
ed

 F
cε

R-
m

ed
ia

te
d 

de
gr

an
ul

at
io

n 
an

d 
C

D
63

 e
xp

re
ss

io
n

[1
32

, 1
64

]

Sp
eb

ru
tin

ib
C

IA
 (m

ic
e)

: T
re

at
m

en
t s

ta
rte

d 
af

te
r o

ns
et

 o
f a

rth
rit

is
, d

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 d
is

ea
se

 se
ve

r-
ity

, w
ei

gh
t l

os
s, 

an
d 

in
fla

m
m

at
or

y 
cy

to
ki

ne
s i

n 
se

ru
m

, r
ed

uc
ed

 in
fla

m
m

at
io

n 
an

d 
bo

ne
 d

es
tru

c-
tio

n 
in

 jo
in

ts

B
 c

el
ls

: R
ed

uc
ed

 B
C

R
/T

LR
-m

ed
ia

te
d 

ac
tiv

at
io

n,
 p

ro
lif

er
at

io
n,

 c
yt

ok
in

e 
pr

od
uc

tio
n,

 p
la

sm
a 

ce
ll 

di
ffe

re
nt

ia
tio

n,
 a

nd
 a

nt
ib

od
y 

pr
od

uc
tio

n
M

ac
ro

ph
ag

es
: R

ed
uc

ed
 F

cγ
R-

m
ed

ia
te

d 
TN

Fα
 p

ro
du

ct
io

n
M

on
oc

yt
e-

de
riv

ed
 D

C
: R

ed
uc

ed
 T

LR
9 

m
ed

ia
te

d 
C

D
86

 e
xp

re
ss

io
n

B
as

op
hi

ls
: R

ed
uc

ed
 F

cε
R-

in
du

ce
d 

de
gr

an
ul

at
io

n
O

ste
oc

la
st:

 R
ed

uc
ed

 o
ste

oc
la

sto
ge

ne
si

s

[1
04

, 1
34

]

TA
S5

31
5

C
IA

 (m
ic

e)
: T

re
at

m
en

t s
ta

rte
d 

af
te

r o
ns

et
, d

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
in

 a
rth

rit
is

 sc
or

es
, i

nfl
am

m
a-

tio
n,

 p
an

nu
s f

or
m

at
io

n,
 c

ar
til

ag
e 

an
d 

bo
ne

 d
am

ag
e,

 in
du

ct
io

n 
of

 b
on

e 
re

pa
ir

M
R

L/
lp

r: 
Re

du
ce

d 
gl

om
er

ul
on

ep
hr

iti
s, 

se
ru

m
 B

U
N

, a
nd

 a
nt

i-d
sD

N
A

 a
nt

ib
od

y 
le

ve
ls

M
on

oc
yt

es
: D

os
e-

de
pe

nd
en

t r
ed

uc
tio

n 
of

 T
N

Fα
 a

nd
 IL

-6
 p

ro
du

ct
io

n
O

ste
oc

la
sts

: R
ed

uc
ed

 o
ste

oc
la

st 
di

ffe
re

nt
ia

tio
n 

an
d 

bo
ne

 re
so

rp
tio

n
[1

41
, 1

43
, 1

44
]

Ti
ra

br
ut

in
ib

C
IA

 (m
ic

e)
: S

ta
rt 

tre
at

m
en

t a
t t

im
e 

of
 b

oo
st,

 d
os

e-
de

pe
nd

en
t r

ed
uc

tio
n 

in
 d

is
ea

se
 sc

or
e 

an
d 

jo
in

t 
da

m
ag

e,
 re

du
ct

io
n 

of
 M

IP
-1

α,
 IL

-1
β,

 K
C

, I
L-

6,
 R

A
N

K
L,

 a
nd

 M
M

P-
3 

pr
od

uc
tio

n 
in

 jo
in

ts
 o

f 
ar

th
rit

ic
 m

ic
e

N
ZW

/B
 F

1:
 S

ta
rt 

tre
at

m
en

t a
t 1

2 
w

ee
ks

 (b
ef

or
e 

on
se

t),
 re

du
ce

d 
pr

ot
ei

nu
ria

, r
ed

uc
ed

 G
C

 B
 c

el
ls

 
an

d 
pl

as
m

a 
ce

lls
, r

ed
uc

ed
 a

nt
i-d

sD
N

A
 a

nt
ib

od
ie

s i
n 

se
ru

m

M
on

oc
yt

es
: R

ed
uc

ed
 F

cγ
R-

 a
nd

 T
LR

9-
m

ed
ia

te
d 

TN
Fα

 a
nd

 IL
-6

 p
ro

du
ct

io
n

O
ste

oc
la

st 
(p

re
cu

rs
or

s)
: R

ed
uc

ed
 M

-C
SF

- a
nd

 R
A

N
K

-L
-m

ed
ia

te
d 

os
te

oc
la

st 
di

ffe
re

nt
ia

tio
n,

 
re

du
ce

d 
M

IP
-1

α 
an

d 
R

A
N

TE
S 

pr
od

uc
tio

n 
in

 b
on

e 
m

ar
ro

w
 c

ul
tu

re
s

[1
35

–1
38

]

https://www.innocarepharma.com/media/1419/innocare-pharma-investor-presentation-2019.pdf


1614 S. F. H. Neys et al.

since changes in antibody glycosylation are also observed 
during active autoimmune disease [123] and BTK inhibition 
abolishes FcγRIII-induced TNFα, IL-1β, and IL-6 produc-
tion in macrophages in the context of myeloid cell-mediated 
RA [75].

4  BTK Inhibitors in Clinical Trials of Systemic 
Autoimmune Diseases

Although several trials with BTK inhibitors in autoimmune 
diseases have been completed, few have been published in 
research articles. When no publications were available, the 
data in this review were largely obtained from clinicaltri-
als.gov (search for stated NTC number) or from published 
abstracts of scientific meetings.

4.1  Acalabrutinib

Acalabrutinib, an irreversible, covalent inhibitor of BTK, 
was the second BTK inhibitor to reach the clinic for B-cell 
malignancies [124]. This inhibitor has a much higher speci-
ficity for BTK than the first-in-kind inhibitor ibrutinib, mak-
ing it more suitable for autoimmune patients. A clinical trial 
was conducted with RA patients with stable methotrexate 
(MTX) treatment, but to date results have not been published 
(NCT02387762).

4.2  BMS‑986142

This reversible, covalent BTK inhibitor reduced FcR-medi-
ated cytokine production by healthy human peripheral blood 
mononuclear cells (PBMCs) and BCR-induced cytokine 
production by healthy human B cells in vitro (Table 2) 
[105]. As described above, in GPA, BMS-986142 inhibited 
plasma cell differentiation and antibody production in vitro, 
although B cells from patients with active disease appeared 
less susceptible to treatment than B cells from remission 
patients or healthy individuals. In animal models of RA, this 
inhibitor has shown promising efficacy by dose dependently 
reducing joint inflammation and destruction, synergistically 
with standard-of-care treatment [105]. However, in a clinical 
trial with active RA patients, no significant improvement of 
symptoms was observed after 12 weeks of combined treat-
ment with BMS-986142 and MTX compared to placebo and 
MTX (NCT02638948) (Table 3). A monotherapy study with 
primary SjS patients was terminated due to inability to reach 
protocol objectives (NCT02843659).

4.3  Elsubrutinib

In animal models of autoimmunity, this irrevers-
ible, non-covalent BTK inhibitor showed dose-dependent 

improvement in disease severity, organ damage, and mortal-
ity [125]. Importantly, antibody formation following model 
antigen immunization or vaccination was not hampered in 
mice, suggesting that normal antibody responses can be 
mounted upon infection [125]. In vitro, elsubrutinib inhib-
ited activation and pro-inflammatory cytokine production 
by B cells and PBMCs. However, in a clinical trial with 
RA patients, elsubrutinib did not enhance the efficacy of the 
JAK-1 inhibitor upadacitinib, and appeared to have limited 
efficacy as monotherapy (NCT03682705). A phase II clini-
cal trial with SLE patients is currently recruiting patients 
(NCT03978520; long-term extension study NCT04451772).

4.4  Evobrutinib

This irreversible covalent BTK inhibitor showed promising 
results in animal models for RA, SLE, and MS [28, 126]. 
In addition, it showed clinical efficacy in MS patients, as 
described above [26]. Nevertheless, evobrutinib did not 
appear to improve symptoms in RA patients on stable MTX 
or with inadequate response to MTX and SLE patients 
(NCT02784106, NCT03233230, and NCT02975336).

4.5  Fenebrutinib

Fenebrutinib is a highly specific, reversible, non-covalent 
inhibitor of BTK. It was effective in CIA in mice and inhib-
its BCR and CD40L-mediated signaling and activation of 
B cells [92]. In a cohort of RA patients with an inadequate 
response to MTX, fenebrutinib increased the proportion of 
patients with an American College of Rheumatology (ACR) 
50 response (50% improvement of disease symptoms defined 
by the ACR [127]) after 12 weeks of treatment with a dose of 
150 mg daily compared to placebo, and reached an effective-
ness comparable to adalimumab treatment with a high dose 
of 200 mg twice daily [128]. In addition, at this high dose, it 
increased the ACR50 response rate in another patient cohort, 
characterized by an inadequate response to TNFα inhibi-
tion, although not significantly. However, ACR20 response 
and changes in disease activity score 28-C-reactive protein 
(DAS28-CRP; a disease activity score including 28 swollen 
joint counts and CRP levels [129]) at 12 weeks compared to 
baseline were significant in these patients [128]. All doses 
were well tolerated, with (serious) adverse events occurring 
in fenebrutinib-treated patients at similar rates as in adali-
mumab-treated patients. Fenebrutinib moderately reduced 
total IgM, IgG, and rheumatoid factor-IgM in the serum 
of patients in a dose-dependent fashion, and in the second 
cohort it also reduced serum anti-citrullinated protein anti-
body (ACPA)-IgG. Despite the high efficacy in RA patients, 
a similar study in moderate to severe SLE patients did not 
improve symptoms (NCT02908100; long-term extension 
study NCT03407482).
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4.6  Poseltinib

Poseltinib, an irreversible, non-covalent BTK inhibitor, 
reduced disease severity in several animal models of autoim-
munity after onset of disease [103, 130]. Safety assessment 
in RA patients with mildly active disease showed favorable 
results [131]. However, the second part of this trial, with 
moderately to severely active RA patients, was discontinued 
when interim analysis showed no significant improvement of 
symptoms after 12 weeks of treatment with any of the three 
doses tested [131].

4.7  Rilzabrutinib

Rilzabrutinib is a reversible, covalent BTK inhibitor that 
potently inhibits B-cell activation and proliferation upon 
BCR stimulation, and antibody production upon CD40/
IL-21R or TLR9 stimulation in vitro [132]. In addition, it 
showed efficacy in a wide range of (auto)immune animal 
models [132]. Of note, in contrast to first-line BTK inhibi-
tors, rilzabrutinib does not interfere with normal platelet 
aggregation. An open-label study with pemphigus vulgaris 
patients yielded promising results, with 52% and 70% of 
patients showing control of disease activity at 4 weeks and 8 
weeks, respectively, which further increased and was main-
tained after treatment was stopped [133]. A phase III, pla-
cebo-controlled trial is currently ongoing (NCT03762265).

4.8  Spebrutinib

Spebrutinib can effectively inhibit the activation of sev-
eral immune cells through various receptors and signaling 
pathways in vitro and reduces disease severity in CIA in 
mice [104]. In a clinical trial with female RA patients on 
stable MTX, naïve B cells increased in the circulation of 
treated patients, and transitional B cells decreased. In addi-
tion, levels of CTX-1, a collagen-degradation product, were 
decreased, suggesting reduced osteoclastogenesis, as were 
CXCL13 levels [134]. However, the ACR20 response rate 
was not significantly increased in treated patients versus 
placebo-treated controls at 4 weeks.

4.9  Tirabrutinib

This irreversible, covalent inhibitor of BTK showed sig-
nificant effectiveness in the inhibition of human osteoclasts 
in vitro and in CIA in vivo [135–138]. Nevertheless, in a 
clinical trial with SjS patients, no clinical improvement was 
observed (NCT03100942).

4.10  BTK Inhibitors in Clinical Trials of Autoimmune 
Diseases with Results Pending

Branebrutinib is an irreversible, covalent inhibitor of BTK 
that has shown efficacy in RA and SLE mouse models, 
reducing clinical signs of disease dose dependently [139]. 
This inhibitor was well tolerated in a phase I study with 
healthy individuals [140], and these promising results 
have led to a clinical trial with active SLE, primary SjS, 
and RA patients, which is currently recruiting patients 
(NCT04186871).

Orelabrutinib is an irreversible, covalent inhibitor of BTK 
that was reported to be effective in animal models of RA and 
SLE, and is currently in a clinical trial with SLE patients 
(NCT04305197).

Remibrutinib is a highly specific, irreversible, non-cova-
lent BTK inhibitor that reduced antigen-specific IgM for-
mation in rats upon sheep red blood-cell immunization and 
reduced arthritis development and joint destruction in CIA 
in rats [95]. A clinical trial with primary SjS patients is cur-
rently recruiting (NCT04035668).

TAS5315 is a covalent inhibitor of BTK that showed high 
selectivity and promising efficacy in animal models of RA 
and SLE [141–144]. A clinical trial with RA patients with 
inadequate response to MTX has been completed, but no 
data have been reported yet (NCT03605251).

5  Concluding Remarks and Future 
Perspectives

The last decade has seen the emergence of a large number 
of small-molecule inhibitors targeting BTK, many of which 
demonstrated promising efficacy in preclinical studies with 
autoimmune animal models. However, in contrast to the 
convincing clinical efficacy of BTK inhibitors in patients 
with B-cell malignancies, many clinical trials conducted in 
autoimmune patients to date have reported negative results, 
indicating that BTK inhibition as monotherapy may not be 
sufficient in (many of) these patients. However, the observed 
reduction of enhancing lesions in evobrutinib-treated 
patients with multiple sclerosis is an important and very 
promising exception. Differences in the pathogenic mecha-
nisms of disease and cell types involved may underlie the 
differences in efficacy. For example, it is of note that BTK 
is expressed in astrocytes and microglia cells and that ani-
mal models for MS have demonstrated that BTK inhibition 
affects the numbers of astrocytes and microglia cells in the 
brain and supports remyelination [30, 31].

The reasons for a limited efficacy of BTK inhibition in 
systemic autoimmunity remain largely unknown, but sev-
eral mechanisms may contribute to this phenomenon. First, 
BTK inhibitor treatment in humans may be associated with 
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low BTK occupancy. Effects of BTK inhibition in affected 
organs in humans are mostly studied in vitro, and BTK 
occupancy is often not measured in vivo, even in preclini-
cal models. For example, in vitro experiments have shown 
an effect of BTK inhibition on synovial macrophages and the 
platelet–fibroblast-like synoviocyte interaction in RA [112, 
113], but whether these effects also occur in vivo remains 
unclear. For MS, in vivo data in humans are limited, but 
in EAE mice high BTK occupancy following evobrutinib 
treatment was observed in the brain [145]. Limited BTK 
occupancy might also be supported by the observation that 
there is no profound loss of circulating B cells even after 
prolonged inhibitor treatment, in contrast to the severe B-cell 
deficiency found in patients with XLA [146].

Secondly, it is conceivable that BTK inhibition affects 
critical immunosuppressive capacities of B cells. For exam-
ple, BTK inhibition in vitro inhibited the differentiation of 
B cells with a regulatory function and their production of 
IL-10 and IL-35, which are essential mediators of immuno-
suppressive B cells [147]. However, small doses of ibruti-
nib were shown to preserve IL-10 production, while reduc-
ing the profibrotic cytokines TNFα and IL-6 in B cells of 
patients with SSc [114].

Thirdly, BTK inhibitor efficacy may be related to dif-
ferential involvement of BTK in other signaling pathways 
in various immune cells. As mentioned above, BTK inhi-
bition can be particularly effective in specific cells types, 
for example strongly limiting the activity of astrocytes and 
microglia cells. BTK is required for TLR-induced IL-10 
production in macrophage and DC populations [148, 149]. 
In this context, it was shown that BTK-deficient DCs or 
inhibitor-treated DCs gain a more mature phenotype with a 
stronger T-cell-stimulatory ability than wild-type cells [149, 
150]. Furthermore, the absence of BTK in XLA patients is 
associated with impaired TLR9-induced production of IL-6, 
IL-12, TNF-α, and IL-10, whereby it is of note that TLR9 is 
protective in autoimmune diseases such as SLE [151, 152].

Finally, in particular signaling pathways BTK functions 
as a linker molecule, as was shown for interaction with 
Myd88 and MAL [70], which would render kinase inhibition 
ineffective. Efficacy may also be hampered by the induction 
of rewiring of signaling pathways by BTK inhibition in B 
cells. In this context, we recently showed that upon BTK 
inhibition in mice, phosphorylation of several proximal BCR 
signaling molecules, such as CD79a, Syk, and PI3K, as well 
as the key Btk-effector PLCγ2 and the more downstream 
kinase extracellular signal-regulated kinase (Erk) were sig-
nificantly increased [153].

Taken together, these findings suggest that the sup-
pressive activity of BTK inhibition in autoreactive B cells 
might partly be counteracted by inhibitor-induced activation 
of autoreactive T cells or proinflammatory myeloid cells. 
On the other hand, it is possible that the high specificity of 

second-generation BTK inhibitors, while greatly improv-
ing their safety profile, is accompanied by a loss of benefi-
cial off-target effects that may well be essential in complex 
autoimmune diseases. To improve the effectiveness of BTK 
inhibitors, therapeutic strategies should be explored that 
combine BTK inhibition with other highly specific inhibi-
tors, thereby retaining the favorable safety profile.

Selection or outgrowth of resistant clones is a major prob-
lem in clinical management of tumors. As most small-mol-
ecule inhibitors have fewer side effects than chemotherapy, 
treatment with multiple small-molecule inhibitors combined 
with B-cell-depleting agents is gaining broad interest [154]. 
Combinations explored in this field may also be of use in 
autoimmunity. Some strategies aim to target several signal-
ing proteins in order to breach the microenvironmental niche 
involved in CLL disease. Treatment with the dual SYK/JAK 
inhibitor cerdulatinib showed induction of apoptosis in CLL 
cells and reduced capacity to produce CCL3 and CCL4 [155, 
156], two chemokines that are induced upon interaction with 
nurse-like cells, which are supporting tumor-associated mac-
rophages in CLL. It is also attractive to explore combina-
tion therapies of BTK inhibitors with histone deacetylase 
inhibitors (HDACis), as they have demonstrated potential 
in autoimmune animal models, and use of isoform selective 
HDACis may overcome adverse effects [157]. Combination 
therapy with ibrutinib and HDACis affected the survival of 
CLL cells in the EμTCL-1 CLL mouse model and induced 
synergistic cytotoxicity in primary cells from CLL patients 
[158]. Treatment with CUDC-907, which is a dual inhibi-
tor of both PI3K and HDAC activity, resulted in increased 
apoptosis of MCL cells [159].

BTK inhibition may also enhance the effect of standard-
of-care anti-rheumatic drugs, as shown with BMS-986142 in 
CIA [105]. However, this synergistic effect was not observed 
in a trial with combined treatment with the BTK inhibitor 
elsubrutinib and JAK-1 inhibitor upadacitinib in RA patients 
(NCT03682705). A similar study in SLE patients is cur-
rently ongoing (NCT03978520). Future studies investigating 
combination strategies with different BTK inhibitors and 
other specific therapeutics may lead to combination thera-
pies that induce long-term remission of disease and facilitate 
personalized medicine.
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