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Abstract
Three proteins [myosin heavy chain (MHC), filamin-C fragment (FIL-C), and actin 2 (ACT2)] 
were identified in adductor muscle from diploid and triploid Pacific oysters (Crassostrea gigas) 
and the relationship between the condition index (CI) and mRNA expression of these genes 
was investigated, together with the mRNA expression of molluscan insulin-related peptide 
(MIP), C. gigas insulin receptor-related receptor (CIR), and insulin-like growth factor binding 
protein complex acid labile subunit (IGFBP-ALS). Monthly changes in the CI were similar 
to the changes in the tissue weight rate in both groups. ACT2 and MHC mRNA expression 
was statistically higher in the triploid than the diploid, while FIL-C mRNA expression was 
significantly higher in the diploid (p<0.05). The MIP, CIR, and IGFBP-ALS mRNA expression 
of the diploid oysters were all significantly higher in July than in other months (p<0.05). The 
MIP, CIR, and IGFBP-ALS mRNA expression in the triploid oysters was high in July, but 
there were no significant differences (p>0.05). Changes in the expression levels of the genes 
investigated in this study could be used as intrinsic indicators of the annual growth, maturity, 
and spawning period of cultured diploid and triploid C. gigas in Tongyeong, Korea.
Keywords:  Pacific oyster, Diploid, Triploid, Adductor muscle, mRNA and protein expression

INTRODUCTION

The adductor muscle of the Pacific oyster (C. gigas) plays an important role in valve opening 
and closing in response to stimuli (Poulet et al., 2003). The structure, function, and relaxation and 
contraction mechanism of the molluscan adductor muscle have been investigated previously by several 
researchers (Millman, 1967; Morrison, 1996; Poulet et al., 2003). The tension of molluscan muscle is 
indicative of health, including in oyster (Poulet et al., 2003). In addition, the mollusk adductor muscle 
is a seasonal energy repository, the status of which differs according to reproductive and environmental 
factors (Racotta et al., 1998). Energy storage in the adductor muscle is associated with energy demand 
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for gametogenesis (Barber & Blake, 1981). Accumulated energy in the adductor muscle of well-
fed bivalves is transferred to the gonads during gametogenesis (Gabbott, 1975), and can be used 
as an indicator of physiological status. The shell and condition index (CI), gametogenic cycle, and 
nutrient composition have been used to evaluate the growth and reproduction of bivalves (Mondol 
et al., 2016; Dridi et al., 2017). Improved growth and maturation of bivalves can enable farmers 
to increase their profit margins; therefore, it is important to identify the precise mechanisms. 
It has been known that animal growth, especially in vertebrates is under the regulation of the 
endocrine system. One of which is the insulin-like growth factor (IGF) system. IGF system is 
composed of three components, the ligand, receptor and IGF-binding proteins (Wood et al., 2005). 
In invertebrates, presence of IGF ligands and binding proteins have been described, although 
clear evidence has not been revealed. Similarly, a large number of insulin-like peptides have been 
reported, and receptors and signaling systems have been identified accordingly, suggesting the 
possibility of the existence of an IGF system (Gricourt et al., 2003; Hamano et al., 2005; Jouaux et 
al., 2012). Previously, Choi et al. (2018) reported on the influence of some members of IGF system- 
molluscan insulin-related peptide (MIP), C. gigas insulin receptor-related receptor (CIR) and IGF 
binding protein complex acid labile subunit (IGFBP-ALS)-when estimating growth variation in 
oysters. Although these genes are involved in muscle growth, their exact relationship with regards 
to the expression of muscle protein are not yet fully described (Heath et al., 2008). The molluscan 
muscle contains myosin heavy chain (MHC), filamin-C fragment (FIL-C) and actin (ACT) which 
are used by the organisms for various functions, such as contraction and locomotion, and is used as 
an indicative of muscle growth (Millman, 1967; Hevrøy et al., 2006; Zhou et al., 2010). 

We hypothesized that the CI affects several major genes of the adductor muscle of C. gigas 
cultivated with non-hardening spat and that any changes in gene levels affect reproduction and 
growth. Therefore, we checked the presence of muscle proteins and investigated gene expression 
of the IGF system in the adductor muscle of diploid and triploid oysters C. gigas during a 1-year 
period, and the relationship between CI values and expression levels of IGF-related genes in the 
adductor muscle.

MATERIALS AND METHODS

1. Experimental animals and sample preparation
Forty diploid and twenty triploid C. gigas were obtained monthly from November 2016 to 

December 2017 from Tongyeong, Gyeongsangnam-do, Korea (34°51'32.34''N, 128°12'23.44''E in 
a diploid oyster farm, and 34°52'39.66''N, 128°14'38.13''E in a triploid oyster farm). CI and tissue 
weight rate (TWR) were evaluated using shell length (SL), shell height (SH), shell width (SW), 
total wet weight (TW), and soft tissue weight (STW). These parameters were measured using 
Vernier calipers (Mitutoyo, Kawasaki, Japan) and an electrical balance (AJ Vibra, Shinko Denshi, 
Tokyo, Japan). CI was calculated according to the modified method of Choi & Chang (2003) as 
CI=STW (g)/SL (mm)×SH (mm)×SW (mm)×1,000. In each group, 5 to 10 oysters were used 
for protein sequencing; the others were used for reverse transcription polymerase chain reaction 
(RT-PCR). A piece of adductor muscle was dissected, cut into a 1×1-cm square, frozen in liquid 
nitrogen, and stored at −75℃ until use.

2. Protein identification
Proteins extracted from diploid oysters were resolved by 8% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and identified by tandem mass spectrometry (MS/MS) and 
electrospray ionization quadrupole time-of-flight MS/MS (ESI-Q-TOF MS/MS, ABI), as 
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described previously (Choi et al., 2015). Proteins were identified using the NCBI (https://www.
ncbi.nlm.nih.gov) and UniProt Knowledgebase (http://www.uniprot.org/uniprot) databases and 
MASCOT (Matrix Science, London, UK) and FASTA software.

3. cDNA synthesis and reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was prepared from the adductor muscles of diploid and triploid C. gigas using Trans 

Zol-UP (TransGen Biotech, Beijing, China) according to the manufacturer’s instructions. cDNA 
was synthesized using a first-strand cDNA synthesis kit (PrimeScript™, TaKaRa, Otsu, Japan) 
following the manufacturer’s protocol. RT-PCR was performed using Emerald Amp® GT PCR 
Master Mix (TaKaRa-Bio, Otsu, Japan) with C. gigas cDNA as the template. The primer sequences 
are shown in Table 1. Elongation factor-1α (EF-1α) was amplified using 25 cycles of 30 s at 94℃ 
for denaturation, 30 s at 55℃ for annealing, and 30 s at 72℃ for elongation. The other genes were 
amplified using 25 cycles of 30 s at 94℃ for denaturation, 1 min at 60℃ for annealing, and 1 min 
at 72℃ for elongation. The PCR products were analyzed by electrophoresis in 1% agarose gels and 
densitometry using GeneTools ver. 4.03 (Syngene, Cambridge, UK).

4. Statistical analyses
Growth data are expressed as means±SD and RT-PCR data are given as mean±SEM. All data 

were evaluated by one-way analysis of variance (Statistical Package for the Social Sciences, ver. 10.0; 
SPSS, Chicago, IL, USA). Significant differences between means were identified using Duncan’s 
multiple-range test (p<0.05).

RESULTS

1. Growth assessment
The water temperature and salinity level at the diploid and triploid oyster farms on the coast 

of Tongyeong were 10.7℃–27.7℃ and 32.5–34.0 psu, and 8.9℃–26.9℃ and 32.0–33.9 psu, 
respectively. The ratio of SH to SL ranged from 1.02 to 3.58 (mean 2.05±0.37) and from 1.28 to 
3.25 (mean 1.90±0.30) in diploid and triploid oysters, respectively (Fig. 1A and 1C). The ratio of 

Table 1.   Nucleotide sequences of the RT-PCR primers for long-term mRNA expression profiling in the 
adductor muscle of the Pacific oyster, Crassostrea gigas

Gene Accession no. Sequence (5'–3') Amplicon (bp)

ACT2 EKC31894.1 (F)–TTTCGCCGGAGATGATGCCC
(R)–TGGGGACAGTGTGGGTGACA

434

EF-1α AB122066.1 (F)–CCACTGGCCATCTCATTTAC
(R)–TGTTGACACCAATGATGAGC

393

FIL-C EKC28512.1 (F)–GTCGATGCTGTCGGACCTGG
(R)–TTTGCTGAGCTGGCGTTGGA

679

MHC EKC37566.1 (F)–TTTGGCTGGTGAGGCACAGG
(R)–TTTGCTGAGCTGGCGTTGGA

544

CIR AJ535669 (F)–TGAGGAGGGTGATGAGGATA
(R)–ATTGCACTGTAGGGATTGGA

375

IGFBP-ALS XP_011442465.1 (F)–TGAGGAGGGTGATGAGGATA
(R)–ATTGCACTGTAGGGATTGGA

500

MIP XM_011417420.2 (F)–TAAATACAAGCGGTCGGGTG
(R)–AGATCCTTTCTTCTTGCGGC

214

RT-PCR, reverse transcription polymerase chain reaction; F, forward; R, reverse; ACT2, actin 2; EF-1α, elongation factor-1α; 
FIL-C, filamin-C fragment; MHC, myosin heavy chain; CIR, Crassostrea gigas insulin receptor-related receptor; IGFBP-ALS, 
insulin-like growth factor binding protein complex acid labile subunit; MIP, molluscan insulin-related peptide.
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SW to SL ranged from 0.36 to 0.86 (mean 0.58±0.10), and from 0.30 to 1.04 (mean 0.57±0.11) 
in diploid and triploid oysters, respectively (Fig. 1A and 1C). The ratio of STW to TW ranged 
from 0.06 to 0.34 (mean 0.14±0.05) and 0.06 to 0.31 (mean 0.17±0.05) in diploid and triploid 
oysters, respectively (Fig. 1B and 1D). Thus, the growth rates of STW/TW, SH/SL, and SW/SL 
were positive in both oyster groups, while the size and weight were greater in triploid oysters than 
in diploid oysters (Fig. 1). In addition, the monthly changes in CI and TWR values were similar 
(Fig. 2). The highest CI and TWR values were 0.085±0.01 and 19.96±3.16, respectively, in May 
(p<0.01) and decreased sharply in June and July, in diploid oysters. In comparison, in triploids, the 
CI was significantly high at 0.107±0.00 in February (p<0.05), and the TWR was significantly high 
in February, March, and May (p<0.05).

Fig. 1.   Monthly changes in shell height (SH), shell length (SL), shell width (SW), total weight (TW), and soft tissue weight (STW) of (a, b) diploid and (c, 
d) triploid Crassostrea gigas.

Fig. 2.   Monthly changes in the tissue weight rate (TWR) and condition index (CI) of diploid and triploid Crassostrea gigas. * Significant difference at 
p<0.05.
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2. Protein identification
Three proteins were identified as 229 kDa MHC striated muscle, 90 kDa FIL-C, and 42 kDa 

actin 2 (ACT2) (Table 2, Fig. 3) in the adductor muscle by comparing the predicted amino acid 
sequences against the NCBI and UniProt protein databases.

3. Expression of MHC, FIL-C, and ACT2
MHC, FIL-C, and ACT2 were expressed in the adductor muscle; however, their expression 

levels varied monthly. The expression levels of these genes in diploid oysters decreased significantly 
in December (p<0.01) and increased significantly in May (p<0.01) (Fig. 4A). Moreover, their 
expression sharply increased in December to January and April to May. In January and May, the 
expression levels increased 1.3- to 1.5-fold for MHC, 1.2- to 1.4-fold for FIL-C, and 1.4- to 1.5-
fold for ACT2 compared to the preceding month (Fig. 4A). The obvious difference between diploid 
and triploid oysters was that the expression of MHC, FIL-C, and ACT2 was similar in the diploid, 

Table 2.   Adductor muscle proteins of the Pacific oyster, Crassostrea gigas identified by ESI-Q-TOF MS/
MS

Protein name Accession no. (NCBI/UniProt) Mass (Da) Protein sequence 
coverage (%)

Actin 2 (ACT2) EKC24882.1 / O8TA69_CRAGI 41,717 64.0

Filamin-C fragment (FIL-C) EKC28512.1 / K1PW06_CRAGI 323,738 31.5

Myosin heavy chain (MHC) EKC37566.1 / K1RSS3_CRAGI 229,809 82.4

MS, mass spectrometry.

Fig. 3.   Sodium dodecyl sulfate-polyacylamide gel electrophoresis (SDS-PAGE) protein detection in 
Pacific oyster. The arrows indicate the myosin heavy chain (MYH), filamin-C fragment (FIL-C) and actin 
(ACT).
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while it depended on mRNA levels in the triploid and followed the order ACT2>MHC>FIL-C (Fig. 
4).

4. Expression of MIP, CIR, and IGFBP-ALS
The molluscan insulin-related peptide (MIP), C. gigas insulin receptor-related receptor (CIR), 

and IGF binding protein complex acid labile subunit (IGFBP-ALS) mRNA expression varied 
monthly and seasonally in the adductor muscle. In the IGF system, the average expression in the 
adductor muscle was in the order MIP>CIR>IGFBP-ALS in both oyster groups. The expression 
of MIP and IGFBP-ALS was highest (Fig. 5) when the CI and TWR were the lowest (in July, 
Fig. 2). In particular, CIR expression was higher from July to September than during other months 
in diploid oysters (Fig. 4A). These genes were expressed more strongly in the warm summer and 
autumn months than in winter. In July, the expression of the three genes was significantly high 
(p<0.01). Moreover, the IGFBP-ALS levels increased by over 3.0-fold (steeply from 0.19 in June 

Fig. 4.   Gene expression levels in the adductor muscle of Crassostrea gigas: (a) diploid and (b) triploid oysters. Values are ratios to EF-1α. ACT2, actin 
2; EF-Iα, elongation factor 1α; FIL-C, filamin-C fragment; MHC, myosin heavy chain. * Significant difference at p<0.05.

Fig. 5.   MIP, CIR, and IGFBP-ALS expression levels in the adductor muscle of the Pacific oyster, Crassostrea gigas: (a) diploid and (b) triploid 
oysters. Each axis represents the mRNA expression relative to the control (EF-1α). * Significant difference (p<0.01) in the IGFBP-ALS group. ** 
Significant difference (p<0.01) in the MIP group. # Significant difference (p<0.01) in the CIR group. CIR, C. gigas insulin receptor-related receptor; 
IGFBP-ALS, insulin-like growth factor binding protein complex acid labile subunit; MIP, molluscan insulin-related peptide.
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to 0.62 in July, Fig. 5A). There were no significant differences in triploid oysters, but the MIP, CIR, 
and IGFBP-ALS expression was high in July (Fig. 5B).

DISCUSSION 

We investigated the correlations between IGF-related gene expression and protein levels in the 
adductor muscle of diploid and triploid oysters (C. gigas). There were differences in growth between 
diploids and triploids based on SH, SL, STW, and TW. Triploid oysters grow faster than diploid 
oysters because diploid oysters use more energy for gametogenesis (Allen & Downing, 1986; Nell 
& Perkins, 2005; Kim & Choi, 2019). In the present study, TWR and CI were significantly higher 
in triploid oysters during winter and spring except April (p<0.05), while in diploid oysters they 
were high only in May, just before the spawning season. Normand et al. (2008) reported a similar 
tendency. Moreover, in Hong Kong oysters, triploid oysters had a better biochemical composition 
and nutritional quality (Qin et al., 2018, 2019).

MHC and actin are components of thick and thin filaments, respectively. MHC is the motor 
protein of thick filaments and its isoforms are critical in determining functional variation among 
muscles (Wells et al., 1996). Actin activates muscle contraction by interacting with myosin to 
induce sliding of filaments (Millman, 1967; Funabara et al., 2013). We identified ACT2 as one 
of the actin isoforms, which is identical to ACT1 except for three residues near the N-terminus 
(Tanaka et al., 2018). In this study, the ACT2, MHC, and FIL-C levels in adductor muscle differed 
markedly in triploid oysters but not in diploid oysters (Fig. 4). In addition, the expression levels of 
ACT2, MHC, and FIL-C in diploid oysters were very similar and significantly highest in July (Fig. 
4A). By contrast, those of triploids were not significant throughout the year, except ACT2 (Fig. 
4B). This is in agreement with Tanaka et al. (2018) who found that actin and MHC expression in 
striated muscle of jellyfish varied according to developmental stage. Filamins are a family of actin-
binding proteins comprising filamin A, B, and C in mammals (Van der Flier & Sonnenberg, 2001; 
Méndez-López et al., 2012). Filamins are involved in cell motility, cell signaling, transcription 
regulation, and organ development in vertebrates (Zhou et al., 2010). In humans, lack of filamins 
leads to malformation of the skeleton, brain, and heart (Zhou et al., 2010). Two different isoforms 
of filamin are present in muscle of the sea mussel (Mytilus galloprovincialis) one of which interacts 
with calponin-like protein (Méndez-López et al., 2012).

The levels of all genes identified decreased in December and increased in January, and then 
waxed and waned to April in diploid oysters. The gene levels were highest in May, concomitantly 
with the highest CI value, and rapidly declined in June, the start of the spawning season. Our data 
suggest that the gene expression pattern in the adductor muscle affects the growth of the Pacific 
oyster. 

Previously, we reported that expression of the IGF system in C. gigas, in relation togrowth rate 
(Choi et al., 2018). MIP is involved in the control of body and shell growth in mollusks (Gricourt 
et al., 2003). CIR affects gonial proliferation and organogenesis (Gricourt et al., 2006) IGFBP-ALS 
functions in increasing the half-lives if IGFs in the bloodstream (Forbes et al., 2012). In this study, 
the MIP, CIR, and IGFBP-ALS mRNA expression in diploid oyster continuously increased during 
months of gonadal maturation and peaked in July before spawning in August and succeeding 
months. In triploid oyster, no major variation was observed throughout the year since triploid 
animals are often regarded as sterile or infertile (Dheilly et al., 2014). This means that these genes 
are involved during reproductive maturation and growth. The changes in the expression of the genes 
investigated in this study could be used as intrinsic indicators to determine the annual growth, 
maturity, and spawning period of cultured C. gigas in Korea.
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In conclusion, the expression of three genes in the adductor muscle of C. gigas was correlated 
with the CI. The expression of all genes identified was higher in May, when the oyster is mature 
and about to undergo spawning, and exhibits greater valve activity and energy production in 
diploid oysters. However, they were not affected in triploid oysters. In addition, the expression 
of IGF-related genes was higher in July, when diploid oysters produce large numbers of spawn. 
However, the expression levels were similar to those in triploid oysters. Therefore, these changes in 
gene expression may be used as intrinsic indicators of the annual growth, maturity, and spawning 
period of cultured C. gigas using a suspended long-line culture system in Tongyeong, Korea. 
Further research should determine gene expression levels in other tissues, including the gonads, in 
connection with growth and maturity.
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