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Abstract 
Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnera b le to 
manifestations of a ging. Pr ev enting and delaying skin aging has become one of the prominent resear c h subjects in recent years. 
Mesenchymal stem cells ( MSCs ) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage 
differ entiation potential. MSC-deri v ed extracellular v esicles ( MSC-EVs ) ar e nanoscale biological v esicles that facilitate intercellular 
communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging 
therapy due to their anti-inflammator y, anti-oxidati v e str ess, and wound healing pr omoting a bilities. This r e vie w presents the latest 
pr ogr ess of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes 
and fibr ob lasts, r educing the expr ession of matrix metallopr oteinases, r esisting oxidati v e str ess, and r egulating inflammation. We then 

briefly discuss the r ecentl y discov er ed tr eatment methods of MSC-EVs in the field of skin anti-a ging. Mor eov er, the adv anta ges and 

limitations of EV-based treatments are also presented. 
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s the largest organ of the human body, the skin not only serves
he purpose of external beauty but also plays multiple crucial
hysiological and biological roles. It acts as the first line of de-
ense for our body, playing a key role in preventing the invasion of
armful substances and micr oor ganisms fr om the external envi-
onment [ 1 ]. Due to continuous exposure to environmental fac-
ors, skin ag ing beg ins fr om birth. It is a m ultifactorial pr ocess as-
ociated with tissue and organ degeneration, increasing the risk
f mortality [ 2 ]. Skin aging is a complex and multifaceted phe-
omenon that has been extensiv el y studied in the fields of der-
atology , biology , and cosmetic science . T his natur al pr ocess is in-

uenced by both internal and external factors, which collectively
ontribute to the a ppear ance of visible signs of aging in the skin
 3 ]. Understanding the mechanisms that lead to skin aging is cru-
ial for de v eloping effectiv e pr e v entiv e measur es and tr eatment
ethods. 
Man y components hav e been pr ov en to potentiall y help de-

ay skin aging. For example, antioxidants such as vitamin C, vi-
amin E, and coenzyme Q ( CoQ10 ) can protect the skin from dam-
ge caused by free radicals, exhibiting antio xidati ve and anti-
nflammatory effects [ 4–6 ]. Collagen peptides contribute to im-
roving skin elasticity [ 7 ]. Hyaluronic acid ( HA ) helps reduce skin
oisture loss [ 8 ]. Green tea extract, rich in antioxidants, possesses

nti-a ging pr operties [ 9 ]. Despite the increasing number of re-
ear chers inv olved in studying the delay of skin a ging, curr ent
reatment methods have not yet achieved ideal results, necessi-
ating the exploration of more effective treatment strategies. 

Mesenchymal stem cells ( MSCs ) are a type of multipotent stro-
al cell with self-r ene wal and m ulti-linea ge differ entiation ca pa-

ilities . T hey originate from the mesodermal tissue and are widely
istributed in the connective tissues and stromal compartments
f various organs throughout the body [ 10 ]. Under specific in vivo
r in vitro induction conditions, MSCs have the potential to differ-
ntiate into various tissue cells, including adipoc ytes, osteoc ytes,
 hondr oc ytes, my oc ytes, tenoc ytes, ligamentoc ytes, neurons, hep-
toc ytes, car diomy oc ytes, and endothelial cells [ 11 ]. This multi-
ir ectional differ entiation potential makes MSCs highl y pr omis-

ng in the fields of tissue engineering, r egener ativ e medicine, and
linical ther a py, as they can be used to repair or r eplace dama ged
issues, offering new hope for the treatment of many diseases. In
ddition to their m ulti-linea ge differ entiation potential, MSCs can
lso secrete soluble factors, including cytokines, chemokines, and
rowth factors [ 10 ]. Over the past few decades, MSCs have gained
idespread attention and research as an effective cellular ther-
 py in v arious medical fields. Ho w e v er, some people belie v e that
tem cell ther a py has certain dr awbac ks and limitations, includ-
ng limited differentiation potential, risk of immune rejection, eth-
cal and moral concerns, and lack of sufficient clinical evidence to
upport its application. Recent studies have found that extracel-
ular v esicles ( EVs ) pr oduced by MSCs ma y pla y a crucial role in
he ther a peutic effects of MSC tr eatment. T his disco v ery pr ovides
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the possibility for the de v elopment of a ne w cell-fr ee tr eatment 
a ppr oac h [ 12 ]. 

EVs are nanosized vesicles with phospholipid bilayer mem- 
branes [ 13 ]. Based on their diameter, EVs can be categorized into 
six subpopulations: exomeres ( < 50 nm ) , exosomes ( 30–150 nm ) ,
ectosomes or shedding micr ov esicles ( 100–1000 nm ) , a poptotic 
bodies ( 1000–5000 nm ) , migrasomes ( 500–3000 nm ) , and large on- 
cosomes ( 1000–10 000 nm ) . Exosomes are currently a highly re- 
searched subtype in the field of EVs due to their small size and 

various functions within the organism. Early studies in the 1980s 
initiall y c har acterized exosomes as endosomal v esicles secr eted 

b y reticuloc ytes. For a substantial period, exosomes wer e r egarded 

as cellular repositories for “debris” or “garbage bags”. Neverthe- 
less , o ver the past decade, there has been a renewed surge in in- 
terest in EVs due to their remarkable role in intercellular com- 
m unication and imm une r esponse . EVs , en veloped by lipid bila y- 
ers, harbor a multitude of molecular components, including nu- 
cleic acids , proteins , and lipids . T hese molecules , such as RNAs 
and pr oteins, ar e selectiv el y pac ka ged into car go and deliv er ed to 
tar get cells thr ough r eceptor-mediated mec hanisms [ 14 ]. Le v er a g- 
ing this mec hanism, r esearc hers hav e emplo y ed bioengineering 
techniques to engineer EVs, facilitating the loading of synthetic 
drug molecules, thereby enhancing drug delivery efficiency and 

tar get specificity [ 15 ]. Ther efor e, EVs may be a potentially innova- 
tiv e ther a peutic str ategy that pr omises to play a k e y role in the 
field of skin anti-aging. In this comprehensive review, we provide 
an ov ervie w of the molecular mec hanisms underl ying skin a ging 
and discuss the applications and therapeutic avenues as well as 
the adv anta ges and limitations of MSC-EVs in delaying skin a ging.

Mechanisms of skin aging 

The skin serves as a pr otectiv e barrier, separ ating our internal or- 
gans from the external environment. It plays a crucial role in de- 
fending against pathogenic invasions and safeguarding us from 

physical and chemical harm [ 16 ]. Epidermis , dermis , and subcu- 
taneous tissue ( hypodermis ) , are the three layers of the skin, each 

with different cell types . T he epidermis , which forms the outer- 
most layer of the skin and covers an av er a ge ar ea of 2 m 

2 , is pri-
marily composed of keratinocytes. It also contains Langerhans 
cells ( LCs ) , melanocytes, and Merkel cells. These cells form a phys- 
ical barrier through tight junctions and desmosomes to prevent 
water loss and micr obial inv asion. Beneath the epidermis lies the 
dermal layer, which includes a multitude of fibroblasts, immune 
cells , blood vessels , s weat glands , hair follicles , and nerve fibers .
Effectiv e comm unication between these various cell types and 

the extracellular matrix ( ECM ) is crucial for maintaining tissue 
integrity. The subcutaneous tissue, the deepest layer of the skin,
consists of adipose tissue, typically originating from loose connec- 
tive tissue. Adipose tissue plays a significant role in mechanical 
protection, insulation, and energy storage [ 17 , 18 ]. 

The skin is capable of maintaining internal balance and 

responding to external challenges through effective intercel- 
lular communication. Various signaling mechanisms, such as 
paracrine and autocrine signaling, enable cells to convey infor- 
mation about changes in the microenvironment, regulating phys- 
iological processes like inflammation, wound healing, cell prolif- 
er ation, and imm une r esponses. When the skin is exposed to var- 
ious external stimuli, including ultraviolet ( UV ) radiation, pollu- 
tants , and pathogens , these stimuli can generate reactive oxygen 

species ( ROS ) and trigger inflammatory r esponses. ROS ar e nec- 
essary for cellular signaling but can be damaging in excess. Skin 

cells employ complex signaling pathways to balance the accu- 
ulation of ROS, including antioxidants and repair mechanisms.
imilarly, the inflammatory response is coordinated through a se- 
ies of e v ents involving v arious cell types, including dendritic cells,
acr opha ges, and neutr ophils. This complex network, composed

f different cell types and signaling pathwa ys , ensures that the
kin can r a pidl y ada pt to c hanges in the envir onment [ 19–21 ]. 

The process of skin aging is complex, inevitable, and multi-
aceted [ 22 ]. Skin aging is primarily divided into intrinsic aging
nd extrinsic aging, with the former occurring with the passage of
ime and the latter being caused by external factors such as UV ra-
iation and environmental pollutants [ 23 ]. Belo w, w e will further
iscuss the pathological and physiological mechanisms underly- 

ng these two types of aging. 

 athoph ysiological mechanisms in intrinsic and 

xtrinsic aging 

ntrinsic a ging r epr esents a physiological pr ocess primaril y linked
o genetic, hormonal, and metabolic factors [ 24 ]. Clinical manifes-
ations include skin thinning, dryness, reduced elasticity, the ap- 
earance of fine lines, and impaired skin repair [ 25 ]. As individuals
ge, certain genes within senescent cells undergo alterations, in- 
luding genes responsible for encoding interleukins and matrix 
etalloproteinases ( MMPs ) . T hese genes , known as senescence

enes, can impact cell function, repair mechanisms, and ov er all
hysiological pr ocesses, ther eby playing a r ole in the a ging pr o-
ess [ 26 , 27 ]. Intrinsic aging also involves alterations in skin struc-
ure and reduced sensitivity of fibroblasts to mechanical stimu- 
ation, leading to decreased dermal collagen synthesis and an in-
r ease in colla gen bundle thic kness, whic h, in turn, delays the skin
ound healing process [ 28 ]. Ad ditionally, e pidermal thinning re-

ults in compromised skin barrier function, characterized by in- 
r eased moistur e loss fr om the epidermis due to keratinocyte at-
 ophy [ 29 ]. Furthermor e, intrinsic skin a ging has been associated
ith endocrine dysr egulation, suc h as decreased estrogen levels
ost-menopause [ 30 , 31 ]. 

Extrinsic aging is primarily instigated by lifestyle choices and 

xposure to external environmental factors such as UV radiation,
ir pollution, and temper atur e fluctuations [ 32 ]. Photoaging refers
o the skin alterations induced by exposure to UV radiation, ac-
ounting for ∼80% of facial aging. Its primary characteristics in-
lude a reduction in skin epidermal thickness, pigmentation de- 
osition, the de v elopment of wrinkles, skin laxity, erythema, and
n increased risk of malignancy [ 33 ]. UV radiation is categorized
nto three subtypes based on wavelength ranges: UVA ( 320–400 
m ) , UVB ( 280–320 nm ) , and UVC ( 200–280 nm ) [ 22 ]. UVA radiation
omprises the predominant portion of the sun’s UV ra ys , possess-
ng significant penetrating capability. It can penetrate deep into 
he dermal layer, extending beyond the epidermis, where it causes
amage to dermal fibroblasts and reduces collagen production, ul-
imately disrupting the skin’s normal structure [ 34 ]. UVB radiation
ndeed possesses greater energy than UVA, and only a fraction of
VB rays can penetrate the ozone layer to reach the Earth’s sur-

ace [ 35 ]. UVB r adiation primaril y affects the ker atinocytes of the
pidermis . T he high energy levels associated with UVB radiation
an dir ectl y dama ge DN A b y inducing double-str and br eaks and
ausing the formation of th ymine-th ymine cyclobutane pyrim- 
dine dimers . T hese DNA alterations have the potential to con-
ribute to the de v elopment of certain skin cancers and pr ematur e
kin aging [ 36 ]. As for UVC radiation, it is the most potent type of
V radiation. Ho w ever, it is completely absorbed and filtered by

he ozone layer, pr e v enting it fr om r eac hing the Earth’s surface
 Fig. 1 ) [ 37 ]. 
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Figure 1. Mechanisms of skin photoaging caused by UV radiation. The skin can be divided into three layers: the epidermis, the dermis, and the 
hypodermis. UVA has the longest wavelength and can penetrate into the dermis layer of the skin. UVB has a shorter wavelength than UVA and can 
penetrate into the epidermis layer of the skin, but a significant portion of UVB is absorbed by the ozone layer. UVC has the shortest wavelength and is 
entir el y absorbed by the ozone layer. UV radiation causes an increase in the production of ROS and MMPs in the skin as well as an inflammatory 
response. 
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xidative stress 
xidativ e str ess constitutes a shar ed factor associated with both

ntrinsic and extrinsic a ging pr ocesses. Ele v ated le v els of ROS con-
ribute to o xidati v e str ess, c har acterized by an imbalance favoring
r ooxidants ov er antio xidants [ 38 ]. Excessi ve o xidati v e str ess has
een linked to skin cancers, including malignant melanoma [ 39 ].
OS exert r egulatory contr ol ov er the activ ation of MMPs, whic h
re crucial in the remodeling of the ECM and are believed to play
 pivotal role in the pathogenesis of skin aging. Notable members
f the MMP famil y involv ed in this process include MMP-1, MMP-
, MMP-3, and MMP-9 [ 40 ]. ROS function as second messengers
y activ ating tr anscription factors, suc h as nuclear factor-ka ppa
 ( NF- κB ) and activating protein-1 ( AP-1 ) . NF- κB, in addition to
p-regulating MMP-1, MMP-3, and MMP-9, leading to the degra-
ation of various collagen fibers, also promotes the expression
f pro-inflammatory cytokines, such as tumor necrosis factor- α
 TNF- α) and interleukin-6 ( IL-6 ) . AP-1, comprising c-Fos and c-
 un subunits , oper ates downstr eam of the activ ation of mitogen-
ctiv ated pr otein kinases ( MAPKs ) [ 41 ]. The three principal mem-
ers within the MAPK family encompass the extracellular signal-
egulated kinase ( ERK ) , the C-Jun N-terminal kinases ( JNKs ) , and
he p38 MAPKs. Upon ROS-induced activation of MAPK signaling
ascades, phosphorylation of ERK and JNK stimulates c-Fos and
-Jun, culminating in the incr eased expr ession of the MMP fam-
l y. Additionall y, AP-1 modulates the TGF-beta/Smad pathway by
nhibiting the expression of the Smad2/3 complex, leading to a
eduction in type I procollagen synthesis ( Fig. 2 ) [ 42–44 ]. 
elomere shortening 

elomer es ar e specialized nucleopr otein structur es located at
he terminal ends of eukaryotic c hr omosomes . T hey consist of
andem double-stranded hexanucleotide repeats ( TTAGGG ) that
erv e as pr otectiv e ca ps, shielding c hr omosome ends fr om degr a-
ation, end-to-end fusion, and homologous recombination. Due
o the inability of DNA pol ymer ases to full y r eplicate c hr omosome
nds, telomer es natur all y shorten by ∼50–200 bp with each cell di-
ision. When telomeres reach a critical length, DNA ends become
xposed, triggering the DNA dama ge r esponse and ultimately
eading to cellular senescence [ 45 ]. Telomerase, a ribonucleopro-
ein complex, is comprised of telomer ase r e v erse tr anscriptase
nd RNA-dependent DNA pol ymer ase. Telomer ase can utilize its
NA component as a template to elongate the telomere sequence,
hus pr eserving telomer e integrity and stability [ 46 ]. Se v er al stud-
es hav e pr oposed a potential link between telomer es, telomer ase,
nd skin a ging. Victor elli et al . [ 47 ] reported that senescent epi-
ermal melanocytes exhibit dysfunctional telomeres, inducing
elomeric damage in peripheral keratinocytes through paracrine
ignaling, thereby contributing to skin aging. Jia et al . [ 48 ] observed
ignificant telomere shortening in human skin fibroblasts follow-
ng exposure to UVA radiation. Marion et al . [ 49 ] found that telom-
res in dermal skin fibroblasts from young mice ( 22 weeks old )
ere longer than those from aged mice ( 121 weeks old ) . Addition-
ll y, Flor es et al . [ 50 ] reported that telomerase-deficient mice dis-
layed a propensity for premature skin aging. Ho w ever, the direct
ausal relationship between telomeres , telomerase , and skin ag-
ng remains to be definitiv el y established. Consequentl y, further
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Figure 2. Mechanisms of skin photoaging mediated by UV via ROS. 
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compr ehensiv e inv estigations ar e warr anted to delv e deeper into 
the functions of telomeres and telomerase in the context of cel- 
lular senescence and skin aging. 

Mitochondria and melatonin 

Within eukaryotic cells, mitochondria play a pivotal role in energy 
production [ 51 ]. The skin, a highly organized organ constantly re- 
ne wing itself thr oughout life, r elies on the pr olifer ation, differ en- 
tiation, and self-r ene wal of stem cells for r egener ation and r epair 
[ 52 ]. These stem cells meet their energy requirements through ox- 
idative phosphorylation, a process in which mitochondria gener- 
ate ATP. Ho w e v er, a consequence of mitoc hondrial r espir ation is 
the continuous production of R OS. Mitochondrial DN A ( mtDN A ) 
is particularly vulnerable to o xidati ve stress-induced damage due 
to its close proximity to ROS production sites. Prolonged UV radi- 
ation causes a rise in ROS in skin cells as well as mtDNA damage,
which may disrupt normal mitochondrial function and intracel- 
lular energy production [ 53–55 ]. Berneburg et al . [ 56 ] reported that 
2 weeks of UVA radiation increased human skin mtDNA deletions.
Sc hr oeder et al . [ 57 ] found that human skin fibroblasts with par- 
tial depletion of mtDNA exhibited a photoaging-like phenotype as 
evidenced by decreased mitochondrial function, increased MMP-1 
expr ession, and decr eased matrix alpha1 type-I collagen ( COL1A1 ) 
expr ession. Furthermor e, ther e is an important antioxidant and 

ROS scavenger, coenzyme Q ( CoQ10 ) , present in the mitochondria,
which is believed to possess anti-aging activity [ 58 ]. The synthe- 
sis of CoQ10 was observed to decrease with aging [ 59 ]. Marcheg- 
giani et al . [ 60 ] reported that the reduction of CoQ10 affects the 
 espir atory efficiency of mitochondria, leading to o xidati ve dam-
 ge and mitoc hondrial dysfunction, ultimatel y inducing pr ema-
ur e a ging of human dermal fibr oblasts ( HDFs ) . 

Melatonin, a natural antioxidant primarily synthesized by the 
ineal gland and released into the bloodstream to regulate circa-
ian rhythms, is also produced by the skin and the gastrointesti-
al tract [ 61 ]. Dermal fibroblasts express melatonin receptor MT-1.
ong et al . [ 62 ] have provided evidence that the MT-1 receptor may
lay a role in protecting skin cells from UV-induced DNA dam-
ge . T hey observed that MT-1 receptor expression in fibroblasts
ecreased with age . T he use of small interfering RNA technology
o knock down the MT-1 receptor resulted in fibroblasts that were

ore susceptible to UV irradiation, exhibiting a significant in- 
rease in o xidati ve stress and DNA damage . Moreo ver, a dynamic
elatonin–mitochondria axis exists within the skin. On one hand,
elatonin maintains mitochondrial homeostasis to preserve cel- 

ular redox balance. Kleszczy ́nski et al . [ 63 ] found that melatonin
r e v ents dissipation of mitochondrial transmembrane potential 
fter UV r adiation, ther eby r educing a poptosis. Mansouri et al.
 64 ] reported that melatonin attenuated ethanol-induced dele- 
ion of mtDNA. Díaz-Casado et al . [ 65 ] found that melatonin re-
tor ed ATP pr oduction and the r espir atory ca pacity of dysfunc-
ional mitochondria and reduced o xidati ve stress. On the other
and, mitochondria contain high levels of melatonin and serve 
s the site of melatonin synthesis and metabolism in skin cells
 66–68 ]. Two melatonin metabolic pathwa ys , the mitochondrial
ytoc hr ome P450-dependent pathway and the kynuric pathway,
re found in mitochondria. Melatonin synthesis and metabolism 

r e closel y r elated to mitoc hondrial function [ 69 ]. The inter actions
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etween melatonin and mitochondria have garnered increasing
ttention from researchers. 

 he r ole of micr oRNAs 
icroRN As ( miRN As ) are short noncoding RNA molecules, typi-

ally consisting of 19 to 25 nucleotides, which regulate gene ex-
r ession post-tr anscriptionall y by inter acting with tar get messen-
er RNAs ( mRNAs ) [ 70 ]. Se v er al miRNAs have emerged as k e y reg-
latory molecules implicated in skin aging processes. Ahmed et
l . [ 71 ] identified an increase in miR-21 expression in both mouse
nd human aged skin. miRNA-21 ( miR-21 ) plays a role in altering
he expression of age-related genes ( Krt1, Krt10, and Krt17 ) by tar-
eting the down-regulation of the c hr omatin r emodeler SATB1 in
eratinocytes . T his alteration promotes skin aging and heightens
usceptibility to a ge-r elated pathological conditions. Sriv astav a et
l . [ 72 ] reported significant changes in miRNA expression in pho-
oa ged skin. Solar exposur e leads to the upr egulation of miR-34a,

iR-134, miR-145, and miR-383, alongside the downregulation of
iR-663b, miR-3648, and miR-6879. Among these, miR-34a, miR-

34, and miR-383 may play roles in both intrinsic and extrinsic ag-
ng. Furthermor e, Roc k et al . [ 73 ] discov er ed incr eased expr ession
f miR-23a-3p and r educed secr etion of HA in senescent dermal
broblasts. MiR-23a-3p acts as a regulator by binding to the 3’ un-
r anslated r egion of hyalur onan synthase 2, r esulting in decr eased
A synthesis, promoting cellular senescence and contributing to

kin a ging. While numer ous studies hav e highlighted the impor-
ance of miRNAs in the processes of chronological aging and pho-
oaging of the skin, the specific underlying mechanisms and path-
ays remain to be fully elucidated. Further research is needed to
xplore and investigate these mechanisms comprehensively. 

nflammaging and immunosenescence 
nflammation is a hallmark feature of photoaging, where repeated
xposure to UV radiation triggers heightened o xidati ve stress and
ocalized skin inflammation. This o xidati v e str ess and inflamma-
ion lead to cellular senescence, and the buildup of senescent
ells acts as a catalyst for increased production of inflamma-
ory cytokines . T his shift in the balance of pro-inflammatory and
nti-inflammatory factors results in a state of chronic low-grade

nflammation known as “inflamma ging”. Inflamma ging does not
ust affect the skin, it can also contribute to systemic diseases
uch as Parkinson’s disease , cardio vascular disease , type 2 dia-
etes, and cancer. Chr onic low-gr ade inflammation can incr ease
usceptibility to infections and trigger a ge-r elated imm une de-
ciencies, collectiv el y r eferr ed to as imm unosenescence. Recent
vidence suggests that both inflammaging and immunosenes-
ence play significant roles in skin aging [ 74–76 ]. LCs, special-
zed antigen-presenting cells in the epidermis, are affected by
ging. Pilkington et al . [ 77 ] re ported that the n umber of LCs in
lder skin is significantly reduced, by ∼20%, compared to younger
kin. Furthermor e, the migr ation ability of these cells is im-
air ed, whic h incr eases the susceptibility of elderl y individuals
o skin infections. Macr opha ges, innate imm une cells, ar e cru-
ial players in inflammation. Macr opha ges can adopt two main
henotypes: “pro-inflammatory” M1 and “anti-inflammatory” M2 
 78 ]. Gather et al . [ 79 ] found that the inflamma ging micr oenvi-
onment in aging skin promotes the differentiation of mono-
ytes into macr opha ges with “pr o-inflammatory” M1-like c har ac-
eristics, resulting in an increased number of M1 macr opha ges.
onv ersel y, senescent monocytes exhibit reduced intrinsic dif-

erentiation into M1 macrophages . T his shift to w ar d more M1
acr opha ges in the skin contributes to ECM remodeling and de-

reases the overall stability of skin tissue. While studies have un-
erscored the pivotal roles of inflammation and immunity in the
ccumulation of physiological and pathological damage during
 ging, the pr ecise molecular mec hanisms involv ed r emain poorl y
nderstood. Further inv estigations ar e warr anted in the future to
hed more light on these mechanisms and their impact on skin
ging. 

utophagy 

utophagy is a crucial lysosome-dependent degradation pathway
n eukaryotic cells that plays a pivotal role in maintaining in-
racellular homeostasis [ 80 ]. Dysregulated autophagy has been
mplicated in various diseases, including skin a ging, ather oscle-
osis, and cancer [ 81 ]. In the context of UV-induced skin pho-
odama ge, autopha gy r egulation is vital for cellular protection.
mar et al . [ 82 ] demonstrated that intervening in autophagy sig-
ificantl y attenuated UVB r adiation-induced nuclear dama ge and
poptosis in HDFs. Ho w ever, UVB exposure led to an impaired au-
opha gic r esponse in HDFs. Tr eatment with the autopha gy activ a-
or r a pamycin impr ov ed autopha gy le v els by r educing o xidati ve
tr ess and pr omoting DNA r epair, ultimatel y r educing the num-
er of apoptotic cells. Several studies have reported that mod-
lating autophagy with certain compounds can slow down the
kin aging process. For instance, metformin, an oral hypoglycemic
rug commonly used to treat type II diabetes, has been found
o mitigate skin photoaging. Chen et al . [ 83 ] reported that met-
ormin exerts its anti-photoaging effects by inhibiting mitochon-
rial autopha gy, r educing o xidati v e str ess, and decr easing the ac-
ivation of the PI3K/AKT/mTOR signaling pathway in senescent
ells. In vivo experiments confirmed that metformin treatment
ignificantl y r educed colla gen br eakdown and epidermal thin-
ing in UVA-induced skin damage in mice, thereby improving
hotoaged skin conditions . Caffeine , a potential neuroprotective
gent with antioxidant effects [ 84 ], has also been shown to ac-
iv ate autopha gy and r educe UV-induced skin dama ge in mice.
i et al . [ 85 ] found that low doses of caffeine activ ate autopha gy
hrough the A2AR/SIR T3/AMPK pathw ay, reducing the effects of
 xidati v e str ess on e pidermal k er atinocytes. Notabl y, the use of
utophagy inhibitors diminished the protective effect of caffeine.
hile both the activation and inhibition of autophagy have been

inked to skin aging, the precise molecular mechanisms remain
ncompletely understood. Further research is needed to solidify
he evidence and gain a deeper understanding of these mecha-
isms in the context of skin aging. 

pplications of MSC-derived EVs against 
kin aging 

SCs are multipotent stem cells capable of self-renewal and dif-
er entiation into v arious cell types, both mesenc hymal and non-

esenchymal [ 86 ]. They can be deriv ed fr om div erse sources, in-
luding bone marrow ( BMSCs ) , adipose tissue ( ADSCs ) , umbilical
ords ( uMSCs ) , dental tissue ( dental pulp stem cells ) , and periph-
ral blood [ 87 ]. MSCs typically express common surface markers
ike CD73, CD90, and CD105, while lacking hematopoietic mark-
rs like CD14, CD19, CD34, CD45, CD11b, CD79alpha, and HLA-DR
 88 ]. 

Nearly all cells including eukaryotes and prokaryotes have
een demonstrated to release membrane-enclosed vesicles called
Vs. Exosomes are a subclass of EVs, with a diameter of 40–160
m [ 89 ]. Trams et al . [ 90 ] in 1981 first proposed the term “exo-
ome” as 5 ′ -n ucleotidase acti vity micr ov esicles r eleased by dif-
er ent cultur ed cells. Ov er an extended period of time, exosomes
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wer e consider ed as cellular “garbage dumpsters”. Ho w e v er, exten- 
siv e r esearc h has since illuminated their crucial role in intercel- 
lular communication and signal transduction. Exosomes are ca- 
pable of carrying various cargoes, including proteins , lipids , and 

nucleic acids, making them instrumental in cell-to-cell communi- 
cation [ 91 ]. Fusion of m ultiv esicular bodies with the plasma mem- 
br ane secr etes exosomes into the extracellular environment [ 92 ].
Once released by parent cells, exosomes can be taken up by recipi- 
ent cells through various mechanisms such as endocytosis, mem- 
br ane fusion, or r eceptor–ligand inter actions. Importantl y, exo- 
somes released by different types or functional states of cells ex- 
hibit heterogeneity. The efficiency of exosome internalization may 
depend on the nature of the cargo contained within these vesicles 
and the metabolic state of the recipient cells. Due to their excel- 
lent biocompatibility and low biotoxicity, as well as their pivotal 
role in cellular communication, exosomes are emerging as ideal 
candidates for gene and drug delivery [ 89 , 93 , 94 ]. For instance,
miR-21, an oncogenic miRNA, is found to be ov er expr essed in var- 
ious malignancies like lung cancer , breast cancer , and colon can- 
cer. Downregulating miR-21 has been shown to inhibit the prolifer- 
ation of tumor cells, promote apoptosis, and enhance tumor sen- 
sitivity to c hemother a py. Liang et al . [ 95 ] significantly improved the 
efficacy of 5-FU-resistant colon cancer treatment by encapsulat- 
ing c hemother a py drugs lik e 5-FU and miR-21 inhibitor oligon u- 
cleotides within engineered exosomes . T his inno v ativ e a ppr oac h 

holds great potential in targeted drug delivery. As a result, there 
is a growing interest in leveraging the advantages of exosomes as 
novel nano-drug delivery vehicles, leading to extensive research 

into the specific mechanisms of targeted drug delivery. This area 
of study has the potential to r e volutionize drug deliv ery methods,
making them more precise and efficient. 

MSCs hav e emer ged as pr olific pr oducers of ther a peutic ex- 
tr acellular v esicles, making them a v aluable r esource in v arious 
medical a pplications [ 96 ]. Compar ed with other ther a peutic pr o- 
gr ams, the adv anta ges of MSC-EVs in the tr eatment of skin a ging 
are focused on the following aspects . T he first is security: as EVs 
ar e v esicles , they a void risks associated with the administration of 
living cells [ 97 , 98 ], suc h as micr ov ascular obstruction [ 99 ], infu- 
sion toxicity, and ectopic tissue formation [ 100 ]. This is in contrast 
to nano-cosmeceuticals, in which active ingredients are packaged 

within a nanocarrier so that they are easily absorbed into the 
skin and subsequently exert enhanced cosmetic and therapeu- 
tic effects to impr ov e skin aging [ 101 ]. The most commonly used 

nanocarriers in the cosmeceutical field include liposomes, vesi- 
cles, solid lipid nanoparticles ( NPs ) , niosomes , nanocapsules , mi- 
celles , dendrimers , and metal NPs [ 102 , 103 ]. Ho w e v er, some of 
these NPs may produce toxicity or unwanted side effects such 

as activation of the innate immune system, inflammation, and 

skin irritation due to their composition, particle size, and electri- 
cal c har ge [ 104 ]. MSC-EVs completel y avoid the adv erse effects 
of nano-cosmeceuticals and their composition is closer to na- 
ture . T he second is high efficiency: as MSC-EVs are derived from 

MSCs and are one of the main ways of intercellular communica- 
tion [ 105 ]. The nucleic acid and other contents loaded by MSC-EVs 
regulate the biological time or the change of cell fate, which is an 

extr emel y efficient mode of action [ 106 , 107 ]. It induces a more ef- 
ficient and compr ehensiv e c hange than cosmetics, supplemental 
HA or collagen. The third is targeting and tissue regeneration: EVs 
can specifically target cells through their surface proteins, pro- 
moting skin r egener ation and repair. This targeted delivery pro- 
vides potential adv anta ges ov er tr aditional tr eatment methods,
allowing for more accurate action on damaged skin tissue [ 108 ,
109 ]. The final is feasibility: with the deepening of r esearc h, the 
tor a ge pr oblem of EVs has also been solv ed to a certain extent
 110 , 111 ], whic h pr ovides a high possibility of futur e commercial
pplications. 

In summary, MSC-EVs offer exciting prospects for addressing 
kin aging and promoting skin rejuvenation. A deeper under- 
tanding of the specific mechanisms underlying EV-mediated ef- 
ects in skin aging is anticipated to pr ovide v aluable insights into
hese processes and guide further advancements in the field of
kin r ejuv enation and tissue r egener ation. 

SC-EVs on epidermal cells and fibroblasts 

he epidermis comprises four distinct layers: the outermost stra- 
um corneum, follo w ed b y the stratum granulosum, stratum
pinosum, and stratum basale. Sustained proliferation and dif- 
er entiation of ker atinocytes, originating fr om the basal layer at
he dermal–epidermal junction, contribute to the formation of 
he stratum corneum, a vital component in maintaining the dy-
amic homeostasis of the epidermis [ 112 ]. Located beneath the
pidermis, the dermis serves as its foundational support and is
onnected to the epidermis through the dermal–epidermal junc- 
ion. The dermis primarily consists of fibroblasts and their ECM,
ncompassing collagen, elastin, and v arious pr oteins r esponsible
or the skin’s mechanical strength and elasticity [ 113 ]. With ad-
 ancing a ge, both the epidermis and dermis gr aduall y thin, ac-
ompanied by a decline in the self-r ene wal ca pacity of skin stem
ells, ultimately leading to compromised skin barrier function.
ingle-cell transcriptome profiles of human eyelid skin across dif- 
er ent a ge gr oups hav e indicated a decline in the ov er all popu-
ation of keratinocytes and fibroblasts among the elderly com- 
ared to their younger counterparts. In fibroblasts, the inactiva- 
ion of HES1 ( gr owth-contr olling tr anscription factors ) and in ker-
tinocytes, the inactivation of KLF6 ( a crucial regulatory factor in
he tr anscription pr ocess of epidermal basal cells ) leads to cell
ging. The data suggests that, for keratinocytes, the downregula- 
ion of KLF6 not only results in decreased proliferative potential
ut also leads to heightened expression of pro-inflammatory cy- 
okines, including IL-6. Concerning fibr oblasts, exposur e to UV ra-
iation triggers the downregulation of the Notch-targeting gene 
ES1. Conv ersel y, the ov er expr ession of the HES1 gene has shown
romise in mitigating age-related phenotypes . T hese findings of-
er novel insights into potential ther a peutic tar gets for addr essing
kin aging and related conditions [ 114 ]. Several studies have un-
erscored the role of MSCs in promoting the healing of damaged
kin tissue through paracrine mechanisms. Chang et al. [ 115 ] have
emonstrated that the overexpression of the long non-coding RNA 

OXD2-AS1 in exosomes derived from ADSCs ( ADSC-Exos ) accel- 
rates the migration and proliferation of HaCaT cells by influ-
ncing the miR-185–5p/ROCK2 axis, thereby facilitating wound 

ealing. Furthermore, Zhao et al . [ 116 ] hav e observ ed that hu-
an uMSC-derived exosomes ( HuMSC-Exos ) effectiv el y inhibit 
 2 O 2 -induced apoptosis in HaCaT cells and promote tissue re-
eneration in skin wounds . T his was established using a HaCaT
ell-based skin injury model treated with H 2 O 2 . Results indicated
hat HuMSC-Exos significantly curtailed the nuclear transloca- 
ion of apoptosis-inducing factor ( AIF ) and the excessive activa- 
ion of poly ADP ribose polymerase 1 ( PARP-1 ) , thus mitigating
aCaT apoptosis attributed to decreased mitochondrial mem- 
r ane permeability. Additionall y, in vivo administr ation of HuMSC-
xos upregulated endothelial cell markers CD31 and cytoker- 
tin 10 while downregulating the expression of alpha-smooth 

uscle actin ( alpha-SMA ) . Zhang et al . [ 117 ] have reported that
DSC-Exos expedite the healing of full-thickness skin wounds by 
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tim ulating HDF pr olifer ation and migr ation, as well as fostering
he synthesis of type I and type III colla gen thr ough the PI3K/Akt
ignaling pathwa y. T he TGF-beta1/Smad signaling pathwa y, which
lays a pivotal role in the formation of collagen and elastin fibers
uring wound healing, has also been implicated. Jiang et al . [ 118 ]
ave highlighted that human BMSC-derived exosomes ( BMSC-
xos ) expedite the wound healing process by inhibiting the TGF-
eta/Smad signaling pathway. In vitro , exosomes have been shown
o enhance the pr olifer ation of HaCaT and HDF. In vivo studies
av e demonstr ated that exosomes downr egulate the expr ession
f TGF-beta1, Smad2, Smad3, and Smad4, while upregulating the
xpression of TGF-beta3 and Smad7, thereby promoting scar-free
ound healing. Notably, exosomes exhibit more significant thera-
eutic effects compared to BMSCs in this context. These findings
old promise for advancing the application of cell-free therapy in
he future. 

emo v al of MMPs 

MPs are zinc-dependent neutral endopeptidases intricately in-
olved in the remodeling of the ECM. The protein hydrolytic ac-
ivities of MMPs undergo regulation through transcription, pro-
nzyme activ ation, and inter actions with tissue inhibitors of met-
llopr oteinase ( TIMPs ) . The r ole of TIMPs lies in their contr ol of
CM degradation by binding to activated MMPs. An MMP/TIMP
atio imbalance has been linked to various diseases, including
ther oscler osis , osteoarthritis , and cancer [ 119 ]. In the context
f skin, prolonged exposure to UV radiation induces an upsurge
n MMPs production within fibroblasts and keratinocytes, result-
ng in the degradation of normal collagen and elastin fibers, ulti-

ately leading to skin damage and the potential development of
kin cancer [ 120 ]. Notably, senescent fibroblasts can induce colla-
en degr adation thr ough the secr etion of senescence-associated
ecretory phenotype ( SASP ) , mediating MMP-1 expression in nor-
al fibroblasts. SASP also induces dysfunction and premature

enescence in adjacent cells, pr opa gating senescence [ 121 ]. Pre-
ious in vestigations ha ve demonstrated that UV irradiation acti-
ates the MAPK and NF- κB signaling pathwa ys , leading to an up-
egulation in the production of MMP-1, MMP-2, MMP-3, and MMP-
 [ 40 , 122 ]. Curr entl y, numer ous studies have posited that MSC-
erived exosomes ( MSC-Exos ) play a pivotal role in suppressing
MP expression. Choi et al . [ 23 ] hav e demonstr ated that EVs de-

iv ed fr om ADSCs ( ADSC-EVs ) r estor e the migr ation and pr olifer-
tion of UVB-damaged HDFs . T his restorative effect is attributed
o the ability of ADSC-EVs to stimulate dermal matrix synthe-
is by promoting the expression of TIMP-1 and TGF-beta1, in-
ibiting the ov er expr ession of MMP-1, -2, -3, and -9, and enhanc-

ng the expression of collagen types I, II, III, and V and elastin.
eng et al . [ 123 ] reported that HuMSC-derived extracellular vesi-
les ( HuMSC-EVs ) shield HDFs from UVB-induced cell death and
r owth arr est, sim ultaneousl y r educing the percenta ge of senes-
ent cells and MMP-1 expression while promoting Col-1 expres-
ion. Notably, miR-1246 was found to be downregulated during
he photoaging process of HDFs. Gao et al . [ 124 ] conducted ex-
eriments wherein ADSCs were infected with lentivirus to ob-
ain miR-1246-ov er expr essing exosomes, exploring their effects
n HDFs after UVB irradiation. In vitro , miR-1246-overexpressing
xosomes attenuate MMP-1 expression and enhance the secre-
ion of type I pr ocolla gen by inhibiting the MAPK/AP-1 signal-
ng pathway and activating the TGF-beta/Smad pathway, respec-
iv el y. In vivo , miR-1246-ov er expr essing exosomes mitigate epi-
ermal thickness , wrinkles , and collagen loss in UVB-induced
ice. 
r otection a gainst o xidati v e stress 

V radiation can induce the mitochondria-dependent generation
f ROS, which can inflict o xidati ve damage upon DNA bases [ 125 ].
OS, including superoxide anions, hydroxyl radicals, and H 2 O 2 ,
erve as essential players in cell signaling and the maintenance of
ellular homeostasis. At low concentrations, ROS function as sig-
aling molecules , go v erning pr ocesses suc h as cell pr olifer ation,
iffer entiation, gr owth, and surviv al. Ho w e v er, when pr esent in
igh concentrations, ROS trigger o xidati ve stress damage, culmi-
ating in cell necrosis and apoptosis [ 126 ]. The cellular ROS level is

ntricately tied to the regulation of collagen metabolism; elevated
OS le v els activ ate MMP-1, MMP-3, and MMP-9, initiating colla-
en degradation and, consequently, affecting the assembly and
urnover of the ECM [ 127 ]. Under normal physiological conditions,
he antioxidant defense system, composed of glutathione perox-
dase ( GPx ) , super oxide dism utase ( SOD ) , per oxidase ( POD ) , and
atalase ( CAT ) , is activated to control R OS accumulation, thereb y
v erting excessiv e ROS pr oduction, whic h could otherwise lead to
xtensive lipid peroxidation damaging cell membranes and caus-
ng cell death. Ne v ertheless, during o xidati v e str ess, these antiox-
dant systems ma y pro ve insufficient to scavenge excess ROS [ 128 ,
29 ]. Emer ging e vidence suggests that MSC-Exos can bolster cel-
ular antioxidant capabilities and modulate ROS levels to miti-
ate o xidati v e dama ge. Wang et al . [ 130 ] reported that MSC-Exos
an repair skin damage induced by o xidati v e str ess , in volving the
RF2 signaling pathway. In vitro r esults r e v ealed that MSC-Exos
 e v ersed abnormal calcium oscillations and mitochondrial alter-
tions in H 2 O 2 -exposed ker atinocytes, concurr entl y ele v ating le v-
ls of ferric reducing antioxidant po w er ( FRAP ) , fGPx, and SOD to
urtail ROS production. In vivo , MSC-Exos counteracted the in-
reased number of mitochondrial cristae and swelling observed
n UV-irradiated mouse skin, while also reducing the expression
f CAT, SOD2, GLUT1, and pro-inflammatory cytokines like TNFal-
ha, IL-1beta, and IL-6, and enhancing COL1 and COL3 deposition.
SC-Exos exert their antio xidati v e pr o w ess both in vitro and in

ivo by ada ptiv el y r egulating the NRF2 defense system. Shiekh et
l . [ 131 ] produced an elastic antioxidant polyurethane biomaterial
 OxOBand ) combined with ADSC-Exos . T hey found that OxOBand
as able to reduce o xidati v e str ess and incr ease colla gen r emodel-

ng to promote diabetic wound healing. Li et al . [ 132 ] found that the
v er expr ession of Nrf2 in ADSC-Exos accelerates diabetic wound
ealing by reducing ROS le v els and inhibiting the expression of

nflammatory factors. Wu et al . [ 133 ] reported that HuMSC-Exos-
eliv er ed 14–3-3 ζ pr otein pr omoted the expr ession of SIRT1 in Ha-
aTs, whic h significantl y r educed the ele v ation of R OS caused b y
V radiation. 

egulation of inflammation 

nflammation constitutes a pivotal factor in the process of cel-
ular senescence and ranks among the primary c har acteristics
f skin photoaging. As individuals a ge, the featur es of inflam-
ation closel y par allel c hanges in imm une cell function, a phe-

omenon termed immunosenescence [ 134 , 135 ]. W ith age, the in-
ate immune system experiences a decline in the ability of den-
ritic cells to activate CD4 + T cells. Concurrently, the adaptive

mm une system under goes thymic degener ation, leading to r e-
uced output of total naïve T cells and an increased proportion
f memory T cells [ 136 , 137 ]. This age-associated immunosenes-
ence, both innate and ada ptiv e, coincides with c hr onic, low-
r ade systemic inflammation, a ptl y termed inflamma ging [ 138 ].
ontinuous exposure of the skin to UV radiation induces local-

zed inflammation and a counter pr oductiv e imm unosuppr essiv e
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milieu. Hasegawa et al . [ 139 ] have demonstrated that UVB 

r adiation-induced DNA dama ge activ ates the NLRP3 inflamma- 
some, resulting in the release of inflammatory mediators such as 
IL-1beta, PGE2, TNF-alpha, IL-1alpha, and IL-6. CCAA T/enhancer - 
binding protein beta ( C/EBPbeta ) , a transcription factor regulat- 
ing the expression of the IL-1beta gene , pla ys a pivotal role in 

this process. Xiao et al . [ 140 ] exposed keratinocytes to 50 mJ/cm 

2 

UVB radiation to create an in vitro model of acute injury. UVB 

radiation induced the secretion of various pro-inflammatory cy- 
tokines, including IL-1beta, TNF-alpha, and FGF-2, while upregu- 
lating the expression of C/EBPbeta and promoting nuclear translo- 
cation. Fortunately, MSCs possess potent anti-inflammatory and 

imm unomodulatory pr operties, as e videnced in v arious models 
of inflammatory diseases, including arthritis, psoriasis, and sys- 
temic lupus erythematosus [ 141 ]. Psoriasis, a c hr onic inflamma- 
tory skin disorder with genetic and environmental factors at its 
core , exemplifies this . Zhang et al . [ 142 ] reported that the top- 
ical application of MSC-Exos reduced the release of psoriasis- 
specific inflammatory cytokines IL-17 and IL-23, along with the 
membr ane attac k complex C5b-9, in a mouse model of psoriasis.
Cho et al . [ 143 ] demonstrated that ADSCs-Exos ameliorated symp- 
toms of atopic dermatitis by reducing the number of CD86 + and 

CD206 + cells , eosinophils , and mast cells , while inhibiting the ex- 
pression of inflammatory factors TNF-alpha, IL-23, IL-31, and IL- 
4 in an atopic dermatitis mouse model. In terms of skin regen- 
er ation, man y wounds stall in the healing process due to per- 
sistent inflammation, ultimatel y de v eloping into c hr onic, non- 
healing wounds . T hese r ecalcitr ant wounds, if infected and left 
unaddressed, can lead to severe complications, including ampu- 
tation and e v en mortality. P atel et al . [ 144 ] reported that long non- 
coding RNA GAS5 in ADSCs-Exos reduces levels of IFNalpha, IL- 
1beta, and TNF-alpha by suppressing toll-like receptor 7 expres- 
sion in HDFs, thereby expediting wound healing in a c hr onicall y 
inflamed environment. Liu et al . [ 145 ] observed that melatonin- 
stim ulated exosomes fr om human BMSCs significantl y enhanced 

the healing of diabetic wounds . T hese exosomes shifted pro- 
inflammatory M1 macr opha ges to w ar ds an anti-inflammatory M2 
phenotype through regulation of the PI3K/AKT signaling pathway, 
ther eby amelior ating the inflammatory status of the wound and 

facilitating healing. Heo [ 146 ] explored the impact of pr etr eating 
BMSCs with selenium and collecting their exosomes on wound 

healing. Their results demonstrated that selenium-primed BMSCs 
exhibited heightened anti-inflammatory capabilities. Selenium- 
boosted exosomes inhibited TNF-alpha, IL-6, and IL-8 while pro- 
moting the expression of TGF-beta1 and IL-10 in monocytes. Addi- 
tionally, selenium-boosted exosomes facilitated angiogenesis and 

regulated the inflammatory microenvironment by promoting M1- 
to-M2 macr opha ge polarization. Ov er all, selenium-boosted exo- 
somes promoted wound healing by dampening inflammation and 

modulating angiogenesis ( Fig. 3 , Table 1 ) . 

Clinical study of MSC-EVs in the treatment of 
aging skin 

To date, few clinical studies have explored the potential of MSC- 
EVs for ther a peutic effects on skin aging, although encouraging 
findings have been reported in many in vitro and preclinical stud- 
ies. We c hec ked clinicaltrials .go v and ha v e not found an y of the 
above studies ongoing. Two clinical trials of high relevance to 
the field of skin ther a py ar e underway. One of the clinical tri- 
als ( No. PTD2021P001 ) is exploring the safety of topical MSC- 
derived exosome ointment. Another clinical trial ( No . A GLE-102–
102 ) is to explore the safety and efficacy of allogeneic MSC-EVs in 
eep second-degree burn w ounds. Ho w ever, as of this writing, no
ollow-up reports have been seen on these two clinical trials. 

In a r ecentl y r e ported 12-week clinical stud y, r esearc hers e v al-
ated the use of microneedles ( MN ) combined with ADSC-Exos to
reat skin aging, using a prospective , randomized, splitface , com-
ar ativ e study. A total of 28 individuals r eceiv ed thr ee tr eatments,
ith an interval of 3 weeks, and were followed up for 6 weeks after

he last treatment. The results sho w ed that compared with the
ontr ol gr oup of MN combined with saline , the o v er all aesthetic
mpr ov ement scale scor e of the experimental group was signifi-
antly higher than that of the control group [ 147 ]. 

dministr a tion r outes and engineering of 
SC-EVs 

espite the notable effect of MSC-EVs in the treatment of pho-
oaging, how to administer the drug in the case of the skin, which
s the natural barrier of the organism, has also become a topic
f concern for scholars. In addition, as research has progressed,
an y modifications hav e been emplo y ed to optimize the target-

ng and efficiency of EV treatments to more fully realize the po-
ential of MSC-EVs . Here , we summarize the common methods of
rug delivery, as well as the modification of EVs by engineering
ethods, and the treatment of photoaging in combination with 

ther ther a peutic a ppr oac hes. 

ocal injection 

ppr opriate administr ation methods can effectiv el y impr ov e the
ptake rate of EVs, so as to ac hie v e the desir ed ther a peutic ef-
ect. Compared with systemic administration, topical administra- 
ion has a unique attr action, suc h as direct delivery of high con-
entrations of EVs to the injured site , impro ving the ability of re-
ipient cells to absorb EVs and reducing the probability of side
ffects. In general, systemic administration generally requires a 
igher total dose per patient than local administration [ 148 ]. EVs
r e r a pidl y clear ed following systemic administr ation [ 149 ]. In the
rocess of clinical application of drugs, efficiency , simplicity , and
ost are important factors that must be considered when choos-
ng the route of administration. Since skin photoaging problems 
r e usuall y concentr ated in exposed skin sites, suc h as faces and
ands, localized administration is an effectiv e a ppr oac h to ad-
r ess this issue. Compar ed with dir ect a pplication, the injection
ethod can dir ectl y deliv er the drug to the tar get site, ther eb y b y-

assing the skin barrier. Ther efor e, local injection has become the
ode of administration in most studies. 

ydrogels 

ydr ogels ar e 3D nanofiber materials composed of physically or
 hemicall y cr oss-linked hydr ophilic pol ymer networks . T hey pos-
ess unique pr operties, suc h as the ability to absorb and retain a
ignificant amount of water while maintaining their structural in- 
egrity and dimensions [ 150 ]. Hydrogels are ideal therapeutic plat-
orms due to their biocompatibility and modifiability, as a ppr opri-
te functional groups can be added as needed. 

The use of hydrogels has been widely explored in many
iomedical fields, including cell ther a py, drug deliv ery, biosensing,
nd tissue engineering [ 151–153 ]. Encapsulating EVs in a hydrogel
an maintain their activity while exerting a sustained release ef-
ect. Mol et al . have developed a hydrogel known as UPy-hydrogel,
hich is based on ureido-pyrimidinone ( UPy ) units coupled to 
ol y ( ethylene gl ycol ) c hains [ 154 ]. This hydr ogel has been inv es-
igated as a potential delivery platform for EVs . T he UPy-hydrogel
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Figure 3. Mechanisms and therapeutic methods of MSC-EVs for delaying skin aging. MSCs are a type of multipotent stem cell with self-renewal 
capabilities and can be isolated from bone marrow, adipose tissue, amnion umbilical cord, dental pulp, and peripheral blood. CD73, CD90, CD105, etc. 
are surface markers of MSCs. MSC-EVs delay skin aging by activating keratinocytes and fibroblasts, promoting their proliferation and migration, 
remo ving MMPs , reducing the generation of ROS, and regulating the inflammatory response . T he administration routes of MSC-EVs include local 
injection, hydrogels, microneedle, and needle-free injection. In addition, engineered EVs can carry specific cargoes for targeted drug delivery. 
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ndergoes a solution-to-gel transition when the pH changes from
igh to neutr al, r esulting in immediate gelation when intr o-
uced into physiological systems. Following the topical in vivo ad-
inistration of fluorescently labeled EVs incorporated into UPy-

ydr ogel, the pr esence of EVs was still observed within the UPy-
ydrogel after a period of 3 da ys . In the absence of the hydrogel,
V was internalized by adipose and skin tissues near the injection
ite. 

Chitosan hydrogel ( CS ) , with its thermosensitive, loose and
or ous structur al pr operties, has been used as a carrier for the
low release of drugs in se v er al studies [ 155 , 156 ]. A study by Zhao
t al . [ 157 ] suggests that CS hydr ogel-enca psulated EVs can im-
r ov e skin a ging by enhancing the function of aged dermal fibrob-

asts. According to their findings, CS hydr ogel-incor por ated EVs
 CS-EVs ) target the dermal fibroblasts with re plicati ve senescence,
romote cell proliferation, and enhance ECM protein synthesis in
ged cells and the upregulation of MMPs in vitro . Following the
ubcutaneous injection of CS-EVs, the aging skin tissues exhib-
ted a state of r ejuv enation, c har acterized by a notable increase in
olla gen expr ession, a decr ease in the expr ession of SASP-r elated
actors, and the r estor ation of tissue structures. 

Lipodystrophy may manifest as a reduction in subcutaneous
at, particularl y in ar eas suc h as the face , arms , and legs . T his
an lead to thinner and looser-looking skin, potentially affect-
ng the ov er all a ppear ance. Injections of hydrogel for volume fill-
ng can go some way to making a person look younger. HA hy-
rogels ( HA-Gels ) are often used as soft tissue fillers in the face,

ips, and buttocks to increase their size and make them more
esthetically pleasing. According to You et al. [ 158 ], stem cell-
erived EV-containing HA gels ( EV-HA-Gels ) could be used as der-
al fillers. EV-HA-Gels induced the ov er expr ession of CD301b

n macr opha ges . T he authors pro vided evidence of the ability
f EV-HA-Gels to induce the upregulation of CD301b expression
n macr opha ges . Certain miRNAs , specifically let-7b-5p and miR-
43p, were found to play a role in the impact of EV-HA-Gels on en-
ancing fibr oblast pr olifer ation in the dermis r egion. In vivo exper-

ments demonstrated a significant upregulation of collagen syn-
hesis in the treated dermis when compared to dermis treated
ith HA-Gel alone, with a 2.4-fold incr ease. Furthermor e, these el-
 v ated colla gen le v els wer e sustained for a minim um of 24 weeks
n the dermis. 

icroneedles ( MN ) 
N ar e miniatur e-sized structur es ca pable of deliv ering drugs to

eeper layers of the skin without compromising the skin barrier.
icro-scale size endows them with many advantages over hy-

odermic needles , including painlessness , minimal in v asiv eness,
nd convenient operation [ 159 ]. In addition, previous reports have
hown that MN treatment alone aids colla gen neov asculariza-
ion. Hong et al . [ 160 ] reported that wrinkles and skin roughness
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Table 1. Functions and ther a peutic mec hanisms of MSC-EVs a gainst skin a ging. 

Source Nomenclature Model Function T her apeutic mechanism References 

Human ADSCs Exosomes HaCaTs Improving wound 
healing 

Highl y-expr essed lncRNA FOXD2-AS1 in 
ADSC-Exos promote HaCaTs migration and 
pr olifer ation via miR-185–5p/ROCK2 axis 

[ 115 ] 

Human uMSCs Exosomes H 2 O 2 -HaCaTs 
and mouse 

Improving wound 
healing 

Suppress the nuclear translocation of AIF and the 
excessi ve acti vation of PARP-1, up-regulate CD31, 
cytokeratin 10 and down-regulate alpha-SMA 

[ 116 ] 

Human ADSCs Exosomes HDFs and mouse Improving wound 
healing 

Promote HDFs proliferation and migration and 
synthesize collagen I / III via the PI3K/Akt signaling 
pathway 

[ 117 ] 

Human BMSCs Exosomes HaCaTs ,HDFs , 
and mouse 

Improving wound 
healing 

Promote HaCaTs and HDFs proliferation, 
down-regulate the expression of TGF-beta1, 
Smad2, Smad3, and Smad4, and up-regulate the 
expression of TGF-beta3 and Smad7 

[ 118 ] 

Human ADSCs EVs UVB-induced 
HDFs 

Against photoaging Increase TIMP-1, TGF-beta1, and collagen types I, 
II, III, and V, and elastin, reduce MMP-1, -2, -3, and 
-9 

[ 23 ] 

Human uMSCs EVs UVB-induced 
HDFs 

Against photoaging Reduce MMP-1 and the percentage of senescent 
cells, incr ease colla gen I 

[ 123 ] 

Human ADSCs Exosomes UVB-induced 
HDFs and mouse 

Against photoaging Reduce MMP-1 and increase type I procollagen via 
MAPK/AP-1 signaling pathway and 
TGF-beta/Smad pathway 

[ 124 ] 

Human uMSCs Exosomes H 2 O 2 - 
K er atinocytes 
and mouse 

Against o xidati v e str ess Up-regulate FRAP, GPx and SOD concentrations to 
reduce ROS production via NRF2 signaling 
pathway 

[ 130 ] 

Human ADSCs Exosomes HaCaTs Against o xidati v e str ess Reduce ROS and increase collagen remodeling [ 131 ] 
Human ADSCs Exosomes EPCs Against o xidati v e str ess Ov er expr ession of Nrf2 in ADSC-Exos reduces ROS 

le v el 
[ 132 ] 

Human uMSCs Exosomes UV-induced 
HaCaTs 

Against o xidati v e str ess HuMSC-Exos-deliv er ed 14–3-3 ζ pr otein pr omotes 
SIRT1 expression to reduce ROS 

[ 133 ] 

Human ESCs Exosomes Psoriasis mouse Anti-inflammatory Reduce IL-17, IL-23, and C5b-9 [ 142 ] 
Human ADSCs Exosomes Atopic dermatitis 

mouse 
Anti-inflammatory Reduce CD86 + , CD206 + , eosinophils, and mast 

cells, inhibit TNF-alpha, IL-23, IL-31, and IL-4 
expression 

[ 143 ] 

Human ADSCs Exosomes HDFs Anti-inflammatory lncRNA GAS5 in ADSC-Exos reduces IFNalpha, 
IL1beta, and TNF α le v els by suppr essing toll-like 
receptor 7 expression 

[ 144 ] 

Human BMSCs Exosomes Macr opha ges and 
mouse 

Anti-inflammatory Transform M1 macrophages to M2 macrophages 
through PI3K/AKT signaling pathway, promote 
angiogenesis and IL-10, suppress IL-1beta and 
TNF- α

[ 145 ] 

Selenium-pr etr eated 
human BMSCs 

Exosomes HDFs, 
macr opha ges and 
mouse 

Anti-inflammatory Reduce p16, p21, and ROS, inhibit TNF- α, IL-6, and 
IL-8, promote TGF-beta1, IL-10, and M1 to M2 
polarization of macr opha ges, pr omote 
angiogenesis, migration, and wound closure 

[ 146 ] 

ESCs, Embryonic stem cells; EPCs, endothelial progenitor cells. 
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v alues wer e r educed in photoa ged mice after MN tr eatment, and 

histological examination sho w ed a slight increase in collagen and 

elastin fibers. 
Cao et al . [ 161 ] investigated the effect of MN combined with 

ADSCs-EVs on skin aging. They found reduced epidermal thick- 
ness and enhanced skin barrier function at sites treated with MN 

alone or MN + EVs compared to the untreated sites. Ho w e v er, the 
MN + EVs group sho w ed the fewest wrinkles, the highest collagen 

density, and the most organized collagen fibers among the three 
groups . T hree da ys after treatment, CD11b + cell infiltration was 
lo w er in the MN + EVs group than in the MN group. These results 
suggest that MN treatment alone can impr ov e epidermal struc- 
ture and function in photoaged skin. In addition, the combination 

with ADSCs-EVs accelerates the recovery of inflammation caused 

by MN and increases collagen content. You et al . [ 162 ] designed 

a MN patch system loaded with COL1A1-EV and HA by a micro- 
olding method, and named this system COL1A1-EV MN. For de-
ivery into tissue, COL1A1-EV MN patches were pressed into the
orsal skin of mice, and the MN base was r emov ed after 15 min.
uring this period, the MN dissolved completely, with no visible

kin irritation or marking at the site of administration. They found
hat EVs administered using MN patches were significantly more 
omogeneous and durable compared to insulin syringes. 

The marine sponge Haliclona sp. spicules ( SHS ) , composed of
ilicious oxeas, has the ability to penetrate the skin through sim-
le massa ge, r esulting in the cr eation of ov er 1000 micr oc hannels
 with a depth of 42.2 ± 14.9 μm ) per mm 

2 . According to recent re-
orts, this distinctive characteristic of SHS renders it a potentially
dv anta geous MN system for augmenting the skin’s absorption
f hydr ophilic macr omolecules. Significantl y, SHS exhibits the ca-
ability to be emplo y ed at any desired location on the skin, un-

ike pr e vious MN patc hes that wer e r estricted to limited and flat
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reas [ 163 ]. Considering the many advantages of SHS, Zhang et al .
 164 ] explored whether the use of SHS could enhance the cuta-
eous delivery of HuMSC-Exos. In vitro experiments revealed that
uMSC-Exos exhibited limited ability to permeate pig skin. Ne v er-

heless, the utilization of SHS resulted in a 5.87-fold enhancement
n exosome uptake through the creation of micr oc hannels. Subse-
uent in vivo experiments conducted on photoaged mice demon-
trated that the concurrent administration of HuMSC-Exos and
HS yielded noteworthy anti-photoaging outcomes, encompass-
ng the reduction of micro-wrinkles, mitigation of histopatholog-
cal alterations, and stimulation of ECM component expression.
onv ersel y, the sole a pplication of HuMSC-Exos exhibited consid-
r abl y weaker effects . T he skin irritation test demonstrated that
he co-administration of HuMSC-Exos and SHS resulted in a mi-
or degree of irritation, which promptly resolved. 

argeting str a tegy and EVs 

ar geted str ategies for drug deliv ery ar e a wonderful aspir ation
or pr ecision medicine, whic h not onl y av oids drug w aste but also
r asticall y r educes drug side effects. Pr e vious studies hav e shown
hat EVs have a strong targeting ability, mainly due to plasma

embr ane tar geting, higher-order oligomerization, and protein
odification ( e.g. myristoylation, pr en ylation, and palmitoylation )

 165–167 ]. 
Liposomes, tiny lipid vesicles surrounded by a membrane bi-

ayer composed primarily of phospholipids and c holester ol, can
erve as an important drug delivery system because of their
mphiphilic nature, but their non-targeting, low potency, and
hort half-life hinder their translational applications [ 168 , 169 ].
hese deficiencies can be significantly mitigated by a ppr opri-
te functionalization of these drug carriers with biological enti-
ies possessing the targeting characteristics and biological con-
tructs of EVs. For example, the use of specific cell membrane-
nca psulated nanov esicles may offer pr omising deliv ery str ate-
ies for clinical applications. Hu et al . [ 170 ] have devised a top-
own methodology for the concealment of poly ( lactic-co-glycolic
cid ) ( PLGA ) NPs using natural erythrocyte membranes . T he resul-
ant NPs, camouflaged with membranes , ha ve demonstrated re-

arkable blood residence capabilities . T he incorporation of mem-
rane lipids and associated membrane proteins has effectively
inder ed macr opha ge-mediated particle clear ance. Mor eov er, the
 esearc hers employed a technique to conceal PLGA NPs using
lasma membranes derived from human platelets, thereby con-
erring upon these NPs the immunomodulatory and adhesive
ntigens typically found on platelets. Subsequently, these NPs
ere utilized for the purpose of restoring impaired blood ves-

els and addressing systemic infections induced by opportunistic
athogens within a living organism [ 171 ]. Boada et al . [ 172 ] effec-
iv el y integr ated pr oteins obtained fr om leuk ocyte plasma mem-
rane into lipid NPs, thereby creating biomimetic vesicles with the
ur pose of specificall y tar geting inflamed v asculatur e. Ev ers et al .
 173 ] introduced novel types of hybrid NPs that combine EVs and
iposomes . T he authors provided evidence in their study to sup-
ort the notion that these hybrid NPs, which incorporate target
enes and EV-surface markers, facilitate the precise delivery of
enes to particular cells. Zhou et al. [ 174 ] isolated tumor-derived
xtr acellular v esicles fr om hepatocellular carcinoma cells and re-
laced their contents to ac hie v e tar geting of tumor cells. 

In addition to utilizing the c har acteristics of EVs to enhance
iposome targeting, studies have also been conducted to facil-
tate EV targeting to specific receptor cells through exogenous
eptides , proteins , or lipid-modified designed EVs [ 175 ]. Among
he specific pr epar ation str ategies, ther e ar e br oadl y two types
f schemes: genetic modification of parental cells and chemical
odification of preformed EVs [ 176 ]. The former can be accom-

lished by cloning protein sequences and connecting protein se-
uences with targeting potential to specific protein sequences, so
s to “anchor” specific proteins to the surface of vesicle mem-
r anes. As an illustr ation, the C1C2 domain is situated at the C-
erminus of the fusion sequence. Upon expression in host cells,
he signal facilitates the transportation of the complete protein
nto the secreted EV, thereby orienting the N-terminal region to-
 ar ds the outer surface of the EV. This method has been used to
e v elop tumor v accines and enhance the tar geting of drug deliv-
ry systems [ 177–179 ]. Given the ability of rabies viral glycopro-
ein to specifically bind acetylcholine receptor [ 3 ], Alvarez-Erviti
t al . [ 180 ] engineered dendritic cells to express exosome mem-
r ane pr otein Lamp2b ( a pr otein found abundantl y in exosomal
embranes ) fused with neuron-specific rabies viral glycoprotein

eptide, ther eby ac hie ving the tar geting of v esicles to the nervous
ystem. As for the second method, Antes et al . [ 181 ] describe a
rotocol to increase EV targeting, in their study, by means of an
V membr ane-anc horing platform called “cloaking” ( consisting of
hree components, including a DMPE phospholipid membrane an-
 hor, a pol yethylene gl ycol spacer and a conjugated str eptavidin
latform molecule, to which any biotinylated molecule can be
oupled for EV decoration ) to enhance vesicle uptake in cells of
nterest by embedding tissue-specific antibodies or homing pep-
ides dir ectl y in vitro on the surface of the EV membrane. Cao et
l . [ 182 ] used RGD-modified EV as a carrier to ac hie v e the tar get-
ng of photothermal effectors to tumor cells. Qi et al . [ 183 ] de v el-
ped a bifunctional super par ama gnetic NP cluster based on ex-
somes as a targeted drug delivery carrier for cancer treatment.
his exosome-based drug delivery carrier is super par ama gnetic
t room temperature and responds more strongly to an external
agnetic field than a single superparamagnetic NP. These charac-

eristics enable exosomes to be isolated from the blood and target
iseased cells. 

To date, no additional EV-targeting enhancements have been
eported for the treatment of skin aging. We believe that this may
e a futur e dir ection for r esearc h to enhance drug efficacy and
void side effects, e.g. targeting specific types of re parati ve cells
nd providing a program that is specific to these types of cells. 

nrichment of specific inclusions in EV cargoes 

ue to the increasing research on the mechanism of aging, it is ex-
ected that the c har acteristic of targeted transport of EVs will be
tilized to transport specific fragments of nucleic acids or proteins

nto the target cytoplasm [ 184 , 185 ]. Enrichment of EV inclusions
s also an important modification option for EVs. 

Zhang et al . [ 125 ] found that circ_0011129, a non-coding circu-
ar RNA, functions as a miR-6732-5p adsorption sponge, thereby
mpeding the degradation of type I collagen and the aggrega-
ion of elastin in a UVA-induced photoaging model of human
ermal fibroblast cells. To improve the in vivo stability and de-

ivery efficiency of circRNAs, the authors pr epar ed extr acellular
esicles loaded with cir c_0011129 ( 3D-cir cc-sEV ) b y ov er expr ess-
ng circ_0011129 in ADSCs and culturing them in a 3D bioreac-
or. Finall y, they demonstr ated that 3D-circ-sEVs possess the abil-
ty to impede the cellular photoaging process and safeguard cells
 gainst UVA r adiation-induced harm as well as in a model of ox-
dativ e str ess induced by H 2 O 2 . Gao et al . [ 124 ] utilized lentivirus
nfection to obtain ADSCs and exosomes ( OE-EX ) that exhib-
ted high expression of miR-1246. They subsequently investigated
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the potential anti-photoaging effect of OE-EX on human skin 

fibroblasts ( HSFs ) and Kunming mice . T he findings demonstrated 

that OE-EX displayed a more pronounced anti-photoaging effect, 
which was attributed to its ability to significantly reduce MMP-1 
le v els thr ough the inhibition of the MAPK/AP-1 signaling pathway.
Ad ditionally, OE-EX effecti vely enhanced the secretion of type I 
collagen by activating the TGF-beta/Smad pathw ay, thereb y pre- 
v enting UV-induced I κB- α degr adation and NF- κB ov er expr ession,
ultimately exerting an anti-inflammatory effect. 

Due to size constraints, studies of EVs car goes usuall y focus 
on nucleic acids with small fr a gments ( 10–20 nt r ange ) , suc h as 
miRNAs and small interfering RNAs. Larger nucleic acids such as 
mRNA ar e mor e difficult to load into EVs [ 186 ]. Yang et al . [ 187 ]
conducted a study wherein they transfected different source cells 
with plasmid DNAs and subsequentl y stim ulated the cells using 
a localized and temporary electrical stimulus . T his stimulus fa- 
cilitated the release of exosomes containing transcribed mRNAs 
and targeting peptides. In comparison to bulk electr opor ation and 

alternative methods for exosome production, cellular nanopora- 
tion resulted in a significantly higher yield of exosomes, up to a 
50-fold increase, and a substantial increase of > 103-fold in ex- 
osomal mRNA transcripts . T his effect was observ ed e v en in cells 
with initially low levels of exosome secretion. Using this approach,
called cellular nanoporation, You et al . [ 162 ] enriched mRNA en- 
coding extracellular-matrix COL1A1 into EVs, which induced the 
formation of collagen grafts and reduced the formation of wrin- 
kles in collagen-depleted dermal tissues of mice with photoaged 

skin. 

Other administr a tion routes 

The needle-free injector has gained significant popularity in the 
administration of local anesthesia and vaccines in humans, pri- 
marily owing to its high levels of safety and effectiveness, par- 
ticularly among individuals with a fear of needles [ 188 ]. The ef- 
ficacy of needleless syringes in delivering exosomal treatments 
was assessed by Hu et al . [188]. This method involves the pneu- 
matic acceleration of exosomal solutions into the dermis of the 
skin, r esulting in r educed dama ge and pain, enhanced penetr a- 
tion and absorption, and improved suitability for cosmetic appli- 
cations compared to conventional syringes. To investigate the im- 
pact of these injection methods on the distribution of extracel- 
lular vesicles in the dermis, the resear chers emplo y ed a DID la- 
beling technique . T he findings indicate that the administration of 
exosomes via syringe injection induces the a ggr egation of concen- 
trated substances and inflammatory cells . Con versely, needleless 
syringes do not exhibit these limitations . Furthermore , the minor 
dermal injuries caused by needleless syringes ar e conduciv e to 
the synthesis of collagen in the skin ( Fig. 3 ) [ 189 ]. 

Conclusion and prospects 

Skin aging can be divided into intrinsic aging and extrinsic aging,
whic h involv es o xidati v e str ess, telomer e shortening, mitoc hon- 
drial, melatonin, and miRNA c hanges, inflamma ging, imm unose- 
nescence , and autophagy. T here are several positive aspects of 
MSC-EVs in delaying skin a ging. Firstl y, MSC-EVs acceler ate the 
pr olifer ation and migration of HDFs and keratinocytes and inhibit 
a poptosis, thus pr omoting skin tissue r egener ation. Secondl y, UV 

r adiation activ ates MAPK and NF-kB signaling pathwa ys , leading 
to an increase in MMPs. MSC-EVs inhibit the activation of these 
signaling pathways to r e v erse the le v el of MMPs, thus pr omoting 
ECM synthesis . Furthermore , MSC-EVs protects cells from oxida- 
iv e dama ge caused by excessiv e o xidati v e str ess thr ough acti-
ating the antioxidant defense system. In addition, MSC-EVs pos- 
ess anti-inflammatory and imm unomodulatory pr operties and 

nhibit the release of inflammatory mediators. As for ther a peu-
ic methods, local injection is the most common administration 

ethod of MSC-EVs, and hydrogel preparation, MN, and needle- 
ree injection combination therapy has its own adv anta ges. Engi-
eered EVs can carry specific cargoes for drug delivery according
o their targeting capabilities. 

Compared to traditional stem cell therapy, MSC-EVs offer sev- 
r al distinct adv anta ges. Firstl y, conv entional stem cell ther a py
ften entails the dir ect tr ansplantation of exogenous cells into
he patient’s body, a pr ocedur e that carries the risk of immune
 ejection r eactions. In contr ast, EVs exhibit a lo w er propensity
or immune reactions due to their diminished immunogenicity,
hic h r enders them mor e r eadil y accepted by the patient’s im-
 une system, ther eby r educing the likelihood of r ejection [ 190 ,

91 ]. Secondl y, the pr epar ation of EVs is r elativ el y str aightfor-
 ar d, ac hie v able thr ough in vitro cultur e, and conduciv e to cry-
pr eserv ation and long-term stor a ge . T hese attributes gr eatl y fa-
ilitate their clinical application and enhance treatment feasibil- 
ty [ 192 , 193 ]. Additionally, EVs convey a div erse arr ay of bioac-
ive molecules encompassing proteins , nucleic acids , lipids , and
ytokines . T hese molecular constituents play pivotal roles in mod-
lating imm une r esponses, facilitating tissue r epair, and exerting
nti-inflammatory effects, among other functions. Consequently,
Vs hold substantial promise in the treatment of diverse diseases
 185 , 194 ]. Mor eov er , EV -based ther a p y affor ds expanded prospects
or personalized medicine, allowing for customization accord- 
ng to individual patient conditions and needs, thereby achieving 

or e pr ecise ther a peutic outcomes. In summary, MSC-EVs r ep-
 esent pr omising candidate drugs for addressing skin aging and
elated conditions. 

Nonetheless, despite the remarkable strides made in this field,
 umerous pi votal issues remain that r equir e attention. Firstl y, the
omposition and effectiveness of EV ther a py may be influenced
y various factors, including donor variability, culture conditions,

solation and purification methods, and more. This variability in- 
roduces uncertainty to the therapeutic outcomes and poses a sig-
ificant challenge to standardizing the quality of EVs . T he prepa-
 ation, stor a ge, and a pplication of EV ther a py r equir es specialized
aboratory conditions and technology. Large-scale production can 

ignificantl y incr ease costs, especiall y in healthcar e systems with
imited r esources. Pr oper stor a ge conditions ar e crucial for main-
aining the activity and quality of EVs, often necessitating the use
f specialized freezing equipment and stor a ge facilities. During
he application phase, introducing EV therapy to patients requires 
dherence to high standards of laboratory procedures and tech- 
ology to ensure the safety and effectiveness of the treatment 
 193 , 195 ]. 

Secondly, determining the optimal dosage and most suitable 
dministration methods for EV therapy remains a complex task.
nsufficient dosage may fail to produce therapeutic effects, while 
xcessiv e dosa ge may pose unnecessary risks. Further r esearc h is
eeded to clarify the optimal dosage of EVs and the most effec-
ive methods for their delivery into the patient’s body. Regarding
uman skin, the delivery of EVs may face some obstacles . T he bar-
ier function of the skin’s surface stratum corneum may limit the
enetration of EVs . T he immune system present in the skin may

ead to immune rejection reactions against EVs [ 189 , 196 ]. Fac-
ors such as hair follicles, skin pH, humidity, and other physic-
c hemical pr operties can also affect the penetration efficiency
f EVs. 
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Mor eov er, although MSC-EVs are generally considered
 elativ el y safe, safety considerations are crucial in clinical
pplications [ 89 ]. This becomes particularly prominent in the
ontext of long-term tr eatments, r equiring enhanced r e vie w and
onitoring of potential adv erse r eactions. During the clinical
 pplication pr ocess, car eful monitoring of patients is necessary to
nsure that the treatment does not trigger unexpected immune
esponses or other adverse events . Meanwhile , more in-depth
 esearc h is needed regarding the sustainability and long-term
tability of the ther a peutic effects of EVs. For instance, it is
rucial to investigate whether EVs, after being deliv er ed into the
kin, can remain stably present and exert continuous effects.
he clearance and metabolism mechanisms of EVs by the skin
ay impact the sustainability of the tr eatment. A r ecent study

ndicates that encapsulating COL1A1-mRNA into EVs can reduce
he formation of wrinkles in photoaged mice. After low-dose
njection, COL1A1 was significantly increased in local skin tissue
t 12 h, peaked on the fourth day, and returned to baseline levels
 y day 30. Ho w e v er, EVs deliv er ed via HA MNs exhibited better
ispersion in the dermal layer, leading to a substantial reduction

n wrinkles for up to 70 days with the initial dosage [ 162 ]. 
While the ther a peutic potential of EVs in combating skin ag-

ng is substantial, further in-depth studies ar e imper ativ e to elu-
idate the underlying mechanisms comprehensively. Formal clin-
cal adoption of MSC-EVs for the treatment of skin aging requires
ontinued r esearc h efforts. 
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