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Abstract: Melanoma is among the most malignant cutaneous cancers and when metastasized results
in dramatically high mortality. Despite advances in high-throughput gene expression profiling in
cancer transcriptomic studies, our understanding of mechanisms driving melanoma progression
is still limited. We present here an in-depth bioinformatic analysis of the melanoma RNAseq,
chromatin immunoprecipitation (ChIP)seq, and single-cell (sc)RNA seq data to understand cancer
progression. Specifically, we have performed a consensus network analysis of RNA-seq data from
clinically re-grouped melanoma samples to identify gene co-expression networks that are conserved
in early (stage 1) and late (stage 4/invasive) stage melanoma. Overlaying the fold-change information
on co-expression networks revealed several coordinately up or down-regulated subnetworks that
may play a critical role in melanoma progression. Furthermore, by incorporating histone lysine-27
acetylation information and highly expressed genes identified from the single-cell RNA data from
melanoma patient samples, we present a comprehensive list of pathways, putative protein-protein
interactions (PPIs) and transcription factor (TF) networks that are driving cancer progression.
From this analysis, we have identified Elk1, AP1 and E12 TF networks that coordinately change
expression in late melanoma when compared to early melanoma, implicating these TFs in melanoma
progression. Additionally, the sumoylation-associated interactome is upregulated in invasive
melanoma. Together, this bioinformatic analysis potentially implicates a combination of TF networks
and PPIs in melanoma progression, which if confirmed in the experimental systems, could be used as
targets for drug intervention in melanoma.

Keywords: cancer progression; melanoma; co-expression network analysis; transcriptomics

1. Introduction

Melanocytes are a population of cells that arise from the neural crest lineage and are found in the
skin, the middle layer of the eye, the inner ear, the meninges, bones and the heart [1,2]. In the skin,
these cells are present in the most bottom layer of the skin epidermis and in the hair follicles, and are
primarily responsible for the production of the pigment melanin, which is synthesized and stored in
lysosome-like organelles called melanosomes [3]. One of the main functions of the pigment melanin is
to absorb ultraviolet radiation (UVR) from the sun to minimize skin damage [3]. Cutaneous melanoma
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is a common type of skin cancer that arises in the melanocytes, and when treated early has a high
survival rate [4]. However, despite advances in our understanding of the disease progression, 20% of
those diagnosed with melanoma will die from the disease [5]. The majority of cutaneous melanomas
arise as a result of the proliferation of melanocytes, referred to as melanocytic naevi. These benign
growths have a low likelihood of progressing to melanoma. However, increasing occurrences of these
melanocytic naevi raises the chance for melanoma development [6].

A combination of genetic and environmental factors has been found to influence melanoma
pathogenesis. Inactivating mutations in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene
result in a dysregulated cell cycle promoting melanoma transformation [7,8]. Mutations in NRAS, BRAF,
and PTEN genes have emerged as factors contributing to melanoma [9]. Furthermore, the presence of
germline or acquired mutations in the promoter region of TERT gene also increases the predisposition
to melanoma [10]. Environmental factors such as light skin color, lack of melanin, and excessive
exposure to UVR from sun increase the risk of melanoma. Consistently, melanomas with driver gene
mutations also exhibit features of DNA damage arising from UVR exposure [6].

While considerable data is available on the types of mutations acquired during the expansion
of naevi, relatively less is known about changes in gene expression during metastasis of melanoma.
Recent studies have enabled grouping melanoma samples based on the signature gene expression
patterns [11] as well as construct co-expression networks to delineate hub genes and transcription
factor networks likely involved in melanoma pathology [12]. However, these studies provide little
information about the mechanisms and cellular processes driving tumor progression from early stage
benign naevi to metastatic melanoma.

To specifically study tumor progression, we have utilized a publicly available melanoma RNA-seq
data set (GEO: GSE98394) [13] comprised of data from benign, non-invasive, and invasive sample
groups. Instead of comparing metastatic samples to either benign or normal samples, we use the clinical
information for each of the non-invasive and invasive samples to further stratify them into 4 stages
from the early non-invasive stage (stage 1) to the late metastatic stage (stage 4/invasive). We generated
gene co-expression networks from the re-grouped melanoma sample RNA-seq data and used the
correlated gene modules to uncover potential protein-protein interactions (PPIs) and transcription
factor (TF) networks. In parallel, we have identified genes associated with super-enhancers using
melanoma chromatin immunoprecipitation (ChIP-seq) data [14] and found that >20% of genes that
were differentially upregulated in invasive melanoma were also associated with super-enhancers
and overlapped with two PPI networks involving the sumoylation protein SUMO3 and polycomb
group protein RNF2. Network analysis also revealed the potential involvement of three TFs Elk1,
AP1, and E12 as the target genes in these networks that were either coordinately upregulated or
downregulated in invasive melanoma. These findings suggest that a concomitant change in the
transcriptional landscape resulting from mis-regulation of several TFs contributes to tumor progression
in melanoma. Despite this complexity, the tumor progression mechanisms uncovered in this study
could serve as nodal points of for further investigation in the biological systems and could serve as
potential targets of intervention for effective cancer therapy.

2. Methods

2.1. RNA-seq Data Grouping and Sample Selection

Seventy eight (78) RNA-seq data downloaded from GEO: GSE98394 [13] have been categorized into
benign (27 samples) and two stages of melanocytic tumors: non-invasive (35 samples), and invasive
(16 samples). To further delineate non-invasive and invasive tumor stages, the tumor groups were
further categorized into smaller groups that would clinically represent non-invasive (stage 1) and
invasive (stage 4) tumor stages (Figure 1A). The clinical phenotype and staging information are
summarized in (Table S1). Specifically, the non-invasive melanoma group represented tumors with
thickness less than 1mm and were categorized into the T1a and stage I based on TNM Classification of
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Malignant Tumors (TMN) [15] and American Joint Committee on Cancer (AJCC) classification [16],
respectively. The invasive melanoma group on the other hand represented tumors with thickness
> 4 mm. The tumors were classified as T3/T4 and stage III based on TMN and AJCC classification,
respectively. The majority of the subjects in this group were deceased. Additionally, this sub-group
of invasive cancer subjects had at least one lymph node that contained cancer while subjects with
non-invasive tumors had no cancer in the lymph nodes, and in one case the cancer in the lymph
node could not be determined (Table S1). The sample size of the non-invasive (stage 1) and invasive
(stage 4) cancer samples that were re-categorized based on the phenotypic information was 10 and 8
samples, respectively.
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Figure 1. Study design and differential expression analysis between stage 1 and stage 4 to delineate
melanoma cancer progression. (A). 51 melanoma samples were further stratified to identify sample
groups that represents stage 1 and stage 4 melanoma. (B). Principal component analysis (PCA) of DE
genes identified in stage 1 vs stage 4 DE analysis. (C). Volcano plot revealing upregulated (red color
dots) and downregulated (green color dots) genes from stage 1 vs stage 4 comparison. (D). Heatmap of
top 200 DE genes from stage 1 vs stage 4 DE analysis. (E). Pathway enrichment analysis of DE genes
from stage 1 vs stage 4 DE analysis. Overlap of DE genes from three-way comparison of indicated
groups. DE: differentially expressed. (F). Overlap of DE genes from three-way comparison of indicated
groups. DE: differentially expressed.

2.2. RNA-seq Analysis

The RNA sequence data was subjected to quality control using FastQC (v0.11.8) [17], followed by
alignment to the human genome (GRCh38) using spliced transcripts alignment to a reference (STAR) [18].
Gene expression was quantified using featureCounts (v2.0.0) [19]. The tumor purity of the RNAseq
samples were assessed using ESTIMATE (v 1.0.13) [20] R package and the tumor purity estimate, and sex
was used as covariates and differential expression analysis was performed using limma-voom [21].
The tumor purity estimates for stage 1 and stage 4 samples cis presented in Table S2. The statistically
significant differentially expressed genes with p value < 0.05 were further subjected to pathway
enrichment analysis using clusterProfiler (v3.14.3) [22]. A summary of the analysis pipeline is
presented as a flow-chart in Figure S1.

2.3. ChIP-seq and Super-Enhancer Analysis

The superenhancer analysis was performed on melanoma samples of the CHL-1 cell lines
originating from skin tissue of human samples. To select the samples, we queried Cistrome database [23]
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for samples with keyword “melanoma” and filtered the results for human samples specific to H3K27ac
assays. Cistrome is the largest known database that holds uniformly processed data for ChIP data sets.
A total of 10 samples was returned by Cistrome database, of which three passed rigorous QC analysis
of six different parameters which indicates that we were very stringent in our sample selection process.
These three samples were also published in [24].

Raw FASTQ files (GEO: GSE60666) [14] were downloaded from GEO [25], and each file was
initially trimmed for adapters, and low-quality reads using Trimmomatic (v0.39) [26] with the following
parameters ‘slidingwindow: 4:15 minlen: 36’. Trimmed reads were then aligned to the human reference
genome hg38 using the BWA-backtrack utility (v0.7.17) [27]. High-quality alignments were retained
with the SAMtools program [28] using the following parameters ‘-q 30 -F 772’. Duplicate alignments
were purged using SAMtools ‘rmdup’ utility. High quality and unique alignments in ENCODE’s
blacklisted regions were purged using the BEDTools program (v2.29.0) [29]. Seven of 11 samples
produced ≥20 million high-quality alignments. Enriched regions for the histone lysine 27 residue
acetylation H3K27ac mark in these seven samples were identified using the MACS2 peak finding tool
(v2.2.5) [28]. Four of these samples showed high concordance based on Jaccard’s similarity metric [30].
Alignments of these four samples were merged using SAMtools merge utility (v1.9), and homer
tool [31] was used to identify super-enhancers. We identified super-enhancer associated genes by
overlapping the transcription start sites of genes that fall within ±10 kb of the super-enhancers.

2.4. Co-Expression Network Analysis

The RNA-seq data was filtered to select genes that had expression gene count > 5 in 90% of the
samples to remove low-expressing genes. The filtered RNA-seq data was subjected to weighted gene
co-expression network analysis (WGCNA) [32]. A consensus WGCNA of the non-invasive (stage 1)
and invasive (stage 4) RNA-seq data combined together helped identify 50 co-expression modules
with a Pearsons’ correlation cutoff of 0.8. Of these modules, the modules with > 150 genes overlap
with DE genes were used for subnetwork analysis. These modules were subjected to GeneMANIA [33]
database search in cytoscape to identify potential protein-protein interactions (PPIs) and transcription
factors (TFs). The resulting PPI and TF target networks were overlaid with the gene expression fold
change information using Cytoscape [34].

2.5. Single-Cell RNA-seq (scRNA-seq) Analysis

The expression matrix was obtained from the Tirosh, et al. melanoma single-cell RNA-seq
study [35]. We compiled a list of 547 genes highly expressed in malignant melanoma cells in each
sample compared with non-malignant cells (FDR < 0.05).

3. Results

3.1. Sample Processing and Differential Expression Analysis to Understand Melanoma Cancer Progression

Gene expression was computed for a total of 78 RNA-seq samples (27 benign melanocytes,
35 non-invasive melanomas, and 16 invasive melanomas). Principal component analysis (PCA)
on gene expression profiles barely separated non-invasive from invasive melanomas (Figure S2).
This suggested that melanomas remained heterogeneous with the current grouping and may require a
refined grouping to obtain better contrast in gene expression associated with invasiveness. Additionally,
ambiguity in assigning stage information to close categories of samples could also add to the discrepancy.
To this end, we reclassified melanoma samples into 4 stages using clinical phenotypes pertinent to
melanoma invasiveness (see Methods), with the early non-invasive samples at stage 1 (n = 10) and the
late invasive samples at stage 4 (n = 8) and these were processed for downstream analysis (Figure 1A).
The clinical phenotype and staging information are summarized in (Table S1 and methods). The PCA of
the regrouped samples showed clear separation between samples in stage 1 and stage 4 indicating that
transcriptomic differences in these samples are likely driven by tumor stage (Figure 1B). Differential
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expression (DE) analysis identified statistically significant changes in gene expression between stage
1 and stage 4 samples and the fold change of upregulated and downregulated genes are depicted
in the volcano plot (Figure 1C). A heat map of the top 200 DE genes subset based on q value < 0.05
is shown in Figure 1D. The DE genes were significantly enriched for several mitochondrial genes,
for mitochondrial translation, and RNA metabolism-related processes (Figure 1E).

In addition to the early (stage 1) vs. late-stage (stage 4) melanoma analysis, differential gene
expression analysis was also performed for two other comparisons including the benign (27 samples)
vs. non-invasive tumor (10 samples) [Control vs. Stage 1] and benign vs. invasive tumor (8 samples)
[Control vs. Stage 4]. The PCA, volcano plot and heatmap revealed distinct gene expression patterns
between the different groups under comparison (Figures S3A–D and S4A–D).

The DE analysis revealed a large number of genes in all three comparisons, which is consistent
with previously reported cancer-associated genes (see Figure 1F and [13]). However, of the differentially
expressed genes, only a small proportion were common between the above-described comparisons
(Figure 1F). These data suggest that distinct gene expression changes occur in stage 1 and stage 4
melanoma, which is likely representative of the respective tumor stage.

3.2. Potential Link between Upregulated DE Genes and Super-Enhancers

Similar to gene expression changes, changes to the epigenome are widely accepted to be a
critical process driving cancer cell transformation [36,37]. To further understand the role of DE
genes in melanoma pathology, their potential link to histone modifications, specifically the histone
acetylation at lysine 27 residue was explored. Since histone acetylation at lysine 27 residue is
associated with transcriptionally active DNA regions, their presence could be assessed to identify
segments of DNA regions that are robustly bound by transcription factors known as super-enhancers
(SE). ChIP-seq analysis of melanoma samples helped identify 2890 genes with putative association
with super-enhancers (Figure 2A). First, the pathway enrichment analysis of genes associated with
super-enhancers showed significant enrichment of genes in the processes associated with mRNA
processing (Figure 2B).
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Figure 2. Summary of differential gene expression and super-enhancer analysis. (A). A flow diagram
summarizing the ChIP-seq data analysis from melanoma samples. (B). Pathway enrichment analysis
of SE associated genes. (C). Table showing overlap between SE associated genes and upregulated
DE genes from the indicated comparisons. (D). TF enrichment analysis of SE associated genes to
identify potential TFs regulating these genes. DE: differentially expressed; TF: Transcription factor;
SE: super-enhancer.
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Next, the ratio of DE genes that both overlapped with SE associated genes and were also
upregulated in each of the three comparisons were analyzed. In all three comparisons, 18–20%
of upregulated DE genes from invasive versus control or non-invasive samples overlapped with
super-enhancers, suggesting that epigenetic changes to some extent may underlie misregulation of
gene expression in melanoma (Figure 2C). Furthermore, transcription factor (TF) enrichment analysis
of SE associated genes showed that a wide group of TFs target the SE associated genes (Figure 2D).
Of these, TFs AP2 alpha, AP2 gamma are known to be upregulated in carcinoma and E2F1 is a known
regulator of keratinocyte proliferation [38]. One limitation of this analysis is that the scope of the
transcriptional landscape change in melanoma cannot be fully evaluated as the samples used in the
ChIP were not stratified in the same way as the RNAseq data (see Discussion).

3.3. Co-Expression Network Analysis to Understand Cancer Progression

To further understand the potential mechanisms underlying melanoma cancer pathogenesis
and progression, the invasive (stage 4/late) and the non-invasive (stage 1/early) melanoma RNA-seq
data were subjected to the consensus weighted gene co-expression network analysis (WGCNA).
This analysis resulted in the identification of 50 modules with genes that have correlated expression in
both early (stage 1) and late (stage 4) melanoma, which are shown as a cluster dendrogram where
the cluster/modules of correlated genes across 18 samples are color-coded (Figure 3 and Figure S5).
The number of DE genes and the number of genes associated with super-enhancers in each cluster is
summarized in Table S8. This analysis revealed that the turquoise module has the biggest overlap
with DE genes as well as with the super-enhancers. Furthermore, five additional modules—black,
blue, brown, red, and yellow modules were identified to overlap with more than 150 DE genes
each. These modules were selected and subjected to sub-network analysis (described below). Finally,
to assess the extent to which the consensus gene co-expression modules overlapped with either the
non-invasive or invasive RNA-seq data co-expression modules, the modules across the data sets
were cross-compared. First, the consensus turquoise module showed significant overlaps with three
invasive melanoma gene co-expression modules. We chose an arbitrary overlap that was greater than
200 genes in size and assessed them by pathway enrichment (Figure S5A). Analysis of overlaps smaller
than 200 genes is not reported as they did not produce statistically significant pathway enrichment
results in most cases. Grey modules from either dataset were excluded from this evaluation as this
module represents uncorrelated genes. Overlapping genes were broadly enriched for processes
related to histone modification, mRNA regulation, vacuole and autophagy (Tables S3.1–S3.3). Similarly,
gene overlaps between consensus modules and non-invasive RNA-seq data were analyzed (Figure S5B).
One consensus module (turquoise) exhibited overlap with six non-invasive co-expressing modules.
Common genes between the indicated modules were further assayed for pathway enrichment and
exhibited either no significant enrichment (one consensus module and non-invasive green modules) or
enrichment in processes related to histone and mRNA regulation, which was similar to that found
with the invasive RNA-seq data (Tables S3.4–S3.8). This analysis showed that all of the consensus
co-expressing modules (except turquoise modules) overlapped to a small extent with co-expressing
modules from either invasive or non-invasive RNA-seq data. These observations suggest that genes in
the consensus modules represent genes clusters conserved in early (stage 1) and late (stage 4/invasive)
melanoma stages and are likely to be associated with melanoma progression rather than representing
either invasive or non-invasive stages of melanoma. It is likely that the consensus modules will provide
insight into the processes underlying cancer progression.

To test this, the genes in the consensus modules were subjected to sub-network analysis.
Consensus WGCNA analysis of invasive and non-invasive RNA-seq data helped identify 50 modules,
each comprising of genes that have correlated expression pattern (See Figure 3). Table S8 shows
the extent of overlap of modules with DE genes. About 25% of the statistically significant DE genes
were assigned to the uncorrelated “grey” module and were excluded from pathway enrichment and
subnetwork analysis. Since these six modules with DE gene overlap >150 accounted for ~65% of the DE
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genes assigned to all the correlated modules, they we selected for downstream analysis. The DE genes
from these selected modules were subjected to pathway enrichment analysis and were further analyzed
by GeneMANIA to identify potential protein-protein interactions (PPIs) and potential transcription
factors (TFs) that may be regulating the co-expressing genes. The pathway enrichment analysis of
the genes in the two (red and black) modules showed enrichment in processes associated with the
extracellular matrix and no significant enrichment, respectively. A summary of the findings for the
remaining four modules is presented below.Cancers 2020, 12, x FOR PEER REVIEW 7 of 17 
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Figure 3. Overlap of consensus co-expression modules with DE genes and super-enhancer associated
genes. Cluster dendrogram of co-expressing genes from consensus WGCNA analysis (see methods).
Each color represents genes with correlated gene expression in invasive (stage 4) and non-invasive
(stage 1) RNA-seq data. The DE genes are marked in a block as black color vertical lines (underneath
the cluster dendrogram). Of these genes that are upregulated and downregulated are colored as red
and blue, respectively, and this panel is labeled as “Up & Down genes”. The last block represents SE
associated genes. DE: differentially expressed; SE: super-enhancer.

3.4. Sumoylation and ELK1 TF Targets Interactome is Highly Expressed in Invasive Melanoma

The genes in the turquoise module showed the biggest overlap with DE genes from invasive
vs. non-invasive RNA-seq data comparison. First, pathway enrichment analysis of the DE genes
from this module showed significant enrichment in processes associated with histone modification,
protein modification, and unfolded protein response (Figure 4A and Table S4.1).

Next, analysis of these genes in GeneMANIA for PPIs helped uncover an interactome with the
SUMO3 as the hub gene. SUMO3 is a small ubiquitin-like protein that can modify other proteins by
covalently binding to the lysine residues of the target protein. Finally, the gene-expression fold change
information was overlaid on top of this interactome. The resulting network with gene expression
fold-change information indicated that SUMO3 gene and most of its interactors are up-regulated
in invasive melanoma when compared with non-invasive melanoma (Figure 4B). Additionally,
GeneMANIA analysis helped identify ELK1 as a potential TF regulating several DE genes from this
module (Figure 4C). When the gene expression fold change information was superimposed on to the
ELK1 target genes, the resulting network indicated that a majority of the ELK1 targets are upregulated
in invasive melanoma.
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Figure 4. WGCNA analysis of stage 1 vs. stage 4 melanoma, turquoise module.
(A). Pathway enrichment analysis of DE genes that overlapped with the turquoise module. (B). PPI
analysis using GeneMANIA revealed an interactome associated with sumoylation processes. Red color
boundary represents genes upregulated in invasive melanoma compared to non-invasive melanoma.
(C). TF network analysis using GeneMANIA revealed a TF network driven by Elk1 transcription factor.
Red color boundary represents genes upregulated in invasive melanoma compared to non-invasive
melanoma. (D). Pathway enrichment analysis of SE associated genes that overlapped with turquoise
module. (E). TF enrichment analysis using GSEA C3 motif gene set of super-enhancers associated
turquoise module genes. (F). TF networks identified in (E) is represented as a network where the
diamond-shaped hub in the TF and the spokes connect with the targets. Red and blue color boundary
represents genes upregulated and downregulated, respectively, in invasive melanoma compared to
non-invasive melanoma. DE: differentially expressed; SE: super-enhancer.

3.5. Super-Enhancer (SE) Associated Genes from the Turquoise Module Implicate Four TFs in Melanoma
Progression

The genes in the turquoise module also showed the biggest overlap with genes associated with
SE. Pathway enrichment analysis was performed on common genes from this module that also
overlapped with genes associated with SE. Some of the significant pathways included lysosome,
vacuole, pigment granules and melanoma organization (Figure 4D). Since the super-enhancers are
transcriptionally active DNA regions most likely associated with TFs, these genes were subjected to
TF enrichment analysis using the transcription factor target gene set downloaded from the molecular
signature database (MSigDB). This analysis identified 4 TFs whose targets overlapped with genes
present in this module (Figure 4E and Table S4.2). When the gene expression fold change information
was superimposed on top of these TF networks, a majority of the target genes are upregulated in
invasive melanoma when compared to the non-invasive melanoma. The TFs in the networks are
represented as the diamond shaped hub and the nodes connected by spokes to the hub represent target
genes (Figure S6A–D). In all four TF networks, the target genes were mostly upregulated in invasive
melanoma (Figure S6A–D).

3.6. Protein Ubiquitination Process and ELK1 TF Targets Are Upregulated in Invasive Melanoma

The genes in the blue module were significantly enriched in the pathways associated with mRNA
stability, cell cycle, and protein ubiquitination processes (Figure 5A and Table S5). GeneMANIA analysis
of the genes in this module lead to identification of PPI network with RNF2 gene as the hub (Figure 5B).
RNF2 encodes a ubiquitin ligase and plays a central role in gene expression regulation [39,40].
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In addition to the PPI, GeneMANIA analysis of the genes in the blue module also identified ELK1
TF as a potential transcriptional regulator for the genes in the blue module. When gene expression
fold-change information was overlaid on top of the ELK1 TF network, it indicated that all of the target
genes are upregulated in invasive melanoma (Figure 5C). Consistent with this observation, ELK1 TF
network identified in the turquoise module were also mostly upregulated in invasive melanoma
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Figure 5. WGCNA analysis of stage 1 vs. stage 4 melanoma, blue module. (A). Pathway enrichment
analysis of DE genes that overlapped with the genes in the blue module. (B). PPI analysis using
GeneMANIA revealed an interactome with RNF2 protein as hub. Red color boundary represents genes
upregulated in invasive melanoma compared to non-invasive melanoma. (C).TF network analysis using
GeneMANIA revealed a TF network driven by Elk1 transcription factor. Red color boundary represents
genes upregulated in invasive melanoma compared to non-invasive melanoma. DE: differentially
expressed; TF: transcription factor.

3.7. Co-Expression Module Associated with Skin/Keratinocyte Associated Processes

Analysis of the genes in the yellow module helped uncover a module comprised of genes involved
in skin, epidermis, and keratinocyte development (Figure 6A, Table S6). This was evident as the genes
in this module were enriched for processes associated with epidermis development and differentiation,
which is the layer of skin that harbors melanocytes.

GeneMANIA analysis of the genes in this module identified two TFs AP1 and E12 that regulated a
broad number of genes in this module (Figure 6B,C). When the gene expression fold-change information
was overlaid on these TF networks, it indicated that the target genes are mostly downregulated in both
of these TF networks.
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Figure 6. WGCNA analysis of stage 1 vs. stage 4 melanoma, yellow and brown module. (A). Pathway
enrichment analysis of DE genes that overlapped with the yellow module. (B,C). TF network analysis
using GeneMANIA revealed two TF networks each driven by AP1 and E12 transcription factors.
(D,E). PPI (involving BRCA1) and miRNA networks identified by GeneMANIA analysis of genes
in the brown nodule. The miRNAs are represented as diamond shaped nodes. Red and blue color
boundary represents genes upregulated and downregulated, respectively, in invasive melanoma
compared to non-invasive melanoma. DE: differentially expressed; TF: transcription factor. PPI:
protein-protein interaction.

3.8. Identification of BRCA1 Hub and Involvement of MicroRNA

In the Brown modules, the PPI analysis revealed a BRCA1 interaction hub, where BRCA1 and its
interacting partners were upregulated in late (stage 4) melanoma versus early (stage 1) melanoma.
BRCA1 protein with mutations is known to have a shorter half-life, which results in impaired DNA
damage repair and tumor progression [41,42]. Given this function of BRCA1, it is likely that the
upregulation of BRCA1 gene expression could be a compensatory mechanism in response to melanoma
progression. In addition to BRCA1 protein-protein interactome, several microRNA targets were also
identified in this module. The coordinated up-regulation of a majority of these microRNA targets
suggest a potential role for microRNAs in melanoma biology.

3.9. Single Cell (sc) RNA-seq Analysis of Melanoma Overlaps with Genes Upregulated with Stage 4 Melanoma

To further assess the gene expression patterns in the melanoma samples, scRNA-seq data from
melanoma samples were analyzed (see methods). This analysis revealed a group of genes that were
highly expressed in the melanoma samples (Table S7). Pathway enrichment analysis of these genes
revealed enrichment of pathways involved in cellular respiration, mRNA processing, and several
processes associated with oxygen sensing (Figure 7A and Table S7). Furthermore, a majority (69%)
of these highly expressed genes from scRNA-seq data also overlapped with DE genes identified in
stage 1 vs. stage 4 melanoma comparison (Figure 7B). On the other hand, 48% of the highly expressed
genes overlapped with DE genes identified in control (benign) vs. late stage melanoma (Figure 7C).
Additionally, all of the 378 genes from scRNA-seq analysis that overlapped with the DE genes from
invasive vs. non-invasive comparison (Figure 7B), also has their expression count level > 50 counts,
and 373 overlapping genes were upregulated in invasive (stage 4) melanoma. Combined, this analysis
suggests that the highly expressed genes identified from the sc RNA-seq data is representative of
highly differentially upregulated genes in stage 4 melanoma.
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Figure 7. Overlap of highly expressed genes identified from melanoma single cell (sc) RNA-seq data.
(A). Pathway enrichment analysis of highly expressed genes identified from scRNA-seq melanoma
data. (B). Overlap of highly expressed genes identified from melanoma scRNA data with DE genes
from invasive vs. non-invasive comparisons. (C). Overlap of highly expressed genes identified from
melanoma scRNA data with DE genes from control vs. invasive comparisons.

4. Discussion

Melanoma, when metastasized, is one of the deadliest forms of skin cancer, with high rates
of mortality. Several studies have dissected the genomic mutation load and their association with
melanoma progression. Additionally, a handful of studies have also looked at the gene expression
profile by comparing the benign melanoma samples with that of metastatic cancer. While these studies
have provided insights into a large number of differentially expressed (DE) genes and the pathways in
which these genes enrich, little can be inferred about the mechanisms underlying melanoma tumor
progression. To delineate processes associated with tumor progression, using the RNA-seq data,
we have performed consensus network analysis that involves building co-expression gene networks
conserved in both non-invasive and invasive stages of melanoma. Unlike past studies, we have
incorporated all the relevant clinical data associated with the available melanoma samples to re-group
the samples into stage 1 and stage 4 tumor, to precisely capture gene expression changes associated with
melanoma cancer progression. Furthermore, we have incorporated the super-enhancer (SE) associated
genes from the ChIP seq data to the co-expression networks to get a comprehensive understanding of
how coordinate changes in gene expression contribute to tumor progression. This analysis revealed a
number of TF and PPI networks that may facilitate melanoma cancer progression. Further experimental
evidence will, however, be required to test if these networks are critical for melanoma. Nevertheless,
our approach of incorporating clinical information for sample stratification and analysis could be
effectively applied to other cancer types to get new insights in cancer biology.

To specifically address melanoma tumor progression, we have incorporated relevant clinical
information, to further sub-group the melanoma cancer samples into stage 1 (early) and
stage 4 (late/invasive) melanoma representing advanced stage metastasized cancer, respectively.
This comparison is different from the benign to malignant melanoma comparisons that have
been published elsewhere [12] and allowed us to specifically compare gene expression changes
that have occurred as the tumor progresses from stage 1 (early) to stage 4 (late/invasive)
of malignancy. Additionally, to further our understanding of the gene expression changes,
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chromatin immunoprecipitation (ChIP) data from melanoma samples were analyzed to identify
genes associated with SEs, which are most likely actively transcribed and over-expressed in the cells.
About a third (33.2%) of the SE associated genes were also upregulated in stage 4 melanoma. One of
the limitations of this analysis is that it does not reveal the full extent of the overlap between SE genes
and DE genes as the samples for the ChIP seq data were not stratified as the samples of the RNAseq
data (see methods). Future studies which incorporates patient clinical data to stage the samples
and perform ChIP seq analysis will be needed to fully understand the epigenetic changes occurring
as melanoma progresses. Nonetheless, our analysis of the melanoma ChIP seq data suggests that
chromatin homeostasis is disrupted in invasive melanoma, which is consistent with our understanding
that all cancers have an epigenome that is distinct from normal cells [43].

For an in-depth analysis of the gene expression data from early (stage1) and late (stage4/invasive)
melanoma, the RNA-seq data of the re-categorized melanoma samples (discussed above) were subjected
to consensus weighted gene co-expression network analysis (WGCNA), which allowed us to identify
clusters of genes with correlated expression pattern that are also conserved in early and late melanoma
gene expression datasets. We should note that these clusters of correlated genes are more likely to play a
coordinated role in same/similar biological processes in the cells. However, they reveal little information
about whether these genes can be implicated in melanoma progression. We address potential link
between the correlated gene clusters and melanoma progression by identifying subnetworks of DE
genes and by overlaying the fold change information on these subnetworks to infer up or down
regulation. Fifty co-expression modules were identified, of which the subnetwork analysis of six
modules were reported as they represented a majority of the DE genes identified in the RNA-seq
analysis. First, pathway enrichment analysis of the co-expression modules revealed that genes in
distinct modules enriched in different aspects of cellular functions. Genes in the turquoise module
enriched in the processes associated with histone modification and gene expression. Consistent with
the pathway enrichment, a majority of the DE genes in this module also overlapped with genes
associated with SE and were upregulated in stage 4 melanoma. Additionally, genes in the blue module
enriched in processes associated with protein stability and ubiquitination process. The genes in the
yellow module enriched in processes associated with skin development and keratinocyte proliferation
and differentiation.

Next, to further our understanding of the co-expression clusters, the DE genes in each of these
clusters were analyzed by GeneMANIA to identify protein-protein interactions (PPIs) and transcription
factors (TFs) that potentially regulate these correlated genes. The genes in the turquoise module were
found to be associated with four TF networks, which is consistent with their potential association
with SE (see results). When these TF networks were superimposed with the expression fold-change,
it revealed that all four of the TF networks were upregulated in stage 4 melanoma. Of these, EGR and
SP1 TFs have been shown to increase inflammation [44,45]. Furthermore, ETS1 belongs to the ETS family
of TFs and has been implicated in tumorigenesis [46]. Additionally, many of the upregulated DE genes
in the turquoise and blue module were also identified as targets of ELK1 TF. Interestingly, ETS1 and
ELK1 have been shown to coordinately upregulate CIP2A, which encodes cancerous inhibitor of protein
phosphatase 2A and leads to progression of gastric, cervical and breast cancer [47]. Our analysis
implicates ETS1 and ELK1 in melanoma progression. However, further testing of these findings in the
biological systems will be required to confirm their involvement in this process. Additionally, the E12
TF identified in the yellow module is a negative regulator of cell proliferation [48,49]. The E12 TF target
genes were mostly downregulated in stage 4 melanoma suggesting that a loss of E12 activity and the
associated loss of proliferation-limiting function may be critical for melanoma progression. The AP1
TF binding motifs have been shown to overlap with the microphthalmia-associated transcription factor
(MITF), which is a master regulator of melanocytes, and AP1 has been shown to play a critical role
in cancer invasion [14,50]. This and other studies support a more complicated role for the AP1 TF
due to its involvement in both cell apoptosis and proliferation [51,52]. Specifically, the c-Jun AP-1
family member has been implicated in tumor progression [53], while the JUNB and JUND played
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tumor suppressor role [54,55]. Consistently, JUND was shown to function as a negative regulator of
Ras mediated cell proliferation [56]. Notably, both JUNB and JUND are downregulated in invasive/late
(stage 4) melanoma compared to stage 1 melanoma, and several DE genes from stage 1 vs. stage 4
comparison enriched in MAP kinase and Ras GTP binding processes (Table S4.1). It is likely that the
loss of the apoptotic/tumor suppressor functions of AP1 may be critical for melanoma progression.
These findings suggest that massive changes in the transcriptional landscape and an induction in TF
activity is associated with melanoma cancer progression. Concurrent with this idea, another study
implicated a bigger role for the changes in the transcriptional landscape over the presence of genetic
mutations in determining the invasive state of cells in melanoma [14]. Since the TF networks were
identified from the consensus co-expression networks analysis of stage 1 and stage 4 melanoma data,
which showed minimal overlap with either dataset alone (See Figure S4), it is likely that these TF
networks misregulation identified in this analysis, are the contributing factors of melanoma progression.
However, further experimental evidence will be required to confirm that these changes are causal
factors and not an end result of melanoma progression.

In addition to the TF networks, we have also identified several PPIs from various co-expression
modules. Of note is the PPI identified in the turquoise module where the sumoylation protein
SUMO3 forms the hub. SUMO proteins are known to modify a large number of proteins [57].
Several components of the sumoylation are upregulated in cancer [58,59]. Identification of a SUMO
protein associated PPI suggests that this process may also be critical in melanoma progression.
However, the involvement of the Sumoylation process in melanoma progression may be complex.
This is because Sumoylation defective MITF has been shown to increase renal and melanoma
carcinoma [60]. Another PPI identified in the blue module has an E3 ubiquitin ligase encoding RNF2
and Ubiquitin conjugating enzyme, UBE2N as hub proteins. Ubiquitin and ubiquitin like proteins
has been shown to play a critical role in DNA repair. Misregulation of these genes may result in
genomic instability [61]. Consistently, previous publications have delineated the role of RNF2 in
esophageal carcinoma growth [62]. Taken together, the PPI network uncovered in this module may
suggest additional roles for RNF2 in melanoma cancer. We find that the genes in this interactome
is mostly upregulated in stage 4 melanoma. Whether upregulation of these genes in melanoma
directly cause genomic instability and facilitate tumor progression will require further experimental
analysis. Together, these findings show that ubiquitination and sumoylation processes may be critical
in melanoma biology.

To further our understanding of gene expression changes in melanoma, we also used the single
cell (sc) RNA-seq data from melanoma to identify a group of highly expressed genes. Interestingly,
pathway enrichment analysis of these genes showed significant enrichment in processes associated
with cellular respiration and oxygen-sensing. This is consistent with the potential involvement of
reactive oxygen species (ROS) and mitochondrial respiration in melanoma [63,64]. We also found
a majority of the highly expressed genes from scRNA data to overlap with the DE genes that were
upregulated in stage 4 (late/invasive) compared to stage 1 melanoma. Since the highly expressed genes
intersected with the DE genes upregulated in stage 4 (late/invasive) melanoma, little can be inferred
about their potential involvement in cancer progression. However, this data supports a potential role
for mitochondria and respiration in melanoma pathogenesis. Future scRNA seq experiments on staged
melanoma samples will help test if the genes associated with the mitochondrial biology are necessary
in all stages of melanoma or if these genes expression become prominent after melanoma progression.

5. Conclusions

In summary, we present here a comprehensive bioinformatic analysis of the melanoma RNA-seq
data that incorporates (a) clinical information to stratify the samples into stages of melanoma cancer (b)
subnetwork analysis on clusters of correlated genes (c) overlays genes associated with superenhancers
from ChIP seq data. Reclassifying the melanoma samples based on the clinical information resulted
in 10 stage 1 (early) and 8 stage 4 (late/invasive) samples. While these samples (total = 18 samples)
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were sufficient to create robust correlated clusters, future studies on larger cohort of staged melanoma
samples will be needed to test if similar TF and PPI subnetworks are identified to further substantiate
the findings from this study. Additionally, to make such cross-sectional study effective, ChIP seq and
scRNA seq analysis on clinically staged melanoma sample will be needed. As sequencing technology
gets advanced and cheaper, we believe that such experiments and data will become more widely
available in the future. Despite these limitations, this study provides extensive information on potential
protein-protein interactions (PPIs) and transcription factor (TF) networks that might be in critical
in melanoma progression. These findings suggest that melanoma progression is a complex process
orchestrated by concomitant changes in TF activities and PPI networks. The findings from this
study if confirmed in experimental systems will not only enhance our understanding of melanoma
progression but also provide potential targets to design drug interventions. We also believe that our
approach of incorporating relevant clinical information for sample classification and the downstream
network analysis could be applied to other cancer data to gain more insights into cancer biology
from a data science perspective and also to generate hypothesis that can be tested by biologists in
experimental systems.
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Figure S1: Flow chart of the analysis pipeline, Figure S2: PCA plot of DE gene’s expression data from
unfiltered invasive versus non-invasive RNA-seq analysis, Figure S3: RNA-seq analysis of control versus stage 1
(non-invasive/early), Figure S4: RNA-seq analysis of control versus stage 4 (invasive/late), Figure S5: Overlap of
consensus co-expression modules with invasive and non-invasive RNA-seq modules, Figure S6: TF networks
identified from genes in the Turquoise module that overlapped with SE genes, Table S1: Sample IDs, clinical data,
and their classification, Table S2.1: Pathway enrichment result for common genes between consensus turquoise and
invasive brown module, Table S2.2: Pathway enrichment result for common genes between consensus turquoise
and invasive turquoise module, Table S2.3: Pathway enrichment result for common genes between consensus
turquoise and invasive blue module, Table S2.4: Pathway enrichment result for common genes between consensus
turquoise and non-invasive turquoise module, Table S2.5: Pathway enrichment result for common genes between
consensus turquoise and non-invasive blue module, Pathway enrichment result for common genes between
consensus turquoise and non-invasive red module, Table S2.6: Pathway enrichment result for common genes
between consensus turquoise and non-invasive red module, Table S2.7: Pathway enrichment result for common
genes between consensus turquoise and non-invasive yellow module, Table S2.8: Pathway enrichment result for
common genes between consensus turquoise and non-invasive brown module, Table S3: Pathway enrichment
result for DE genes in the turquoise module, Table S4: Transcription factor enrichment result for genes in turquoise
module that overlapped with SE associated genes, Table S5: Pathway enrichment result for DE genes in the blue
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RNA ribonucleic acid
sc single cell
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WGCNA weighted gene co-expression network analysis
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