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Hydraulic fracturing is a prominent method of natural gas production that uses injected,
high-pressure fluids to fracture low permeability, hydrocarbon rich strata such as shale.
Upon completion of a well, the fluid returns to the surface (produced water) and
contains natural gas, subsurface constituents, and microorganisms (Barbot et al.,
2013; Daly et al., 2016). While the microbial community of the produced fluids has
been studied in multiple gas wells, the activity of these microorganisms and their
relation to biogeochemical activity is not well understood. In this experiment, we
supplemented produced fluid with 13C-labeled carbon sources (glucose, acetate,
bicarbonate, methanol, or methane), and 15N-labeled ammonium chloride in order to
isotopically trace microbial activity over multiple day in anoxic incubations. Nanoscale
secondary ion mass spectrometry (NanoSIMS) was used to generate isotopic images
of 13C and 15N incorporation in individual cells, while isotope ratio monitoring–gas
chromatography–mass spectrometry (IRM–GC–MS) was used to measure 13CO2, and
13CH4 as metabolic byproducts. Glucose, acetate, and methanol were all assimilated
by microorganisms under anoxic conditions. 13CO2 production was only observed with
glucose as a substrate indicating that catabolic activity was limited to this condition.
The microbial communities observed at 0, 19, and 32 days of incubation did not vary
between different carbon sources, were low in diversity, and composed primarily of
the class Clostridia. The primary genera detected in the incubations, Halanaerobium
and Fusibacter, are known to be adapted to harsh physical and chemical conditions
consistent with those that occur in the hydrofracturing environment. This study provides
evidence that microorganisms in produced fluid are revivable in laboratory incubations
and retained the ability to metabolize added carbon and nitrogen substrates.
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INTRODUCTION

Hydraulic fracturing (hydrofracturing, HF), injection of
pressurized fluid into the subsurface to create new fractures
and to extend natural fractures, is used to extract natural gas
and oil from hydrocarbon-rich geological strata. These fracture
networks greatly increase the amount of hydrocarbons that can
be extracted (Arthur et al., 2008; Jenkins and Li, 2008; Kargbo
et al., 2010). The injected fluids are composed primarily of water
and a propping agent such as sand that holds the fractures open
(Nicot and Scanlon, 2012). Chemical additives increase the
efficacy of the process and include viscosity modifiers, chemical
stabilizers, corrosion inhibitors, and biocides (Gregory et al.,
2011; Nicot and Scanlon, 2012). After a well is completed,
depressurization causes 10–70% of the hydrofracturing fluid to
rapidly return to the surface while the remaining fluid stays in
place or flows to the surface later in production (Olmstead et al.,
2013). This expelled fluid from a hydrofractured well is called
“produced fluids.”

Produced fluids from hydrofractured wells are a concern
because large volumes of the fluid are produced at the surface
and in addition to the additives, they often contain high
concentrations of salt, metals, organic compounds, radionuclides,
and microorganisms due to the fluid-rock interactions at depth
(Nicot and Scanlon, 2012; Barbot et al., 2013). Changes in
chemical composition of produced fluids from the fluid originally
injected for hydrofracturing occur due to shale dissolution, brine
migration, and water-rock reactions (Blauch et al., 2009; Dresel
and Rose, 2010; Warner et al., 2012). Biogeochemical activity
may also change the chemical composition of produced fluids
(Strong et al., 2013; Akob et al., 2015). Produced fluids must be
treated for disposal or for recycling as they are important source
of water for subsequent hydrofracturing fluid (Boschee, 2015);
however, methods are often limited by resource availability, cost,
and energy requirements (Gregory et al., 2011; Lutz et al., 2013;
Rahm et al., 2013). Mitigating the compounds present in the
produced fluids requires an accounting of their potential sources
as well as an understanding of how they might be transformed in
a hydrofractured well.

Microorganisms in the produced fluids can originate from
the fractured geological formation or from anything at the
surface that contacts the fluids used (e.g., water or sand used
to produce hydrofracturing fluid, drilling equipment, drilling
muds, well casing, gas separator) (Struchtemeyer et al., 2011;
Mohan et al., 2013a,b). During hydrofracturing, the addition
of chemicals such as biocides and the exposure to extreme
conditions of the subsurface (high temperature, change in pH,
high concentrations of salt and metals) leads to a microbial
community that exhibits low diversity (Mohan et al., 2013a;
Booker et al., 2017). Minor components of the community
become dominant members of the produced fluids community
(Mohan et al., 2013a; Cluff et al., 2014). Cluff et al. (2014)
identified “indicator” genera in late stage produced fluids as
being dominated by the bacterial Halanaerobium, unclassified
Halanaerobiaceae, Selenihalanaerobacter, Flexistipes, and the
archaeal Methanohalophilus and Methanosarcinaceae. These taxa
are anaerobic halophiles that would appear to be adapted

to hydrofracturing well conditions and may alter subsurface
geochemistry and the legacy of the well (Cluff et al., 2014).

In order to know what long-term effects microorganisms
could have on the produced fluid chemistry or in a
hydrofractured well, it is important to know the fraction of
these organisms that are alive in the fluids. Sulfate reducing,
acid producing, and fermenting microorganisms have all been
cultured from produced fluids which demonstrates their viability
(Davis et al., 2012; Struchtemeyer et al., 2012; Liang et al., 2016;
Booker et al., 2017); however, the ability to grow in culture may
not indicate the physiological status of these cells (Rappé and
Giovannoni, 2003; Puspita et al., 2012). In one metagenomic
study, genes related to carbohydrate metabolism and stress
response increased during the first 9 days of hydrofracturing
suggesting that the microbial community responds to changes
associated with hydrofracturing (Mohan et al., 2014). These
investigations have clarified some aspects of the microbial
ecology of the produced fluids but additional studies are
needed to assess the degree to which microbes are alive in
the produced fluids.

The aim of this research was to determine whether microbial
communities in the produced fluids from hydrofractured systems
retain the ability to assimilate carbon and nitrogen, the conditions
under which such assimilation occurs, and the types of microbial
communities associated with assimilation. We incubated a
produced fluid for 60 days with 13C-labeled glucose, acetate,
methanol, bicarbonate, or methane, and 15N-labeled ammonium
chloride, all compounds that could be derived either from the
subsurface or hydraulic fracturing fluid (Orberger et al., 2005;
Horsfield et al., 2006; Environmental Protection Agency [EPA],
2012; Stringfellow et al., 2014). A nano-scale secondary ion mass
spectrometry (NanoSIMS), a ultra-high spatial resolution isotope
imaging instrument, was used to detect incorporation of stable
isotopes in individual cells (Morono et al., 2011). Isotope ratio
monitoring-gas chromatography-mass spectrometry, and high
temperature catalytic oxidation were used to measure 13C-labeled
metabolic products. Community analysis was conducted to
determine the microbial communities that developed due to the
availability of different substrates.

MATERIALS AND METHODS

Sample Collection
Produced fluid samples were collected from the gas/liquid
separator of a hydraulically fractured, horizontal well in Greene
Co., Pennsylvania in May 2014. The well was drilled into the
Marcellus shale which has a temperature that ranges from 35 to
51◦C and an approximate pressure of 40 MPa at this location
(USGS; Kargbo et al., 2010). The sample was collected in a sterile
4 L polypropylene bottle filled to capacity without headspace and
shipped overnight to Oregon State University on ice.

Experiment Setup
Forty milliliter aliquots of the produced fluid were incubated in
50 mL serum bottles that had been acid washed and combusted
at 400◦C for 4 h. Killed controls were autoclaved prior to
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allocation for 2 h at 121◦C. Anoxic samples were sparged
with nitrogen gas in an anaerobic chamber and capped with
butyl rubber septa (Chemglass, CLS-4209-14). The absence of
oxygen was confirmed by measuring oxygen saturation with
a Micro TX3 – AOT Microsensor oxygen meter (PreSens,
Regensburg, Germany). The supplemental carbon substrates
were 13C-labeled-glucose (13C6, 99%), -acetate (1,2-13C2, 99%),
bicarbonate (13C, 99%), methanol (13C, 99%), and methane (13C,
99%) and the nitrogen substrate was 15N-labeled ammonium
chloride (15N, 99%) (Cambridge Isotope Laboratories), and
added to final concentrations of 1 and 0.1 mM, respectively,
excluding methane. For methane samples, 5 mL of gas was
added with a syringe and tightly sealed with an aluminum
cap afterward. No other supplemental nutrient was added. In
total, 25 bottles (five substrates, four time points, one killed
control) were prepared and shipped via express courier (48 h
transit time) to the Kochi Institute for Core Sample Research,
JAMSTEC in Kochi, Japan for downstream isotopic and genomic
analysis. Once at Kochi, all samples were incubated at 25◦C.
Individual incubations with each supplemental carbon source
were destructively sampled at 0, 19, 32, or 60 days for analyses.

Cell Counts
To prepare samples for cell counts, serum bottles were sonicated
for 30 s and briefly vortexed to remove precipitates and cells from
the sides of the bottles. Twenty milliliters were transferred to a
Falcon tube and centrifuged. The sediment pellets were fixed with
4% paraformaldehyde in 1 × phosphate buffered saline (PBS)
for 3 h at 4◦C. The pellets were washed twice with 1 × PBS
and then stored in a 1:1 solution of 1 × PBS: 100% ethanol at
−20◦C. Samples were prepared as described in Morono et al.
(2013). Briefly, fixed sediment slurry was resuspended in 2.5%
NaCl and treated with a detergent mix composed of 12.5 mM
EDTA, 12.5 mM Na3PO4, 0.1% v/v Tween-80, 0.1% MeOH,
final concentration. Cells were detached from the produced fluid
precipitates by shaking at 500 rpm for 1 h (Shake Master, Bio
Medical Science) and sonicating at 200 watts in 30 s intervals
for 10 cycles (Bioruptor UCD-250, Cosmo Bio). Carbonate
minerals were removed with hydrofluoric acid (1.1% v/v, final
concentration) for 20 min and then samples were neutralized
with 1.5 M Tris-base. The final solution was added to 2.5% NaCl
and filtered through 0.22 µm black polycarbonate membranes
(Isopore Membrane Filter GTBP, Merck). Cells were stained
with a 1:40 dilution of SYBR-green I (Thermo): 1 × TE buffer.
Five hundred microliters of 1:100 diluted microspheres were
added as a reference for microscopic focusing and the resulting
membrane was mounted with 3–10 µL of mounting solution (1:2
mixture of TE buffer and Vectashield [Vector Laboratories]). The
cells were counted with an automated fluorescence microscope
(Morono and Inagaki, 2010).

DNA Extraction and 16S rDNA
Sequencing
To collect microbial community DNA, 10 mL aliquots of the
produced fluids were collected after sonication and vortexing.
The aliquots were centrifuged and the remaining pelleted solid

was stored at −80◦C. Genomic DNA was extracted using the
hot alkaline method (Morono et al., 2014). In brief, pellets
were warmed to 70◦C in 12.5 mM EDTA for 10 min and
cells were lysed at 70◦C with lysis solution (1% SDS, and 1
N NaOH, final concentration) for 20 min. Supernatant was
transferred to a tube with neutralization buffer (1 M N HCl, 0.3
M Tris-HCl). The remaining pellet was washed with prewarmed
distilled water, centrifuged, and supernatant was transferred
to the same sample tube. The extract was treated with equal
volumes of phenol–chloroform–isoamyl alcohol (25:24:1) and
chloroform–isoamyl alcohol (24:1) and then precipitated by
adding a 1/10 volume of 3 M sodium acetate, and a 1:500 volume
of polyacrylamide. The V4 region of the 16S rRNA gene was
sequenced using Illumina MiSeq. The Illumina sequences were
aligned to the SILVA database (release 123, Quast et al., 2013)
using the program Mothur (version 1.37.0, Schloss et al., 2009).
Chao richness, abundance-based coverage estimator (ACE),
Jackknife, Shannon, and Simpson diversity estimators were
calculated using Mothur.

The genera detected mainly constituted less than 1% of the
community and were considered to be minor community. Genera
that were abundant in PCR blanks or DNA negative controls
and not abundant in the experimental samples (Supplementary
Table 1) were deemed to be contaminants and were manually
removed from the dataset. Some genera were also removed
because they are often detected as contaminants during
sequencing studies or because they are known to be associated
with human contamination (Supplementary Table 1; Salter
et al., 2014). Using this approach, approximately 5% of the
sequences from all of the experimental samples were removed.
However, the percent of sequences removed also varied from
sample to sample (Supplementary Table 2). Two samples had
notably high percentages of putative contaminants and fewer
sequences as well.

Activity Detection Using NanoSIMS
Cells were separated from sediments using a multi-layer density
gradient separation protocol (Morono et al., 2013). Samples were
layered over a Nycodenz and sodium polytungstate multi-layer
density solution. After centrifugation, the supernatant was
removed and filtered through an Anodisc membrane (GE
Healthcare) followed by staining with 1:40 dilution of SYBR
Green I in 1 × TE buffer. Cells were resuspended by sonicating
the membrane and the resulting cell suspension was subjected
to fluorescence-activated cell sorting by using Moflo Cell
Sorter (Beckman Coulter). Sorted cells were captured onto an
indium-tin-oxide (ITO) coated black polycarbonate membrane.

Isotopic imaging analysis was conducted with a NanoSIMS
50L ion microprobe (AMETEK Co., Ltd., CAMECA BU) at the
Kochi Institute for Core Sample Research, JAMSTEC. Samples
on the ITO coated polycarbonate membrane were pre-sputtered
at high beam currents (30–40 pA) for a few minutes to remove
surface contamination and to obtain steady state of the secondary
ion intensities before measurement. The secondary ions of 12C−,
13C−, 16O−, 12C14N−, and 12C15N− and 32S− were collected
and measured in parallel at a mass resolution of ∼9,000 that is
sufficient to separate the 13C− from the 12C1H− and 12C15N−

Frontiers in Microbiology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 376

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00376 March 9, 2019 Time: 18:9 # 4

Morono et al. Hydraulic Fracturing Fluid Community Metabolism

from the 13C14N−. Detailed isotopic images of the cells were
obtained by rastering a 0.8–1.3 pA 16 keV Cs+ primary ion
beam (∼100 nmϕ) over an area of 25 × 25 µm field of
view. Each image consisted of 256 × 256 pixels with a dwell
time of 2 ms per pixel, and the final image was created by
amalgamating 20 images for same analysis area. Recorded images
and data were processed using a CAMECA WinImage software
and OpenMIMS plugin (Gormanns et al., 2012) in ImageJ
(Schneider et al., 2012) distribution of Fiji (Schindelin et al.,
2012). The different scans of each image were aligned to correct
image drift during acquisition. Final images were generated by
adding the secondary ion counts of each recorded secondary ion
for each pixel over all scans. Intracellular carbon and nitrogen
uptake from stable isotope-labeled substrates was calculated by
drawing regions-of-interest on 12C14N− and/or 32S− images
and calculating 13C/12C and 15N/14N ratio (inferred from the
12C15N/12C14N ratio) while having the data from blank filter area
for standardizing multiple analysis data.

Metabolic Byproducts
The metabolic byproducts of the supplemented 13C-labeled
carbon sources, 13CO2, dissolved inorganic 13C, and 13CH4, were
all measured with IRM–GC–MS using a Thermo/Finnigan Delta
Plus XP IRMS instrument (Thermo Electron Corp., San Jose, CA,
United States). Total CO2, dissolved inorganic carbon (DIC), and
CH4 were also measured.

Nucleotide Sequence Accession
Numbers
The nucleotide sequences reported in this study have been
deposited in the DDBJ/EMBL/GenBank database under
accession number DRA007788.

RESULTS

Sample Collection and Cell Counts
Upon arrival at Oregon State University, the produced fluid
sample was black in color. The solids at the bottom of each serum
bottle (Figure 1) served as a relative indicator for the presence of
oxygen wherein the anoxic incubations remained black. A sample
exposed to oxygen turned orange suggesting oxidation of iron.

Cells were enumerated with automated fluorescence
microscopy at 0, 19, 32, and 60 days of incubation. At the
beginning of the incubation period (0 day), the cell numbers
in the samples varied between 7.9 (±1.5) × 107 cells/mL of
the produced fluid. During the incubation period from 0 to 19
days, cell numbers declined to between 1.6 × 107 and 3.5 × 107

cells/mL and then, between 19 and 60 days, a gradual decline
in cell numbers was observed yielding between 1.9 × 106 and
3.6× 106 cells/mL by the time the experiment ended.

Metabolic Byproducts
We measured DIC in the incubation samples at 60 days in
order to determine the degree to which different substrates
were respired under anoxic conditions. Samples containing
13C-labeled acetate, methanol, methane, and no substrate

FIGURE 1 | Serum bottle containing produced water as prepared for anoxic
incubations.

addition control contained DIC concentrations of 2.8, 2.7, 2.9,
and 2.7 mM, respectively, and carbon isotopic composition
(atomic % of 13C-DIC) of 1.19, 1.19, 1.12, and 1.10%, respectively.
The killed controls all had a lower concentration of DIC with
lower 13C (13C-labeled acetate: 0.9 mM, 1.12%; 13C-labeled
methanol: 0.9 mM, 1.11%; 13C-labeled methane: 1.0 mM, 1.13%,
we did not prepare a killed control for no substrate addition
control). Although DIC in the killed control for 13C-labeled
glucose was not measured, the sample containing 13C-labeled
glucose had the highest concentrations of DIC and atomic % of
13C of 4.8 mM and 1.40%, respectively.

Total CH4 and carbon isotopic composition of CH4 (atomic
% of 13C) in the incubation samples at 32 days and 60
days were measured to determine if any of the substrates
were used for methanogenesis. The total CH4 at 32 days was
between 0.8 and 1.6 µM for all samples. At 60 days the
total methane concentrations were more varied with samples
containing acetate, methanol, bicarbonate, and glucose showing
evidence of 7.5, 0.9, 3.4, and 2.1 µM CH4, respectively. The killed
controls had no detectable methane. Atomic % of 13C-CH4 values
were highest in the incubation containing methanol at both 32
and 60 days with 34.54 and 36.13%, respectively. Atomic % of
13C-CH4 in the incubation with 13C-bicarbonate at 32 and 60
days were 3.36 and 2.08%, respectively. Atomic % of 13C-CH4 in
the incubations with 13C-acetate or 13C-glucose didn’t show high
values (0.997–1.002%).
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NanoSIMS Analysis
NanoSIMS analysis revealed that microorganisms in the
produced fluid actively assimilated carbon and nitrogen provided
in the incubations. For carbon, this was indicated by an atomic
% 13C value of ≥1 in individual cells (see Table 1 for summary
of 13C assimilation in different treatments) and NanoSIMS
images that were taken for different carbon sources under anoxic
conditions. 13C assimilation was observed in all of the substrates
other than methane (Figure 2 and Supplementary Figure 1).
The relative abundance of 13C in individual cells is illustrated
in Figure 2 (middle row) by color gradients with warmer colors
indicating a higher percentage of 13C incorporated during the
incubation and cooler colors indicating a lower abundance of
13C incorporated during the incubation. Glucose and methanol
were assimilated favorably in the incubations. The incubation
containing bicarbonate and acetate showed very slight 13C
assimilation after 60 days. Anoxic methane samples showed no
assimilation of 13C (Table 1).

To determine the relative preference that
substrate-assimilating cells had for carbon or nitrogen, the
assimilation ratios of 13C and 15N were plotted (Figure 3). In
general, cells that were able to assimilate nutrients assimilated
more 13C than 15N. Carbon from glucose was preferentially
assimilated over nitrogen between 19 and 60 days. Carbon from
acetate was preferentially assimilated over nitrogen at 32 and
60 days. Methanol assimilation was only observed at 32 days,
but was again preferred over nitrogen. Few of the observed cells
assimilated a significant amount of bicarbonate by 60 days.

Microbial Community Characterization
All samples at 19 and 32 days were dominated by the Clostridia
such that cells from this class of Bacteria composed over 95% of
the community (Figure 4). Within the Clostridia, Halanaerobium
and Fusibacter were the dominant genera (Figure 5). While
Halanaerobium composed 80% or more of the community in
most incubations, Fusibacter became a larger portion of the
community by 32 days, with the exception of samples containing
glucose (Figure 5). The diversity of the microbial communities
varied over time and between carbon substrates (Table 2).
For example, Chao richness as an indicator of community
diversity decreased between 19 and 32 days in incubations that
contained acetate or methane, but increased during this same
interval in incubations that contained glucose or methanol.
Rarefaction curves indicated that the sequencing effort captured
part of the diversity in the incubated samples of produced fluid
(Supplementary Figure 2).

DISCUSSION

Our research on the metabolic activity of cells present
in produced fluids is consistent with reports from past
investigations that establish the role of microbes in corrosion
and gas souring during hydrocarbon recovery (Enning and
Garrelfs, 2014), and those specific to hydrofracturing that have
characterized the microbial ecology of the produced fluids
(Struchtemeyer et al., 2011; Struchtemeyer and Elshahed, 2012;

TABLE 1 | Summary of 13C assimilation in individual cells.

Carbon source Time
(days)

Maximum
atomic15N %
assimilation

Maximum
atomic13C%
assimilation

Number of cells
that assimilated

15N

Number of cells
that assimilated

13C

Total number
of cells

observed

Percent of cells
showed substrate

incorporation

Acetate 0 – – – – – –

19 – – – – – –

32 0.8 3.9 0 5 33 15

60 0.8 4.2 0 8 30 27

Bicarbonate 0 – – – – – –

19 0.1 0.8 0 0 85 0

32 0.8 0.9 0 0 100 0

60 1.0 1.1 1 2 53 4

Glucose 0 – – – – – –

19 0.9 8.1 0 60 76 79

32 1.0 6.1 4 11 14 79

60 1.0 11.4 6 22 30 73

Methane 0 – – – – – –

19 – – – – – –

32 0.9 0.2 0 0 70 0

60 0.9 0.3 0 0 61 0

Methanol 0 – – – – – –

19 0.2 0.1 0 0 54 0

32 0.9 4.6 0 6 39 15

60 0.5 0.4 0 0 29 0

The minimum and maximum atomic 13C% assimilation show the range of assimilation that was observed individual cells. A dash indicates that data was not taken for that
sample.
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FIGURE 2 | NanoSIMS images of microbial cells incubated with 13C-labeled carbon sources and 15NH4Cl for 32 days under anoxic conditions. The top row
illustrates 12C14N ion counts that identify microbial cells. The middle and bottom rows show which of those microbial cells assimilated 13C and 15N, respectively,
with warmer colors indicating a higher degree of assimilation.

FIGURE 3 | Carbon (atomic % 13C; y-axis) to nitrogen (atomic % 15N; x-axis) assimilation ratios of 19-, 32-, and 60-day incubations under anoxic conditions. The
dotted line represents a 1:1 ratio. Data were not available for 0-day incubations.

Mohan et al., 2013b, 2014; Cluff et al., 2014; Akob et al.,
2015; Daly et al., 2016). In our research, isotopically labeled
nutrients were used to determine the survival and revivability
of microorganisms derived from a fluid produced from
hydrofractured shales. The carbon compounds used were those
that could be available in hydrofractured wells including
carbohydrates, short-chain fatty acids, C1 compounds, and
inorganic carbon. Glucose, acetate, and methanol are all
compounds that may be derived from chemical additives.
Methanol is added as a gel stabilizer, acid corrosion inhibitor
or winterizing agent (Stringfellow et al., 2014; Daly et al.,
2016; FracFocus Chemical Disclosure Registry, 2016). Some
hydrofracturing additives can break down into simpler carbon
compounds such as glucose or acetate (Stringfellow et al.,
2014). Acetate can be an important carbon source in the
subsurface if formed by thermal cracking or biodegradation
of complex organic compounds found in the subsurface

(Horsfield et al., 2006). Methane and bicarbonate are naturally
present in shale and dissolve into the produced fluids. The
nitrogen source, ammonium, can be present naturally in shale
as a substitute for potassium ions in illite, and present as
ammonium chloride which may be added to hydrofracturing
fluid as a scale inhibitor (Orberger et al., 2005; Environmental
Protection Agency [EPA], 2012). We found that the produced
fluid microorganisms, dominated by two genera of halophiles,
were alive, revivable, and able to metabolize added compounds
anabolically and catabolically under anoxic conditions.

Metabolism of Carbon Sources Under
Anoxic Conditions
To determine which carbon compounds were metabolized under
anoxic conditions, the concentration and 13C-atomic % of DIC
and CH4 were analyzed. DIC concentrations were higher in
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FIGURE 4 | Microbial community composition of produced water after 19 and 32 days of incubation with different carbon substrates added.

the no substrate added incubation (2.7 mM) than all killed
control conditions (0.9∼1.0 mM) showing that the organic
carbon originally present in produced fluid was metabolized by
the microbial community. As discussed above, carbohydrates,
short-chain fatty acids, C1 compounds, and inorganic carbon
as well as nitrogen compounds such as ammonium salts and
amines are all compounds that may be present in produced
fluid (Stringfellow et al., 2014; FracFocus Chemical Disclosure
Registry, 2016). Also, degradation of guar gum, a viscosifier used
in injected fluids, by microorganism of Halanaerobium sp. can
produce acetate (Liang et al., 2016).

The atomic % of 13C-DIC in the sample containing
13C-labeled glucose (1.40%) demonstrates the ability of microbes
in the produced fluid to metabolize glucose. Fermentative
glucose consumption was observed in Halanaerobium isolate
(Booker et al., 2017). It is possible that anaerobic respiration in
hydrofractured gas wells is similar to that observed in oil wells
where ferrous iron or sulfate are often plentiful and commonly
used as electron acceptors (Nazina et al., 1995; Röling et al.,
2003; Struchtemeyer and Elshahed, 2012). Sulfate reducers are
particularly troublesome in hydrofracturing wells because they
produce hydrogen sulfide, which corrodes well casings and
equipment (Bottero et al., 2010; Cord-Ruwisch et al., 2013;
Booker et al., 2017; Lipus et al., 2017). On the other hand,
fermentation has been used to enhance oil recovery through the
release of metabolic byproducts such as acids, solvents, or gases

which can increase access to oil and increase its mobility in
the formation (Desai and Banat, 1997). We observed a 2.1 mM
increase in DIC concentration (to 4.8 mM) over the no substrate
addition control (2.7 mM); however, the increase of atomic
% of 13C-DIC to 1.40% could not solely be explained by the
metabolism of glucose. This suggests that, when added, glucose is
metabolized as a carbon source but also may stimulate the activity
of microorganisms to metabolize other organic compounds
present in the produced fluid during incubation.

Incubations containing 13C-labeled acetate showed a
significant increase of DIC concentrations and atomic %
of 13C-DIC, which indicate anaerobic metabolism of both
added acetate and other organic compounds in the produced
fluid. High atomic % of 13C-CH4 was not observed in the
incubation. Because acetoclastic methanogens are sensitive to
high salinity environments (Waldron et al., 2007), they may be
less active in hydrofractured systems than cells that possess other
metabolic strategies.

There was a slight increase in atomic % of 13C-DIC
in incubations containing 13C-labeled methanol. This is
consistent with methanol incorporation into microbial
cells, as carried out via methylotrophic metabolisms.
Methylotrophs can use methane, methanol and other
methylated compounds as their sole carbon and energy
source (Chistoserdova, 2011). Incubations containing methanol
yielded high levels of atomic % of 13C-CH4 by the end of
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FIGURE 5 | Genera of the class Clostridia that were present in produced water after 19 and 32 days of incubations with different carbon substrates added.

TABLE 2 | Sequencing and diversity estimates of the produced fluids for 19 or 32 days under anoxic conditions.

Carbon source Time
(days)

Number of
sequences

Observed
OTUs0.03

Coverage
(%)

Chao
richness

ACE Jackknife Shannon Simpson

Acetate 19 96,774 128 95 254 365 337 0.34 0.89

32 63,893 67 97 100 177 99 0.63 0.69

Bicarbonate 19 98,732 103 97 209 343 221 0.34 0.89

32 81,528 116 96 209 284 216 0.58 0.74

Glucose 19 89,707 57 97 99 109 104 0.12 0.96

32 106,533 81 96 357 323 2106 0.13 0.96

Methane 19 110,675 86 96 156 209 163 0.38 0.87

32 98,699 95 96 136 190 138 0.58 0.73

Methanol 19 84,115 88 97 145 213 154 0.33 0.89

32 93,031 135 96 222 326 246 0.67 0.66

All diversity estimates were made at a 97% similarity level.

the 60-day incubation period compared to incubations with
all other substrates, indicating high methanogenesis activity
using methyl moiety.

The high atomic % of 13C-CH4 values in incubations
containing 13C-labeled bicarbonate suggest the occurrence of
hydrogenotrophic methanogenesis.

Assimilation of Carbon and Nitrogen
Under Anoxic Conditions
NanoSIMS was used to view carbon and nitrogen assimilation
in individual cells and to compare the utilization of different

carbon sources by the microorganisms in the produced fluids
under anoxic incubations. Anaerobic activity is expected as
the produced fluid is derived from a highly reduced, anoxic
subsurface environment. The produced fluid used in this
sample had low oxygen saturation when the experiments
were started. Aerobic microbial communities have been
identified in hydrofracturing fluid prior to injection into
the subsurface; however, facultative and strict anaerobes
dominate in the fluids when they return from the subsurface
(Mohan et al., 2011, 2013a; Cluff et al., 2014). Glucose was
the most readily assimilated carbon source under anoxic
conditions. Between 73 and 79% of the microbial cells in
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the incubated samples showed assimilation of glucose and
the highest assimilation of 13C (∼11.4%) was observed.
A wide variety of anaerobic microorganisms, particularly
fermenters possess phosphoenolpyruvate:carbohydrate
transferase systems that can transport glucose into the
cell and phosphorylate it, making it directly available for
catabolic or anabolic reactions (Roseman, 1969; Romano
et al., 1970, 1979). This finding demonstrates the ability
of microorganisms in the produced fluids to utilize
carbohydrates as their carbon source and is consistent
with published evidence of microbes that possess genes
related to carbohydrate metabolism or microbes capable of
glucose use in produced fluids (Mohan et al., 2014; Daly
et al., 2016; Booker et al., 2017). Polymer gels are added
as proppant carriers and viscosity modifiers; however, high
temperatures, extreme chemical conditions, or biological
activity can degrade them to simple carbohydrates (Kahrilas
et al., 2015). For example, guar gum is added in high
concentrations to hydrofracturing fluid to adjust viscosity,
and its degraded byproducts promote microbial activity
downhole (Lester et al., 2014).

Acetate was the next most readily assimilated carbon source
(Table 1 and Figure 3) and is a common byproduct of
fermentation in the subsurface (Lovley and Chapelle, 1995).
Acetic acid, which is added to hydrofracturing fluid as a buffer,
could also be a source of carbon (Stringfellow et al., 2014).
Fermentative production of acetate was observed in a microcosm
experiment dominated by Halanaerobium (Borton et al., 2018).
Acetate can be assimilated by the glyoxylate cycle, alternate
glyoxylate pathway, and glyoxylate regeneration cycle (Ensign,
2006) and is used by iron, sulfate, and nitrate reducing bacteria,
all of which have been identified in the produced fluids from
gas wells (Struchtemeyer and Elshahed, 2012; Mohan et al.,
2013a,b). Acetoclastic methanogens can also assimilate acetate,
but their presence may be unlikely in this setting because
of their sensitivity to high salinity and to changes in salt
concentration (Patel and Roth, 1977; Waldron et al., 2007;
Winkel et al., 2014).

A particularly interesting result of our study was that
microorganisms in the produced fluid assimilated carbon from
methanol, a compound sometimes added to hydrofracturing
fluid as a winterizer or chemical stabilizer. This result was
observed after 32 days of incubation and not again at 60
days; however, such cells may have been present but below
the limit of detection using NanoSIMS. This may suggest
the presence of methylotrophs, which could also include
methanotrophs and methanogenic archaea. We did not observe
either anabolic or catabolic metabolism of methane during
our study. This may have resulted because 13CH4 was
added as a gas without pressurization and was therefore less
accessible by microorganisms. Methanotrophy should not be
ruled out; however, rates of anaerobic oxidation of methane
can be quite low (c.f., Orcutt et al., 2013) and may not
have been detected during our relatively short incubations.
Methane in the subsurface is dissolved into hydraulic fracturing
fluid under pressure, increasing its solubility and making
it readily available.

Carbon fixation was not significantly observed in cells
incubated with bicarbonate. The maximum percentage of cells
that were observed to assimilate 13C-bicarbonate was only 1%
at 60 days, but cells that assimilated bicarbonate also assimilated
small amounts of nitrogen. This may suggest that autotrophy
is not an energy efficient metabolism for microorganisms in
hydrofracturing wells, at least under the conditions of our
experiment. Ample carbonate (as calcium carbonate) often
exists as natural fractures in shale, and can dissolve into
solution upon the addition of hydrofracturing fluid (Gale and
Holder, 2010). Sodium or potassium carbonate may be added
to hydrofracturing fluid (Stringfellow et al., 2014) such that
concentrations reach tens to hundreds of mg/L (Haluszczak et al.,
2013; Lester et al., 2015). Produced fluids from the Marcellus
shale contains an average of 165 mg/L of calcium carbonate
(Barbot et al., 2013).

The ratios of 13C and 15N assimilation into microorganisms
in the produced fluid showed that cells assimilating supplied
nutrients incorporated more carbon than nitrogen although DIC
measurements clearly showed metabolism of other non-labeled
sources of carbon or nitrogen present in the produced fluid.
This apparent preference for carbon was particularly noticeable
in glucose incubations. This may be because nitrogen is more
limiting than carbon in such environments, or alternatively
that these microorganisms were incorporating high C/N ratio
organic matter rather than ammonium. In our study, it seems
unlikely that the produced fluid is carbon limited, considering
the high organic content of shale. The C/N ratio of Devonian
(Marcellus shale) age organic carbon is between 174.80 and
193.28 atomic C/N, and the C/N ratio of kerogen is even
higher, making nitrogen the limiting nutrient (Orberger et al.,
2005). Produced fluids from Marcellus shale were reported
to have total organic carbon concentrations of between 1.2
and 1530 mg/L (Barbot et al., 2013). Also considering the
length of these incubations, the incorporation of 13C may
have not come from the original carbon source but rather
from cell debris that had previously incorporated the 13C,
which may have served as an additional nitrogen source. In
this interpretation, there may have been some turnover of the
originally incorporated labeled substrates. Heterotrophic bacteria
can assimilate amino acids over ammonium as this allows them to
conserve energy required to build amino acids (Kirchman et al.,
1989; Morono et al., 2011).

Interpretation of microbial activity, including carbon and
nitrogen assimilation, can be confounded by environmental
conditions such as high salinity, high temperature, high
pressure, or non-neutral pH that are common in subsurface
environments (Postma and Jakobsen, 1996; Colwell et al.,
1997; Fredrickson et al., 1997). Hydrofracturing produces
a dynamic environment where these conditions vary
depending on the stage of hydrofracturing and the residence
time of the fluid downhole. Microbial cells may not be
assimilating carbon and nitrogen for growth and replication,
but may instead assimilate these elements mainly for cell
maintenance. Extreme conditions increase the amount of
energy that microorganisms need to repair or replace cellular
components even if they are well adapted to the environment
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(Hoehler, 2007; Morozkina et al., 2010). Furthermore, slow
growth could be advantageous for cells in hydrofractured
wells where biocides are used because slow growth and
nutrient limitation can reduce microbial sensitivity to
antimicrobials, which are commonly used in hydrofracturing
(Mah and O’Toole, 2001).

Microbial Communities in Produced
Fluid Incubations
Microbial community diversity determinations were conducted
on the produced fluid samples incubated under anoxic conditions
for 0, 19, and 32 days. The 0 day glucose sample had 50% of the
sequences removed and this was also apparent in the microbial
community, but less so than the 0 day no substrate control. It is
suspected that these samples had poorer DNA recovery and PCR
amplification than other samples.

Microbial diversity estimates indicated that the diversity in
these samples was lower than what has been previously found
in produced fluids and impoundment waters (Struchtemeyer
et al., 2012; Mohan et al., 2013a,b). This may have resulted
from conditions when the samples were collected, sample
handling, or from the placement of these microbial communities
into microcosms thereby eliminating the input and output of
nutrients and metabolic waste products. Most of the microbial
communities in this experiment were very similar, indicating
that the addition of substrate did not affect the microbial
community. The composition of the microbial community was
similar to what has been observed in late stage produced fluids
(Mohan et al., 2013a; Cluff et al., 2014; Liang et al., 2016;
Booker et al., 2017).

All of the samples were dominated by Clostridia. This
is in agreement with past observations wherein late stage
produced fluids were dominated by Clostridia, specifically
Halanaerobium (Mohan et al., 2013a; Cluff et al., 2014). Cluff
et al. (2014) also reported other indicator genera that we detected
including Flexistipes, and Methanohalophilus. Halanaerobium
accounted for 80% or more of the Clostridia sequences in all
of the incubations. Halanaerobium are anaerobic, halophilic,
alkalophilic, and thermophilic bacteria and thus likely to be
adapted to oil and gas wells environments. For example,
H. locusroseus can grow in 5–30% NaCl, and at 20–50◦C
(Cayol et al., 1995). H. congolense in particular has been
isolated from a number of oil wells and implicated in well
corrosion due to hydrogen sulfide production by thiosulfate
reduction (Magot et al., 2000; Ravot et al., 2006). Halanaerobium
can use carbohydrates as carbon sources and therefore may
have been responsible for the assimilation of glucose under
anoxic conditions (Oren, 2002). As a fermenter, Halanaerobium
produces acetate and CO2, compounds that may sustain other
microorganisms. Halanaerobium spp. have previously been
detected in hydrofracturing fluids from separators, storage tanks
and impoundments (Davis et al., 2012; Mohan et al., 2013a,b;
Akob et al., 2015; Liang et al., 2016; Booker et al., 2017;
Lipus et al., 2017).

Fusibacter was a prominent member of the microbial
communities throughout this experiment. Fusibacter are also

fermenters and can produce acetate by fermenting glucose
(Ravot et al., 1999). This genus has been isolated from many
hydrocarbon-rich environments and can produce hydrogen
sulfide by reducing thiosulfate or elemental sulfur (Ravot
et al., 1999; Agrawal et al., 2010; Ben Hania et al., 2012;
Smii et al., 2015). Its role in carbon assimilation is likely similar
to that of Halanaerobium in that it may use glucose as a
carbon or energy source. Interestingly, Fusibacter began to
increase in percentage of the community between 0 and 32
days, as did the number of sequences. Possibly, Fusibacter
was less sensitive to conditions (e.g., product inhibition) in
the microcosms than Halanaerobium. For example, the growth
of H. saccharolyticum can be inhibited by an excess of
acetate (Kivistö et al., 2012). Because Halanaerobium is an
alkaliphile, the production of hydrogen during fermentation
may have caused a reduction in pH, making the produced
fluids environment in a closed system less habitable. However,
some species of Fusibacter are also prone to product inhibition
by hydrogen, unless thiosulfate is present (Ravot et al., 1999).
The common finding of both Fusibacter and Halanaerobium
in oil and gas reservoirs suggests that additional research
should be conducted on their presence and potential interactions
in these environments.

Halanaerobium and Fusibacter were the most abundant
microorganisms, but their presence does not explain
metabolic processes observed with carbon sources other
than glucose. Minor members of the community may have
played a larger part in metabolizing other carbon sources.
Appearing in much lower abundance were the genera
Anaerophaga, Geotoga, Flexistipes, Asticcacaulis, Carboxydocella,
Desulfotomaculum, Methanohalophilus, and a number of
unclassified microorganisms. Most of these organisms are
halophilic, thermophilic, or both, and should be well adapted
to gas well conditions. Representatives of Anaerophaga and
Geotoga can ferment glucose and may have also contributed to
respiration or assimilation of glucose (Davey et al., 1993; Denger
et al., 2002). Flexistipes, a thermophile which requires at least 3%
NaCl to grow, can utilize acetate as an energy source (Fiala et al.,
1990; Nakano and Zuber, 2004). The presence of Carboxydocella
is intriguing as it is known for its use of carbon monoxide
(Sokolova et al., 2002; Slepova et al., 2006) which may be present
in shales and may be removed by the produced fluid along
with methane to the surface. Desulfotomaculum spp. are sulfate
reducers often found in oil wells, and one species, D. kuznetsovii,
is methylotrophic (Nazina et al., 1988; Nilsen et al., 1996).
Recent reconstruction of the genome of Methanohalophilus from
produced shale fluids indicated methanogenesis using methanol
via methanol:MtaC co-methyltransferase (MtaB) (Daly et al.,
2016). Methanohalophilus was detected in all of our incubations;
however, the highest atomic % of 13C-CH4 was observed in the
methanol-amended incubation (34.54 and 36.13% at 32 and 60
days), strongly indicating methanogenesis by Methanohalophilus
in our incubations. These findings are consistent with evidence
presented by others showing a prominent role for microbes
of this genus in produced fluids (Daly et al., 2016; Borton
et al., 2018) and for their ability to use methylated compounds
(Mathrani et al., 1988).
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CONCLUSION

We found that microorganisms in incubations of produced
fluid from a hydrofractured shale were revivable in laboratory
incubations and retained the ability to metabolize added
substrates catabolically and anabolically. When incubated
anoxically, microbial communities were active and responsive
to diverse carbon substrates. Following anoxic incubations,
microbial communities were not diverse and many of the
genera observed were related to microbes that have previously
been detected in hydraulically fractured shale fluids or similar
environments and that possess qualities such as resistance to high
salinity, heat, and the presence of metals. An ideal sample set to
examine microbial properties of shales would involve collecting
and analyzing subsurface cores with attention to sampling
technique to prevent microbial contamination. Such an effort
would verify whether microbes that we studied and that others
have detected exist in and are active in these formations. The
microbes that we examined in the produced fluid were at least
fractionally alive and may have the metabolic potential to affect
subsurface geochemistry and to consume organics found in the
subsurface or delivered during the hydraulic fracturing process.
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