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Abstract: Semiconductor materials based on metal high crosslinked-vinyl polymer composites were
prepared through loading of Pd(OAc)2 on both Poly(ethylene-1,2-diyl dimethacrylate) (poly(EDMA))
and poly(ethylene-1,2-diyl dimethacrylate-co-methyl methacrylate) (Poly(EDMA-co-MMA)). The
thermochemical properties for both poly(EDMA) and poly(EDMA-co-MMA) were investigated by
thermal gravimetric analysis TGA technique. The dielectric permittivity, AC electrical conductivity
and conduction mechanism for all the prepared polymers and their Pd(OAc)2 composites were
studied. The results showed that the loading of polymers with Pd(OAc)2 led to an increase in the
magnitudes of both the dielectric permittivity and AC electrical conductivity (σac). The value of
σac increased from 1.38 × 10−5 to 5.84 × 10−5 S m−1 and from 6.40 × 10−6 to 2.48 × 10−5 S m−1

for poly(EDMA) and poly(EDMA-co-MMA), respectively, at 1 MHz and 340 K after loading with
Pd(OAc)2. Additionally, all the prepared polymers and composites were considered as semiconduc-
tors at all the test frequencies and in the temperature range of 300–340 K. Furthermore, it seems that
a conduction mechanism for all the samples could be Quantum Mechanical Tunneling (QMT).

Keywords: metal polymer composites; electrical conductivity; dielectric permittivity; semiconduc-
tors; high crosslinked-vinyl polymers

1. Introduction

Polymers have attracted a lot of interest in the development of modern technologies
due to their easy synthesis, cheaper cost, high stability, noncorrosive nature, and low
density, which makes them suitable materials for replacing metals and ceramics [1,2].
However, the electrical insulating nature of most polymers, their electrical conductivity
σac in the range of 10−12–10−16 S m−1, has limited their technological and engineering
applications. The insulating nature of the polymers can be improved by introducing highly
electrically conductive fillers to the polymer matrices, having σac values in the range of
102–107 S m−1, which can facilitate the movement of charge carriers through the electron
hopping or tunneling process [3]. These functional filler materials include carbon-based
nanomaterials, ceramics, metals, or metal oxides [4]. As a result, semiconductors based on
polymer composites with electrical properties close to metals and mechanical properties
like plastics were produced [5–7]. These semiconductor composites can be applied in many
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electronic applications involving an electrostatic dissipation (ESD) apparatus, electromag-
netic interference (EMI) shielding, electrostatic paints, supercapacitors, lightning strike
protection, electro-optical devices, the packaging of electronic devices and bipolar plates in
the application of fuel cells [8–13].

Here are some instances of the most used metals as filler materials to produce semi-
conductor polymer composites. When a polyethylene matrix was filled with Cu(Cu2O)
as spherical nanoparticles with a size of 10–25 nm, its electrical conductivity increased
by about 4.5–5 times [14]. Nickel was used as a filler material for enhancing the electri-
cal, mechanical and thermal properties of epoxy polymer (EP) [15]. Polydimethylsilox-
ane (PDMS) was infiltrated into an Au@CNT/sodium alginate sponge skeleton to give
Au@CNT/sodium alginate/polydimethylsiloxane flexible composites which had a better
electrical conductivity than PDMS itself [16]. Silver was introduced into chitosan/dimethyl
amino ethyl methacrylate (chitosan-g-PDMAEMA) with different concentrations, and the
results exhibited that the electrical conductivity of the chitosan-g-PDMAEMA/Ag+ (2%)
composite was better than the original chitosan-g-PDMAEMA [17]. A semiconductor
polymer nanocomposite film was based on the doping Poly(vinylidene fluoride) (PVDF)
and Poly(vinyl Chloride) (PVC) with different concentrations of palladium nanoparticles
(PdNPs) using laser ablation technique, and the results showed that the presence of PdNPs
improved the electrical conductivity of PVDF/PVC [18]. PdNPs were used as a filler for
few-walled carbon nanotubes (FWCNTs) to produce a transparent and highly electrically
conductive film which was applied for the reduction reaction of H2. The results exhibited
an extremely lower sheet resistance of the poly(ethylene terephthalate) substrates coated
with Pd@f-FWCNTs than FWCNTs by about 1/25 [19]. Other metals and oxides including
Fe, Al, I2, V2O5 and CdS were used as filler materials for the production of conductive
MPCs [20–24].

In our previous work, Pd nanoparticles were loaded on Poly(ethylene-1,2-diyl dimethacry-
late) (poly(EDMA)) and poly(ethylene-1,2-diyl dimethacrylate-co-methyl methacrylate)
(Poly(EDMA-co-MMA)) and applied as a heterogenous catalyst for the oxidation of benzyl
alcohol to benzaldehyde and toluene. The formed Pd-polymer catalysts were characterized
by XRD, TEM, and nitrogen gas adsorption [25].

In the present work, we will investigate the influence of Pd loading of both poly(EDMA)
and poly(EDMA-co-MMA) on dielectric permittivity and electrical conductivity as well as
study the suitable conduction mechanism.

2. Materials and Methods
2.1. Materials

α,α’-Azobisisobutylonitrile (AIBN), tetrahydrofuran (THF), ethylene-1,2-diyl dimethacry-
late (EDMA), and methyl methacrylate (MMA) were purchased from Wako Chemical
(Osaka, Japan). Palladium acetate was purchased from Sigma-Aldrich (St. Louis, MO,
USA). AIBN was purified by recrystallization from ethanol before use. THF was purified
by distillation before use. All the other chemicals and organic solvent (general grade)
were received from commercial sources and used directly as received without any further
purification.

2.2. Synthesis of poly(EDMA) and poly(EDMA-co-MMA)

Poly(ethylene-1,2-diyl dimethacrylate) (poly(EDMA)) and poly(ethylene-1,2-diyl
dimethacrylate-co-methyl methacrylate) (Poly(EDMA-co-MMA)) were prepared according
to the procedure described in our previous work [25] by free radical polymerization of
EDMA monomer and copolymerization of EDMA and MMA monomers using AIBN as
the initiator in the presence of THF as the solvent (Scheme 1A). To prepare poly(EDMA), a
two-necked round bottom flask (200 mL) connected with a condenser was charged with
AIBN (0.082 gm, 0.5 mmol), evacuated, and filled with nitrogen gas three times. THF
(100 mL), EDMA (4.94 gm, 25 mmol) were then added to the flask with stirring, and a
homogenous solution was produced. The reaction mixture was heated at 60 ◦C under
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nitrogen atmosphere for 24 h. The reaction was quenched by cooling the reaction solution
to room temperature. The produced poly(EDMA), which was insoluble in the solution, was
collected by centrifuge and washed with methanol and acetone several times to remove
the unpolymerized monomer and initiator. Finally, the purified polymer was dried under
vacuum for 24 h. The yield was 4.85 gm (>99%) as a white solid crystal. For poly(EDMA-co-
MMA), the same method was used, and the amounts of EDMA and MMA were (5.30 gm,
26 mmol) and (2.67 gm, 26 mmol), respectively. The yield of poly(EDMA-co-MMA) was
7.95 gm (>99%) as a white solid crystal.
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2.3. Loading of the Polymeric Materials with Pd(OAc)2

Pd(OAc)2 was loaded on poly(EDMA) and poly(EDMA-co-MMA) by soaking poly-
meric materials in a solution of Pd(OAc)2 in methanol according to the procedure described
in our previous work [25] (Scheme 1B). Each polymer, poly(EDMA) and poly(EDMA-co-
MMA), (150 mg) was added to a solution of Pd(OAc)2 (10 mg, 0.044 mmol) in methanol
(50 mL) and stirred for 12 h to allow Pd(OAc)2 molecules to go deep within the polymer
matrices. After soaking for 12 h, Pd(OAc)2/poly(EDMA) and Pd(OAc)2/poly(EDMA-co-
MMA) were separated from the unloaded Pd(OAc)2 solution by centrifuge and washed
with methanol several times to ensure that the unloaded Pd(OAc)2 was removed from the
polymers. Finally, Pd(OAc)2/poly(EDMA) and Pd(OAc)2/poly(EDMA-co-MMA) were
dried under vacuum for 24 h, and the weight of the two composites became constant,
which indicated the complete removal of all solvent molecules (the yield was 157.7 mg and
152.4 mg as black solid crystals for Pd(OAc)2/poly(EDMA) and Pd(OAc)2/poly(EDMA-
co-MMA), respectively). The loaded amount of Pd(OAc)2 which was immobilized on
poly(EDMA) and poly(EDMA-co-MMA) was determined by gravimetry after washing and
drying the composites and was found to be 5.1% and 1.6% of the weight of poly(EDMA) and
poly(EDMA-co-MMA), respectively. The structure and chemical properties of poly(EDMA),
poly(EDMA-co-MMA) and their Pd composites were discussed in detail in our previous
paper [25].

2.4. Measurements

Thermal gravimetric analysis (TGA) was carried out by using Rigaku Thermo plus
TG8120 and DSC8230 apparatuses under the flow of nitrogen gas (20 mL/min) and a
heating rate of 10 K/min on an aluminum crucible from room temperature to 750 K. The
AC electrical conductivity was measured by Hioki 3532-50 LCR hitester in a temperature
range of 300–400 K. The samples were comprised of a pellet with a thickness of 1 mm and
a surface area of 1.3 cm2. During the measurements, the samples were fixed between two
copper electrodes.

3. Results and Discussion
3.1. Thermal Gravimetric Analysis

The thermal gravimetric analysis (TGA) and derivative thermal gravimetric (DTG)
of poly(EDMA) and poly(EDMA-co-MMA) are presented in Figure 1. The TGA curves
for both polymers showed a slight decrease in weight loss percentage starting from 340 K
to about 500 K; then, the weight loss increased by higher rates from about 500 K to 730 K.
The DTG curves for both polymers show a main degradation peak at temperatures of
670 K and 640 K with weight loss percentages of 91.27% and 97.34% for poly(EDMA)
and poly(EDMA-co-MMA), respectively. The low degradation weight loss percentage
starting at 340 K in both polymers could be attributed to a loss of moisture or residual
organic solvents from the matrices, while the high-rate degradation weight loss percentage
starting at about 500 K could be attributed to the degradation of the backbone of both
polymers. In addition, the two polymers are chemically stable up to 460 K and 480 K for
poly poly(EDMA) and poly(EDMA-co-MMA), respectively.
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Figure 1. TGA and DTG of (A) poly(EDMA) and (B) poly(EDMA-co-MMA).

The activation energy and thermodynamic parameters of the main thermal stage
degradation for poly(EDMA) and poly(EDMA-co-MMA) are determined by using the
Coats–Redfern method [26,27]. According to Coats–Redfern, the mathematical formula of
the first-order reaction is given by Equation (1):

log
[
− log(1− α)

T2

]
= log

[
A′R
θE∗

(
1− 2RT

E∗

)]
− E∗

2.303RT
, (1)

where α is the fraction of sample decomposed at temperature T, A′ is the Arrhenius constant,
R is the general gas constant, θ is the heating rate and E* is the activation energy. The value
of α is calculated according to Equation (2):

α =
Wo −Wt

Wo −W f
, (2)

where Wo, Wt and Wf are the initial weight of the sample, weight of the sample at any given
temperature and the final weight of the sample after completion of the reaction, respectively.
By applying Equation (1) on the experimental data of TGA and plotting the relation
between log

[
− log(1−α)

T2

]
and 1/T, a straight line was produced for both poly(EDMA) and

poly(EDMA-co-MMA), and the values of E* and A′ were calculated from the slope and
intercept with the Y-axis (Figure S1 in the supporting information).

The entropy (∆S*), enthalpy (∆H*), and change in free energy (∆G*) of the activation
are determined for both poly(EDMA) and poly(EDMA-co-MMA) by Equations (3)–(5) [28]:

∆S∗ = 2.303R
[

log
(

A′h
KBT

)]
, (3)

∆H∗ = E∗ − RT, (4)

∆G∗ = ∆H∗ − T∆S∗, (5)

where h, KB are the Planck and Boltzmann constants, respectively. The thermal activation
energy, Arrhenius constant and thermodynamic parameters for both poly(EDMA) and
poly(EDMA-co-MMA) are summarized in Table 1. From these results, the degradation of
both polymers is a nonspontaneous and endothermic process, which is confirmed by the
positive values of ∆G* and ∆H*, respectively [28].
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Table 1. Thermal activation energy and thermodynamic parameters of poly(EDMA) and poly(EDMA-
co-MMA).

Polymer E* a

(KJ mol−1)
A′ a

(S−1)
∆S* b

J mol−1 K−1
∆H* b

(KJ mol−1)
∆G* b

(KJ mol−1)

Poly(EDMA) 58.55 66.13 −214.88 54.14 168.02
Poly(EDMA-

co-MMA) 54.81 38.69 −218.34 50.90 153.52

a calculated from the slope and intercept of the relationship between log
[
− log(1−α)

T2

]
and 1/T (Figure S1 in the

supporting information). b calculated according to Equations (3)–(5).

3.2. AC Electrical Properties
3.2.1. Dielectric Permittivity

The dielectric permittivity of a material (ε) is considered a complex quantity with a
real part (εr) and imaginary part (εi) and is given by Equation (6) [29,30]:

ε = εr + iεi, (6)

The values of the real and imaginary parts of dielectric permittivity εr and εi are
calculated from the value of capacitance measured in parallel mode (Cp) and the loss
tangent (tan δ). The values of Cp and tan δ are measured for poly(EDMA), poly(EDMA-
co-MMA) and their Pd(OAc)2 composites in the temperature range of 300–400 K and
frequency range of 0.5–1000 KHz. The values of εr and εi are calculated according to the
following Equations (7) and (8) [29,30]:

εr =
Cp d
εo A

, (7)

εi = εr tan(δ), (8)

where εo is the permittivity of free space, and d and A are the sample’s thickness and
cross-section area, respectively.

Polymers and other dielectric compounds exhibit several relaxation and loss (dissi-
pation) modes that appear as maxima in the dielectric spectrum depending on the type
of material, temperature and the applied electric field. In polymers, relaxation as well
as dielectric loss may be due to the motion of relatively long chain movements in the
amorphous region. When the frequency of the applied external field is comparable to
the rate of the internal motions, the loss function (tan δ) and consequently the imaginary
dielectric constant (εi) tend to increase, and a maximum may be observed [31].

The dependences of εr and εi on temperature and frequency for poly(EDMA), poly(EDMA-
co-MMA) and their Pd(OAc)2 composites are presented in Figures 2 and 3, respectively.
Both εr and εi decrease when increasing the test frequency from 0.5 to 1000 KHz. On the
other hand, the dependences of εr and εi on temperature exhibit an irregular behavior in
the temperature range under consideration for the prepared polymers and their Pd(OAc)2
composites (a peak value around 340 K). Taking into account the absence of any peaks
in DTG with a slight decrease in TGA curves in the temperature range of 300–500 K, the
peak value at this temperature could be attributed to a loss of moisture or residual organic
solvents [28,32,33]. Furthermore, the loading of both polymers by Pd(OAc)2 leads to an
increase in the value of εr (Figure 2B,D) and εi (Figure 3B,D). This behavior of the dielectric
permittivity with the frequency and temperature for both polymers and their Pd(OAc)2
composites has been reported for other polymers and organic composites [24,33–39].
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3.2.2. AC Electrical Conductivity

The AC electrical conductivity (σac) is expressed as a function of both the value of the
imaginary dielectric permittivity (εi) and angular frequency (ω = 2πF), and is calculated
according to Equation (9) [29,30]:

σac = ωεoεi, (9)
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Figure 4 shows the dependence of σac on both the temperature in the temperature
range of 300–400 K and the test frequency in the range of 0.5 KHz–1 MHz for the prepared
polymers and their Pd(OAc)2 composites. For all samples under testing, σac increases when
increasing the test frequency; however, it demonstrates two different behaviors depending
on the temperature. In the first stage of heating up to 340 K, a semiconductor behavior
is observed, while at a higher temperature, σac decreases as the temperature increases
more (metallic behavior), and this behavior is in agreement with other reported poly-
mers and organic materials [24,32,34,39,40]. On the other hand, the existence of Pd(OAc)2
slightly enhances the conductivity of the two polymers. For example, the peak value
at a test frequency of 1 MHz for poly(EDMA) was 1.38 × 10−5 S m−1 and increased
to 5.84 × 10−5 S m−1 for Pd(OAc)2/poly(EDMA)-5.1%. Additionally, it increased from
6.40 × 10−6 to 2.48 × 10−5 S m−1 for poly(EDMA-co-MMA) and Pd(OAc)2/poly(EDMA-
co-MMA)-1.6%, respectively. From these results, we can conclude that poly(EDMA),
Pd(OAc)2/poly(EDMA)-5.1%, poly(EDMA-co-MMA), and Pd(OAc)2/poly(EDMA-co-
MMA)-1.6% exhibit a semiconductor behavior in the temperature range of 300–340 K
at all the test frequencies, with an enhancement of the electrical conductivity value by
adding Pd(OAc)2 to the polymer matrices.
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Figure 4. Temperature and frequency dependence on the AC conductivity for (A) poly(EDMA),
(B) Pd(OAc)2/poly(EDMA)-5.1%, (C) poly(EDMA-co-MMA), and (D) Pd(OAc)2/poly(EDMA-co-
MMA)-1.6%.

Figure 5 illustrates the effect of loading poly(EDMA) and poly(EDMA-co-MMA)
with Pd(OAc)2 on the electrical conductivities across the entire test frequency range at
room temperature (Figure 5A,C) and at 340 K (Figure 5B,D). It appears that the loading of
Pd(OAc)2 has a stronger effect on σac at a higher temperature and frequency. This result
can be explained due to the increase in charge carriers, since the loading of metal ions leads
to an increase of free charge carriers, which, accordingly, leads to an increase of electrical
conductivity. This result is in good agreement with the results of other polymers doped
with different metal ions [18,19,24,33,38,39].
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The thermal activation energy (∆Eac) for the AC electrical conductivity is determined
by applying the following Arrhenius equation [28,34]:

σac = σoe(
−∆Eac

kBT ), (10)

where σo is the pre-exponential constant and kB is the Boltzmann constant.
The Arrhenius equation is applied for the experimental data in the temperature range

of 300–340 K (semiconductor behavior) and at selected test frequencies for all specimens
under consideration. Figure 6 shows the relation between ln(σac) and 1/T for all the prepared
polymers and their Pd(OAc)2 composites. As seen from Figure 6, straight lines with negative
slopes are produced, in which ∆Eac can be calculated according to Equation (10). Figure 7
presents the dependence of ∆Eac on the frequency for poly(EDMA), Pd(OAc)2/poly(EDMA)-
5.1%, poly(EDMA-co-MMA) and Pd(OAc)2/poly(EDMA-co-MMA)-1.6%. It is clear from this
figure that ∆Eac has values in the range of 0.1–0.4 eV, depending on both the test frequency
and the type of polymeric material or composite.
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3.2.3. Conduction Mechanism

The conduction mechanism of semiconductors is investigated through theoretical
models based on the dependence of the AC electrical conductivity on the test frequency
according to the following Equation (11):

σac = Aωs, (11)
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where A is a constant depending on the temperature, and S is the exponent whose value
and behavior with the temperature determine the suitable conduction mechanism. The
most frequently reported conduction mechanisms are the small polaron tunneling (SPT)
model, correlated barrier hopping (CBH) model and quantum mechanical tunneling (QMT)
model [29,30]. In the SPT model, the value of S and σac are calculated according to the
following Equations (12) and (13):

S(SPT) = 1− 4

ln
[

1
ωτo

]
− wH

kBT

, (12)

σac(SPT) =
π4

24

e2kBT
[

N(E f

)
]2ωR′4w

α
, (13)

where WH is the barrier height for infinite site separation, τo is the relaxation time, e is the
charge of electron, a is the spatial extent of polaron, N(EF) is the density of states at the
Fermi level and R′w is the tunneling distance. For the CBH model, the electrons in charged
defect states hop over the Coulomb barrier with height W, which is calculated according to
Equation (14):

W(CBH) = Wm −
e2

πεεoR
, (14)

where Wm and R are the maximum barrier height and the distance between hopping
states, respectively. The values of S, σac and the hopping length (Rω) are determined using
Equations (15)–(17):

σac(CBH) =
1

24
π3N2εεoωR6

ω, (15)

Rω(CBH) =
ne2

πεεo
[Wm − kBTln

(
1

ωτo

)
], (16)

S(CBH) = 1− 6kBT

Wm − kBTln
(

1
ωτo

) , (17)

According to the QMT model, S is independent of temperature and is given by
Equation (18):

S(QMT) = 1− 4

ln
[

1
ωτo

] , (18)

Figure 8 shows the relation between log(σac) and log(ω) at the temperature range
of 300–400 K. This relationship produces a straight line in which its slope is equal to the
value of S. The behavior of S with the temperature suggests the probable conduction
mechanism for the materials. The dependence of S on the temperature for all the prepared
polymers and their Pd(OAc)2 composites is presented in Figure 9. It is clear that S is nearly
independent of the temperature for all polymers and composites and has values in the range
of 0.67–0.85 depending on the polymer type. This behavior and these values of S strongly
point to Quantum Mechanical Tunneling (QMT) being the best conduction mechanism
(Equation (18)) to describe the electrical conduction process in all the samples under
consideration [29,30]. QMT has been reported to be the operating conduction mechanism
in many polymers and organic compounds such as copolymer (N, N′-bissulphinyl-m-
benzenediamine-p-phenylenediamine) [28], quinoline Schiff base complexes [35] and 2-
Hydroxy-1-naphthylideneaniline [40].
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4. Conclusions

In conclusion, poly(EDMA), poly(EDMA-co-MMA) and their Pd(OAc)2 were con-
firmed as semiconductor materials based on the dependence of their σac on both the
temperature and test frequency. The TGA analysis showed that the polymers were
chemically stable up to 460 K and 480 K for poly(EDMA) and poly(EDMA-co-MMA),
respectively. Poly(EDMA), Pd(OAc)2/poly(EDMA)-5.1%, poly(EDMA-co-MMA), and
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Pd(OAc)2/poly(EDMA-co-MMA)-1.6% exhibited a semiconductor behavior in the temper-
ature range of 300–340 K at all the tested frequencies, with an enhancement of the value of
the electrical conductivity by adding Pd(OAc)2 to the polymer matrices. The value of σac
increased from 1.38× 10−5 to 5.84× 10−5 S m−1 and from 6.40× 10−6 to 2.48× 10−5 S m−1

for poly(EDMA) and poly(EDMA-co-MMA), respectively, at 1 MHz and 340 K after loading
Pd(OAc)2. The activation energy of the electrical conductivity ∆Eac for all the polymers and
their Pd(OAc)2 composites showed values in the range of 0.1–0.4 eV, depending on both
the test frequency and the type of polymeric material or composite. The dependence of
the S values on the temperature strongly points to Quantum Mechanical Tunneling (QMT)
being the best conduction mechanism to describe the electrical conduction process in all
the samples under consideration.
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