Published online 31 August 2012

Nucleic Acids Research, 2013, Vol. 41, No. 1 el0
doi:10.1093/nar[gks803

Metagenomic abundance estimation and diagnostic

testing on species level
Martin S. Lindner and Bernhard Y. Renard*

Research Group Bioinformatics (NG4), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany

Received April 27, 2012; Revised and Accepted July 31, 2012

ABSTRACT

One goal of sequencing-based metagenomic com-
munity analysis is the quantitative taxonomic as-
sessment of microbial community compositions. In
particular, relative quantification of taxons is of high
relevance for metagenomic diagnostics or microbial
community comparison. However, the majority of
existing approaches quantify at low resolution
(e.g. at phylum level), rely on the existence of
special genes (e.g. 16S), or have severe problems
discerning species with highly similar genome se-
quences. Yet, problems as metagenomic diagnos-
tics require accurate quantification on species
level. We developed Genome Abundance Similarity
Correction (GASIC), a method to estimate true
genome abundances via read alignment by con-
sidering reference genome similarities in a non-
negative LASSO approach. We demonstrate
GASIC’s superior performance over existing
methods on simulated benchmark data as well as
on real data. In addition, we present applications
to datasets of both bacterial DNA and viral RNA
source. We further discuss our approach as an
alternative to PCR-based DNA quantification.

Introduction

Metagenomic analysis of microbial communities using
sequencing technologies increasingly draws attention (1)
as the technical capabilities, both on the biological and
computational side, evolve rapidly. Genome assembly is
now even possible for low abundant species in complex
metagenomic high coverage Next-Generation Sequencing
(NGS) datasets (2) and the number of available reference
sequences is increasing steadily.

Reference-based identification and quantification of
the constituents is a key goal of metagenomic analysis
and is a special case of ‘taxonomic binning’, i.e. finding

the taxonomic affiliation of sequences in a dataset. Reads
are typically assigned to nodes in a phylogenetic tree by
either aligning them against the reference genomes or
comparing statistical features of reads and references (3).
However, abundance estimation is often not possible at
species level (4) and is highly influenced by many factors
such as genome length, genome similarity, reference set
composition or phylogenetic structure.

One way is to align reads against a comprehensive
reference sequence database using BLAST (5) and subse-
quently analyse the results with tools such as
MEGAN (6). As reads—especially short NGS reads—
often match to multiple genomes, MEGAN assigns these
ambiguous reads to nodes in the pyhlogenetic tree by
finding the ‘Lowest Common Ancestor’ node of all
matching sequences. Assigning the reads to the Lowest
Common Ancestor reduces the risk of a too optimistic
assignment and thus of obtaining false positive matches;
with the disadvantage that quantification may only be
possible at a low resolution. Furthermore, MEGAN
discards nodes with insufficient support, i.e. when the
number of reads assigned to a node does not exceed a
user-defined threshold. The graphical user interface
makes MEGAN highly suitable for the visual inspection
of metagenomic data. Yet, MEGANS read counts are
influenced by several factors such as genome sizes or the
presence of similar genomes in the phylogenetic tree,
which makes MEGAN less suitable for quantitative
metagenomic analyses.

Another tool based on read alignment, GAAS (7), uses
an iterative procedure to estimate improved relative
genome abundances and an average genome length. To
this end, GAAS calculates genome length corrected align-
ment qualities (E-values) for all matching reads and uses
this information to iteratively calculate weights for each
reference genome. Yet, ambiguities of read matches are
only considered indirectly via the corrected E-values,
which is only suitable if the reference genomes have low
similarity.

GRAMMy (8) successively improves on GAAS as
it explicitly models read assignment ambiguities in a
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probability matrix. The problem is formulated as a finite
mixture model which incorporates the read probability
matrix and the genome Ilengths. The Expectation—
Maximization algorithm is used to iteratively solve for
the mixing parameters of the model: the relative genome
abundances. In contrast to the previous methods,
GRAMMy seeks to reflect the reference genome
similarities in the mixture model. Yet, the similarity par-
ameters are estimated from the alignment qualities of the
reads to the reference genomes rather than from the ref-
erence genomes directly and are thus not accurate enough
to allow robust abundance estimation in the case of highly
similar reference genomes.

We observed that high similarity of reference sequences
challenges all described methods. This can be problematic,
for instance, in diagnostic settings, when the distinction
between presence and absence of single species or
relative abundance levels are of eminent importance. To
overcome this limitation, we present Genome Abundance
Similarity Correction (GASIC), a versatile algorithm to
estimate corrected abundances on the species level by
directly accounting for the reference genome similarities.
We demonstrate that GASIC is able to provide accurate
abundance estimates for reference genomes with high
sequence similarity and for complex metagenomic
communities. Its simulation-based approach makes
GASIC more independent from biases introduced by the
sequencing technology, differences in genome sizes, or
composition and structure of the reference sequences.
Furthermore, GASIC provides statistical tests for the
presence of a species in the sample.

MATERIALS AND METHODS

The GASIC workflow is depicted in Figure 1. As in most
reference-based methods, the reads are first aligned to
every genome in a set of references and the number of
reads matching to each genome is counted. We call these
counts the ‘observed abundances’, as opposed to the
‘abundance estimates’ which we want to obtain in the
end. In the next step, GASIC constructs a similarity
matrix encoding the alignment similarities between the ref-
erence sequences. The similarity matrix and the observed
abundances are then used together in a linear system of
equations, where GASIC solves for the corrected abun-
dances using a constrained optimization routine to
obtain the estimates. The whole procedure can be
iterated using bootstrap (9) samples from the original
dataset. This yields more stable abundance estimates and
provides an intuitive non-parametric statistical test for the
presence of a species.

We first introduce some notation that will be used in the
following. Starting from the experiment side, the
sequencing dataset is denoted as D, containing N reads
in total. The reads may originate from a set of M
Species S = {S;,i = 1..M} with known reference sequences
or possibly from other sources (noise, contaminants) with
no relation to any species in S. S; is synonymously used
for both the species itself as well as its reference sequence.
For quantification of species we use the term ‘abundance’,
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which is the number of reads belonging to the species
divided by the total number of reads N. Due to amplifi-
cation biases, this abundance may not represent the true
absolute abundance of the species in the data, but may be
valuable when comparing abundances of multiple (in par-
ticular similar) species.

Alignment

The reads in D are aligned to all species S with an align-
ment method suitable for the characteristics of D. Then,
we count the number of reads r; from D that were success-
fully aligned to S;, irrespective of the number of matching
positions in S; or matches to other species. In particular,
we neither restrict ourselves to unique matches only, nor
assume any phylogenetic structure within the S;, as is done
for example in MEGAN. If the dataset only contains very
dissimilar species, the read counts r; may already be
suitable estimates for the true abundances. Otherwise,
the r; are in general highly disturbed and dominated by
shared matches, such that the r; cannot directly be used as
abundance estimates.

Similarity estimation

A proper similarity estimation of the reference sequences
is required to achieve accurate similarity correction of the
r;. The similarities between sequences are encoded in a
similarity matrix 4 = (ay),i,j =1..M, where a; denotes
the probability that a read drawn from S; can be aligned
to S;. In practice, we simulate a set of reads from every
reference S; with a read simulator which is able to imitate
the sequencing technology and error characteristics of
D. For example, Mason (10) and Grinder (11) simulate
Illumina, 454 and Sanger reads; and dwgsim
(sourceforge.net/projects/dnaa/) simulates Illumina, ABI
SOLiD and IonTorrent reads. Then, we align the
simulated reads of S; to S; using the very same settings
as for aligning the reads in dataset D and count the
number of matching reads 7. The matrix entries are
then estimated as a; = 7.

The key element of similarity estimation is a proper read
simulation since we use the simulated reads to estimate the
reference genome similarities, the source of ambiguous
alignments. Thus, the simulated reads should have the
read characteristics and the error characteristics of the
instrument (read length, paired/single end, etc.) and
should cover the reference genome at least once.

For very complex metagenomic communities with a
high number of species M, the calculation of the complete
similarity matrix may become infeasible because of its
computational complexity O(M?). We recommend to
first estimate similarities using, for example, fast k-mer-
based methods (12) and refine the estimates via the simu-
lation approach only for genomes with sufficiently high
(e.g. a; > 0.01) similarity.

Similarity correction

We introduce a linear model to correct the r; for the
genome similarity using the similarity matrix 4. Let ¢;
denote the true, but unknown, abundance of species S;.
We then assume that the observed abundance r; is a
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Figure 1. GASIC workflow. Metagenomic reads are first aligned to the reference genomes and matching reads are counted for each genome
(observed abundances). GASIC then uses the reference genomes to construct a similarity matrix encoding the genome similarities while considering
influences of the applied sequencing technology. The similarity matrix and the observed abundances are used in a linear system of equations to model
the influence of reference genome similarities on read alignment. GASIC solves the system of equations using a constrained optimization routine to
calculate the estimated true abundances of the reference genomes in the dataset. Bootstrapping from the reads delivers stable abundance estimates

and allows GASIC to test for the presence of each species in the dataset.

mixture of the true abundances ¢; of all species Sj,
weighted with the estimated probability a; that a read
from j can be aligned to i:

E a,»jcj =r;.
J

To simplify notation, we use a matrix representation
of the true and the observed abundances,
ie. ¢ =(c1,¢2, .y ca0)t and ¥ = (r1,72,..., ra)". In matrix
notation, this can be written as

Ac=r.

Since direct inversion of the matrix 4 may result in
instable abundance estimates, we formulate the solution
for ¢ as a non-negative LASSO (13,14) problem:

¢ = argmin ||A¢ — ||,
c
st&=0Vist Y |4 <1
i

The constraints enforce the result to be meaningful,
i.e. each estimated relative abundance ¢; must be equal
to or greater than zero and the sum of all relative abun-
dances must be less than or equal to one. The first condi-
tions also ensure that the correction produces abundances
lower than or equal to the measured abundances. The last
condition allows the presence of reads from a totally un-
related species, since the abundances are allowed to sum
up to less than or equal to one. It also enforces the sparsity
of results such that only meaningful contributions have
abundances larger than 0. We solve the constraint opti-
mization problem with the COBYLA method imple-
mented in SciPy (www.scipy.org/).

Error estimation and testing

We apply a bootstrapping procedure on the steps des-
cribed before, first, to estimate how errors in the input
data propagate through the correction algorithm and,
second, to calculate P-values to test for the presence of a
species in the sample. To this end, we generate B bootstrap
samples from the dataset D and perform similarity correc-
tion for each sample separately, yielding a distribution
¢» b = 1..B of abundances for each species i. We calculate
the average abundance ¢; and estimate the standard error
0; = /VAR(¢;p). To test whether a species is present in
the sample, we count how many bootstrap samples yielded
a higher abundance than an a priori defined detection
threshold

#(cip > t,h =1..B)

i > 1) =
pler =) >

Quality check

As the composition of the reference genome set is critical
for the complete method, GASIC offers an additional
quality check after the alignment to reference genomes.
The quality check step analyses the outputted SAM files
of the read alignment tool and provides helpful statistics
to the user to judge the appropriateness of the results.
Besides reporting statistical measures, such as the
number of mapped reads or the average genome
coverage, GASIC generates a coverage histogram which
often allows the user to exclude certain genomes from the
reference set or to detect possibly important missing ref-
erence genomes. For example, a high number of un-
covered bases in combination with a typical Poisson
distribution at higher coverage may indicate that the
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considered species is not contained in the dataset, but a
closely related species. In addition to the statistics and the
histogram, GASIC produces warning messages in critical
setups, e.g. when the dataset may be too small for abun-
dance estimation or large parts of the genome are not
covered although there is evidence for the genome in the
dataset.

Technical details

We implemented GASIC in the Python programming
language (www.python.org), making extensive use of the
high performance scientific computing libraries SciPy and
NumPy (www.scipy.org). Since GASIC is independent
from the choice of the alignment algorithm and read simu-
lator, we already integrated interfaces to a set of tools. The
user can add custom interfaces easily, a brief manual is
provided within the code. We set value on comprehensible
and well-documented code, such that GASIC can easily be
adapted to the users needs without deeper knowledge of
Python.

GASIC requires the widespread SAM alignment
format (15) as output from the alignment tool to analyse
the results, since most alignment tools either directly
support SAM output or alignment results can be readily
converted into SAM files.

RESULTS

We sought to corroborate the key features of GASiC with
corresponding experiments. First, we compared GASiC
with previous methods on a common reference dataset.
Second, we demonstrate GASiC’s power to disambiguate
abundances of highly similar bacteria and to test for the
presence of species. Third, we present a potential applica-
tion besides metagenomics: we analysed a published viral
dataset and compared GASIC’s results with abundance
levels obtained by a quantitative PCR method. The experi-
mental settings are described in detail in Supplementary
Methods.

FAMeS dataset

The established metagenomic FAMeS (16) reference
datasets contain shotgun sequencing reads of 113 micro-
bial species mixed into three datasets with low, medium
and high complexity. The low complexity dataset simLC
simulates a bioreactor community with one dominant and
many low abundant genomes. The simMC dataset mimics
a moderately complex community, as for example found
in acid mine drainage biofilms, with few dominating
species flanked by low abundant ones. A typical metagen-
omic dataset with high complexity and no dominant
species is simulated in simHC. Ground truth is available,
making these datasets an excellent choice to compare
metagenomic algorithms.

Xia et al. compared the performance of the tools
MEGAN, GAAS and GRAMMy on the FAMeS
dataset, see (8) for details. We extended this comparison
and measured GASIC’s Relative Root Mean Squared
Error and Average Relative Error (RRMSE and
AVGRE) on all datasets. Given the true abundances ¢;
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and the corrected abundances ¢;, i = 1..M, the error meas-
ures are defined as follows:

RRMSE — Li |C/__Z/| ’
o M lj

J=1

AVGRE = i'cf_’f'
- ]‘4].=1 lj '

RRMSE measures the sum of ‘squared’ relative errors,
whereas AVGRE is the sum of ‘absolute’ relative errors.
Thus, RRMSE is more sensitive to outliers. The error
measures of MEGAN, GAAS and GRAMMy, as
reported in (8), and GASIC are compared in Table 1.
Detailed results are reported in Supplementary Table S1.
GASIC strongly reduces the estimated errors on all three
datasets compared with the competing methods; the
strongest error reduction is achieved on the high complex-
ity simHC dataset, where the error rates are reduced by
51.9% and 60.5% for RRMSE and AVGRE, respectively.
In particular, this high increase of accuracy demonstrates
GASIC’s ability to quantify low abundances correctly,
even when a large number of reference genomes are
used. Also the differing genome lengths (ranging from
1.0 Mbp to 9.7 Mbp) did not pose an obstacle for GASIiC.

Mixed Escherichia colil EHEC dataset

In the second experiment, we combined two real datasets,
E. coli DHI10B and E. coli TY-2482, in selected fractions.
Both datasets were acquired with a IonTorrent PGM
device. E. coli TY-2482 1is highly similar to E. coli
DHI10B and received attention in the so called ‘German
2011 EHEC outbreak’ and we therefore, respectively, term
the datasets E. coli and EHEC for a better differentiation.
All combined datasets were analysed with GASiIiC and
GRAMMy, the two best performing tools from the
previous experiment. In addition to the E. coli and the
EHEC references, we included Shigella flexneri as
phantom reference. Herewith we challenged the tools,
first, to distinguish highly similar reference genomes over
a wide range of abundances and, second, to exclude ref-
erence genomes not present in the data. Figure 2 shows the
estimated relative abundances of both tools for E. coli,
EHEC and Shigella. Detailed results are reported in
Supplementary Table S2. In contrast to GRAMMy,
GASIC provides stable abundance estimates, especially
in the case of low abundances. It persistently rules out
the presence of all phantom references correctly, where
the diagnostic detection threshold 7 in GASIC was set to
disregard abundances below 1%. The statistical test for
the presence of a genome assigns high P-values to
Shigella in all datasets, to EHEC and E. coli only at con-
centrations of 1% or below, proving GASIC suitable for
detecting the presence of low abundant genomes.

In follow-up experiments, we challenged GASIC under
complicated conditions (Supplementary Methods and
Supplementary Table S3). First, we added more highly
similar phantom genomes to the reference set and
observed that GASIC still provided accurate estimates
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Table 1. Benchmark comparison. In addition to MEGAN based, GAAS and GRAMMy abundance estimates (8), we calculated abundance
estimates with GASIC for all reference genomes in the FAMeS datasets simLC, simMC and simHC

Tool simLC (%) simMC (%) simHC (%)
Low complexity Medium complexity High complexity
RRMSE AVGRE RRMSE AVGRE RRMSE AVGRE
MEGAN 48.6 39.3 50.0 40.6 50.2 40.8
GAAS 433.8 152.5 171.4 111.6 507.9 165.8
GRAMMy 20.0 14.0 25.6 19.7 21.6 14.7
GASIC 18.7 9.1 17.5 10.9 10.4 5.8

The four tools are compared by their relative error (RRMSE and AVGRE, see Methods section). The lowest error rates are shown in bold font.
GASIC reduces the relative error on all datasets and improves on GRAMMy, the best existing tool, by up to 60%. Best results are achieved on the
high complexity dataset simHC, indicating that GASIC provides a particularly large benefit for complex mixtures where more corrections are
necessary and low concentrations exist which are more difficult to estimate.

GASIC results GRAMMy results

T T

o 1.0p
=} H
s |
s 0.8
g r
c 0.6
@© .
© .
:C; :
2 0.4f:
©

()

2 0.2
-+t

£

()

€ 0.0

Il Il Il Il
1.00.0 0.2 0.4 0.6 0.8 1.0
Fraction of E. coli reads
Bl E. coli
B EHEC

Il Il Il Il
0.0 0.2 0.4 0.6 0.8

Fraction of E. coli reads
— - Observed abundance — Estimated rel. abundance
e o True abundance GASIC p-value

Shigella

Figure 2. Comparison of GASiC and GRAMMy on synthetic datasets with varying concentrations of real E. coli and EHEC reads. Both algorithms
estimated the relative abundances of the highly similar bacteria E. coli, EHEC, and Shigella in all datasets and GASIC tested (P-value) for the
absence of each bacterium. GRAMMy was challenged by the similarity of the bacteria and deviated strongly from the expected relative concentra-
tions. For Shigella, which was not present in the sample, GRAMMy incorrectly estimates abundances up to 10%. GASIC provided more stable
abundance estimates at all concentrations and also correctly identified Shigella as not present in the dataset and accordingly assigned high P-values.

for all reference sequences. In a second experiment, we
added noise reads to the dataset simulating a very
distant unknown species in the metagenome. As the
reads did not match to any of the reference sequences,
GASIC’s estimates were not affected by the noise reads.
In a third experiment, we removed the EHEC genome
from the reference set to simulate the effect of having a
novel species in the dataset with high similarity to existing
ones. Both GASiC and GRAMMy respond to the EHEC
reads by overestimating the abundances of species with
high similarity to EHEC, where GASIC produced
overall better estimates than GRAMMy. Yet, more
distant species are not affected. In this case, GASiIC’s
quality check provides wuseful information to the
experimentator, as it suggests that Shigella may not be
present in the dataset. This contradicts GASIC’s estimates
and should encourage the experimentator to check
manually whether a reference genome is missing. Lastly,
we replaced the E. coli genome with contigs assembled
from the original E. coli reads. Although the assembly

consisted of 154 contigs and only accounted for 95% of
the E. coli genome, GASiIC was able to provide robust
estimates for all involved species.

Viral RNA quantification

To demonstrate a possible application of GASIC beyond
metagenomics, we analysed RNA data from a study on
viral recombination in Apis mellifera, the honey bee.
Moore et al. (17) analysed viral RNA of 40 honeybee
pupae, many of them infested by Varroa destructor
mites. They identified novel recombinations of the two
Picornavirales, Deformed Wing Virus (DWYV) and
Varroa Destructor Virus-1 (VDV-1). The reference gen-
omes of the recombinants, VDV-lpyp and VDV-lyvyp,
were published such that both the original and the recom-
binant sequences were available.

We used GASIC to estimate viral abundances for both
the original and the recombinant genomes in the published
NGS dataset used for identifying the recombinant
genomes. This data posed a particularly difficult
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problem, since the reference sequences showed up to 96%
sequence identity (Supplementary Table S4). Further-
more, since the considered species are RNA viruses, the
reference sequences are only representatives for
‘quasispecies clouds’ of highly similar sequences (18). As
the divergence of a quasispecies cloud is lower than the
distance between the considered reference sequences
(<4%), GASIC should be able to correct for the given
similarities, although we expect the results to be not as
precise as in other experiments.

GASIC’s estimates are shown in Figure 3 and
Supplementary Table S5, demonstrating that the high
sequence similarities caused strong corrections to the
number of matching reads. After correction, VDV-1pyp
was estimated as the most abundant virus while very low
abundances were estimated for VDV-1. The high P-value
(P = 0.53) suggests that VDV-1 is not present in the
dataset. Furthermore, we see that recruiting only unique
matches to estimate abundances would be misleading in
this case, suggesting DWV as most abundant virus. We
compared our estimates with the qRT-PCR results
reported by Moore et al., although they used different
bee pupae for qRT-PCR than for sequencing. Yet, the
results should be comparable since all pupae were col-
lected from the same apiary. Moore et al. also found no
evidence for VDV-1 and measured significant levels of
VDV-1pyp in all examined 25 bee pupae. DWV was
found in 23 of 25 pupae, but at lower levels than
VDV-lpyp, and VDV-lyyp was found in 15 of 25
pupae. A direct quantitative comparison with our esti-
mates is not possible due to the differing biological
samples and due to our estimates possibly being distorted
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by the quasispecies cloud nature of the viral RNA.
Nevertheless, the virus levels obtained by Moore et al.
coincide with the abundance estimates calculated by
GASIC.

Furthermore, we estimated the viral abundances with
GRAMMy to compare both tools on data with highly
similar reference genomes. The experiment is described
in the Supplementary Methods and GRAMMy’s esti-
mates are reported in Supplementary Table S5. We
observe substantial differences between the GRAMMYy es-
timates and the qRT-PCR/GASIC estimates. VDV-1
could not be found in the PCR experiment and was
estimated to insignificantly low abundances by GASIC,
yet, GRAMMy estimates (10.6 £ 0.3)% abundance for
VDV-1. GRAMMy estimates DWV as most abundant
virus, whereas the other methods identify VDV-1pyp as
most abundant and only observe relatively low abun-
dances for DWV. The both recombinants, having very
high similarity, were estimated by GRAMMy to about
equal abundances of 27%.

DISCUSSION

Our experiments demonstrate GASiC’s wide range of ap-
plicability in species quantification tasks. The FAMeS
benchmark dataset consists of very few but long reads,
thus only a very small number of reads is available for
each reference genome. Although the long reads are
ideal for metagenomic assembly and are thus frequently
used for metagenomic analyses, the low number of reads
encumbers quantification and thus challenges the algo-
rithms. We demonstrated that GASIC greatly outperforms
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Figure 3. Estimation of viral abundances based on NGS and qRT-PCR. GASIC estimated the abundances of the highly similar bee viruses DWV,
VDV-1, VDV-1pyp and VDV-1yyp in the viral RNA dataset acquired by Moore et al. (17). The abundances are displayed in relation to the total
number of reads. GASIC’s estimates coincide with the qRT-PCR quantification in the original paper: VDV-lpyp was estimated as the most
abundant virus and VDV-1 was correctly identified as not present in the dataset. The displayed relative qRT-PCR levels were calculated as described
in Supplementary Methods. Interestingly, only considering the unique reads would have yielded misleading estimates (DWV as most abundant) in

this experiment due to the high reference similarities.
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all current competing algorithms on the FAMeS bench-
mark dataset. On the other hand, we demonstrated in the
E. colilEHEC experiment that GASiC handles mixtures of
short read (80 bp) datasets of highly similar species better
than GRAMMy, the best competing algorithm, and
provides reliable tests for the presence of a species in the
dataset. Also the different data sources did not challenge
GASIC: whereas the aforementioned two datasets are bac-
terial DNA sequences, the bees dataset from the last ex-
periment contains viral RNA reads. Also the extremely
high sequence similarity (up to 96% nucleotide identity)
of the viral reference sequences did not challenge GASIC.

This generality is mainly due to the fact that GASIC is
independent from the underlying alignment algorithm:
genomic similarities are estimated by aligning simulated
reads to the reference genomes using the very same align-
ment tool and settings as for aligning the metagenomic
reads. Thereby, tool characteristics are automatically
canceled out.

Furthermore, GASIC is independent from any phylo-
genetic information, genome annotation or marker genes.
Thus, GASIC is not restricted to the bacterial or viral
domain only, but can be applied to sequences of any
source, as long as reference sequences are available. This
makes GASIC particularly appealing for metagenomic
analyses, where large fractions of the analysed community
may be uncategorized or a mixture of viral and bacterial
sequences may be present.

We demonstrated that the common practice to only
consider uniquely matching reads for abundance estima-
tion can be heavily misleading. The high genomic similar-
ity of the two bee viruses VDV-1lyyp and VDV-lpyp
yields relatively low numbers of unique reads for both of
them, although VDV-lpyp was the most abundant
genome in the dataset.

One obvious drawback of GASIC is its need for refer-
ence sequences. Especially in complex metagenomic
datasets, typically not all constituents are sequenced or
even known. We identified four typical scenarios when
GASIC can be applied: (i) when the metagenomic commu-
nity is well-known from previous studies and comprehen-
sive reference databases are available. This can be the case
in metagenomic time series experiments, where the same
community is sequenced repeatedly to observe temporal
changes in the relative abundances of species. (ii)) GASIC
can be used to identify genomes present in a metagenomic
dataset, when the community structure is not precisely
known, but exhaustive databases of reference sequences
are available. We demonstrated that GASIC still
provides reliable estimates when more genome sequences
are added to the reference set; this is particularly interest-
ing for diagnostic settings of well-specified organisms and
also for future applications, since the number of available
reference genomes increases rapidly. (iii)) GASIC can be
applied when the scope of the study is to estimate abun-
dances for a well-known-closed subset of sequences, i.c. a
set of sequences which has a sufficiently high genomic
distance to all other genomes, such that the probability
of falsely aligning reads to sequences of the closed subset
is very low. We observed (Supplementary Methods) that
unknown sequence reads with low similarity do not
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diminish GASIC’s accuracy. These closed subsets can be
obtained, for example, by clustering sequences by similar-
ity or using tools such as MEGAN to carefully pick
references by hand. (iv) GASIC is applicable in experi-
ments with high sequencing coverage or low community
complexity, such that a preceding assembly step could
directly deliver the references for quantification (2). We
demonstrated this (Supplementary Methods and Supple-
mentary Table S3) by replacing the E. coli genome in the
Mixed E. coli/EHEC dataset experiment by contigs readily
assembled from E. coli reads and obtained GASIC esti-
mates similar to using the E. coli reference.

We see difficulties for the application of GASIC when
the reference set composition is insufficient; e.g. when the
dataset contains reads of a novel species which is highly
similar to an existing species or a known species obtained
novel genomic fragments via gene transfer (EHEC) or re-
combination (DWV/VDV-1). We also expect problems in
precisely estimating abundances in small datasets contain-
ing high numbers of species, which is often the case for
traditional Sanger sequencing experiments. However, the
quality check step in GASIC outputs warnings when the
risk of misinterpretation of results arises and thus serves as
an automated indicator of these situations.

Scenario (iv) is particularly interesting as it is applicable
when a metagenomic community is barely known, which
is the case in many metagenomic studies. Yet, a complete
assembly of all constituents of the sample is unrealistic,
even in the case of a community with low complexity. Yet,
GASIC is able to estimate abundances of single-assembled
contigs or groups of contigs when algorithmically treated
as a discrete ‘species’. For example, rough estimates of
species (groups of contigs) abundances or abundances of
single genes (encoded on the contigs) can be obtained in
this way. This concept can also be applied to fragments
of genomes, as for example to fragmented RNA viruses or
functional units in the genome. As observed in the viral
RNA quantification experiment, quantifying complete
genomes may be prone to errors when recombination
occurred. Quantification of fragments may lead to more
meaningful results if the recombinant genomes are not
known. Nevertheless, it is not directly possible to detect
recombination events with GASIC, although highly differ-
ing abundance estimates of fragments may be a sign for
recombination.

CONCLUSION

We conclude that GASIC is a highly accurate and robust
tool for genome abundance estimation and detection on
the species level in metagenomic datasets. The similarities
of reference genomes, being the main source of ambigui-
ties in most metagenomic methods, are used directly to
correct observed abundances. No prior information is
needed for the analysis apart from the reference, making
GASIC suitable for a broad range of applications. GASIC
reduces quantitative error by as much as 60% over the
best existing approaches for complex mixtures and quan-
titatively distinguishes even highly related organisms with
more than 95% sequence similarity. We obtained accurate
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estimates on both viral and bacterial datasets from differ-
ent sequencing platforms. Furthermore, we observed that
GASIC’s abundance estimates conform with virus levels
obtained with qRT-PCR. This indicates that additional
PCR-based quantification may become unnecessary if
NGS data are available.

AVAILABILITY

The GASIC tool and source code are available for
download at http://sourceforge.net/projects/gasic/. All
data used in the experiments are available online. See
Supplementary Table S6 for URLs and accession numbers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-6, Supplementary Methods and
Supplementary References [19-21].
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