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A critical risk to the continued success of antifungal chemotherapy is the acquisition of
resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably,
as the use of these drugs increases in the clinic, more resistant organisms can be isolated
from patients. A particularly problematic form of drug resistance that routinely emerges in
the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers
to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single
genetic change. This review will focus on recent progress in understanding pathways
of multidrug resistance in fungi including those of most medical relevance. Analyses of
multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline
of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of
S. cerevisiae typically result from changes in the activity of a pair of related transcription
factors that in turn elicit overproduction of several target genes. Chief among these is the
ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important
Candida species, very similar pathways are involved in acquisition of multidrug resistance.
In both C. albicans and C. glabrata, changes in the activity of transcriptional activator
proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1.
The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to
acquire resistance to azole compounds (the principal antifungal drug class) via alterations
in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways
in addition to changes in the cyp51A gene are important determinants in A. fumigatus
azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus
and Candida species may share more mechanistic similarities than previously thought.

Keywords: multidrug resistance, transcription, fungal pathogens, ABC transporters, transcription factors,

regulation of gene expression

INTRODUCTION
Scientifically, one of the most attractive features of the fungal
microorganisms is their striking biological similarity with mam-
malian cells. This similarity has led to their extensive use as
models for basic properties of eukaryotic cells but also illustrates
one of the important challenges in dealing with fungal pathogens.
Development of antifungal drugs has been slowed by the close
relationship between the fundamental cell biology of a fungus
and a typical mammalian cell. Early antifungal drugs like ampho-
tericin B were efficacious in treating fungal infections but suffer
from high toxicity to the patient (Moen et al., 2009).

More recently developed drugs like the azoles and echinocan-
dins, exhibit better specificity for pathogens but their very success
has led to the selection of fungi that are highly tolerant of these
antifungal agents (recently discussed in Brown et al., 2012). Azole
drugs are the primary antifungal drug used in the clinic and
infections associated with azole resistant fungi have dramatically
lowered survival rates compared to those associated with azole
susceptible organisms (reviewed in Pfaller, 2012). Resistance to
azole drugs emerges by two different routes: direct and indi-
rect mechanisms. Direct changes involve changes in the enzyme
that is targeted by azole compounds, lanosterol 14α demethylase

(See Kristan and Rizner, 2012 for a recent review). This enzyme
is encoded by the ERG11 gene in Saccharomyces cerevisiae with
azole resistant alleles found to either change the sequence of
the protein and/or alter expression levels of this gene product.
While these direct changes can be found in S. cerevisiae and
pathogenic yeast, a common form of azole resistance arises via
indirect means. Most typically, selection for azole resistant yeast
elicits isolation of strains that overproduce ATP-binding cassette
(ABC) transporter proteins. These ABC transporter proteins act
to efflux azole drugs from the cell and prevent accumulation of
otherwise toxic levels (recently reviewed in Prasad and Goffeau,
2012).

ABC transporter overproduction is a well-known cause of
drug resistance in mammalian cells (See Holohan et al., 2013 for a
recent discussion). Cancer patients undergoing chemotherapeu-
tic treatment are often found to eventually develop tumors that
are termed multidrug resistant. These in vivo selected tumors are
refractory to growth inhibition caused by a wide range of different
chemotherapeutics, even drugs to which the patient was not pre-
viously exposed (Szakacs et al., 2006). Multidrug resistant tumors
can be associated with gene amplification events that lead to an
increase in copy number of genes encoding ABC transporters
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with a concomitant elevation in protein level (Ambudkar et al.,
2003).

In fungal cells, multidrug resistant cells can easily be selected.
These mutant strains do not usually have increased gene dosage
but rather possess increased expression of ABC transporter-
encoding genes (reviewed in Sanglard et al., 2009; Morschhauser,
2010). Elevated gene expression leads to an increase in the protein
level of these membrane transporters with accompanying broad
range drug tolerance. In every fungus that has been studied, ABC
transporters are able to influence azole resistance making this a
key issue in treatment of fungal infections.

Given the importance of the level of ABC transporter gene
expression in development of azole resistance, their regulation has
been the focus of extensive investigation. These studies have led
to the identification of dedicated transcription factors dedicated
to coordination of their expression with other genes in fungi.
Our most detailed picture of the network of transcriptional reg-
ulation and multidrug resistance gene is available for the yeast
Saccharomyces cerevisiae. This network has served as a starting
point for the analysis of similar systems in pathogenic fungi and
will be discussed below.

TRANSCRIPTIONAL CIRCUITRY CONTROLLING PLEIOTROPIC
DRUG RESISTANCE IN S. CEREVISIAE
Zn2Cys6 ZINC CLUSTER-CONTAINING FACTORS
The first transcription factor discovered to be a determinant of
multidrug resistance in S. cerevisiae was appropriately designated
Pdr1 (Saunders and Rank, 1982). Early genetic work pointed to
the existence of dominant alleles of the PDR1 gene as conferring
resistance to a wide range of different toxic compounds (Rank and
Bech-Hansen, 1973; Rank et al., 1975, 1976). This broad range
resistance phenotype in S. cerevisiae was designated pleiotropic
drug resistance (Pdr) and is functionally analogous to the mul-
tidrug resistance seen in mammalian cells and other fungi. This
early work has been the subject of several reviews (Balzi and
Goffeau, 1995; Bauer et al., 1999; Gulshan and Moye-Rowley,
2007) and will only be outlined here.

Isolation of the cloned PDR1 gene by Balzi et al. (1987) led
to rapid advances in understanding of the molecular basis of the
Pdr phenotype in S. cerevisiae. The DNA sequence of PDR1 led
to two important findings. First, this gene encoded a Zn2Cys6

cluster-containing transcription factor similar to the previously
described Gal4 (Johnston, 1987). Second, sequence of a domi-
nant, multidrug resistant allele of PDR1 demonstrated that this
hypermorphic or gain-of-function (GOF) behavior of Pdr1 was
caused by a single amino acid substitution mutation in the cen-
tral region of the protein. Many different amino acid substitution
mutations were eventually discovered that caused Pdr1 to exhibit
elevated, constitutive transcriptional activation of target gene
expression (Carvajal et al., 1997).

The discovery that Pdr1 was a transcriptional regulator led to
work from multiple laboratories to identify genes that were more
directly responsible for the observed multidrug resistance pheno-
type. The first major class of Pdr1 target genes contained several
different loci encoding ABC transporter proteins (Balzi et al.,
1994; Bissinger and Kuchler, 1994; Hirata et al., 1994a; Katzmann
et al., 1995; Mahe et al., 1996). These proteins were typically

found in the plasma membrane and thought to act as broad speci-
ficity, drug efflux pumps as previously seen in mammalian tumor
cells (Gottesman et al., 1995). The PDR5 locus was found to
possess unique central importance among the ABC transporter-
encoding genes as the expression level of this gene is the highest of
the drug resistance-related ABC transporters and mutants lack-
ing this gene exhibit profound drug hypersensitivities (Leppert
et al., 1990; Decottignies et al., 1994). PDR5 transcription was
strongly elevated in cells containing hyperactive PDR1 dominant
alleles through the binding of the transcriptional regulatory pro-
tein to three sites in the promoter region (Katzmann et al., 1996).
These sites are referred to as Pleiotropic Drug Response Elements
or PDREs and have been found upstream of the majority of
Pdr1-regulated genes.

A factor closely related to Pdr1 was discovered during genome
sequencing experiments and designated PDR3 (Delaveau et al.,
1994). GOF PDR3 alleles similar to those described for PDR1
were isolated and elevated PDR5 transcription and drug resis-
tance found to occur in these strains (Dexter et al., 1994; Nourani
et al., 1997; Simonics et al., 2000). Generally speaking, the phe-
notypic effects of activated alleles of PDR1 and PDR3 are very
similar. However, a feature unique to the PDR3 gene was the pres-
ence of two PDREs in its promoter (Delahodde et al., 1995). This
autoregulatory input was found to be essential for normal func-
tion of PDR3 and is a key component for the regulated expression
of this gene (Delahodde et al., 1995; Zhang and Moye-Rowley,
2001).

Along with Pdr1 and Pdr3, several other zinc cluster-
containing transcription factors have been associated with the Pdr
phenotype. The first of these, Yrr1, was recovered in a screen for
tolerance to a cell cycle inhibitor called reveromycin A (Cui et al.,
1998). Later work indicated that Yrr1 was both autoregulated
and transcriptionally induced by Pdr1/Pdr3 activity (Zhang et al.,
2001). Several laboratories discovered that YRR1 mutants could
be recovered that exhibited high constitutive transcriptional acti-
vation as previously discussed for similar alleles in PDR1 and
PDR3 (Cui et al., 1998; Zhang et al., 2001; Keeven et al., 2002; Le
Crom et al., 2002). Two homologs of Yrr1 have also been studied:
Yrm1 (Lucau-Danila et al., 2003) and Pdr8 (Hikkel et al., 2003).

NON-TRANSPORTER TARGETS GENES OF PDR1/PDR3
While the first genes identified that were controlled by the Pdr
regulon were ABC transporters, more recent data make it clear
that many different types of proteins are encoded by Pdr1/Pdr3
target genes (Derisi et al., 2000; Devaux et al., 2001, 2002; Traven
et al., 2001). These other classes of proteins include 7 trans-
membrane domain-containing membrane proteins (Rsb1, Rta1)
(Kihara and Igarashi, 2004; Panwar and Moye-Rowley, 2006;
Kolaczkowska et al., 2012), enzymes involved in sphingolipid
biosynthesis (Hallstrom et al., 2001; Kolaczkowski et al., 2004),
phospholipid transfer (Van Den Hazel et al., 1999), and other pro-
teins of poorly characterized function. Given the roles for many of
these other proteins in lipid homeostasis it is reasonable to pro-
pose that the control of lipids has an important effect on drug
resistance. Evidence in support of this notion is accumulating in
S. cerevisiae and other fungi (Hallstrom et al., 2001; Kolaczkowski
et al., 2004; Prasad et al., 2005). While it is important to recognize
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that the Pdr response involves more than simply transporter
genes, these are the best understood in terms of their role in drug
resistance. We will focus on the control of transporter genes in
this review.

BASIC REGION-LEUCINE ZIPPER-CONTAINING TRANSCRIPTION
FACTORS
One of the earliest transcriptional regulators found to influ-
ence Pdr was the basic region-leucine zipper (bZip)-containing
factor Yap1. Yap1 was isolated in a high-copy-plasmid suppres-
sor screen as PDR4, a gene capable of elevating resistance to
cycloheximide and the branched chain amino acid biosynthe-
sis inhibitor sulfometuron methyl (Leppert et al., 1990). Later
work demonstrated that YAP1 and PDR4 were allelic (Hussain
and Lenard, 1991) and that Yap1 did not appear to act via PDR5
(Dexter et al., 1994). Work from several labs demonstrated that
the bZip-containing protein Cad1/Yap2 also elevated drug resis-
tance although this effect could only be seen when this protein
was overproduced (Bossier et al., 1993; Wu et al., 1993; Hirata
et al., 1994b). Similarly, high dosages of the Yap1 homologs
Yap5 and Yap6 also conferred resistance to several different drugs
(Fernandes et al., 1997; Furuchi et al., 2001).

While there are clear links between the bZip-containing fac-
tors and drug resistance, most of the drug resistance effects shown
by this group of transcription factors occur when these proteins
are overproduced. Disruption mutations rarely exhibit hypersen-
sitivity suggesting either that extensive redundancy exists between
these family members or that the normal role of these factors is
not to modulate drug resistance. Yap1 is the best understood of
these bZip-containing factors in terms of its regulation (reviewed
in Toone et al., 2001; Moye-Rowley, 2003a; Rodrigues-Pousada
et al., 2004). Loss of the YAP1 gene has a profound sensitivity to
oxidative stress (Schnell et al., 1992; Kuge and Jones, 1994) but lit-
tle to no consequence on drug resistance (Leppert et al., 1990; Wu
et al., 1993; Alarco et al., 1997). An exception to this rule is pro-
vided by drugs such as the agrochemical mancozeb that proceed
via an oxidative mechanism in which physiological levels of Yap1
are required for normal resistance (Teixeira et al., 2008). Drugs
that act through a mechanisms that does not invoke an oxidative
stress response typically are insensitive to the presence of Yap1
expressed at normal gene dosage. Yap1 has been thoroughly docu-
mented as an important regulator of major facilitator superfamily
(MFS) gene expression in the case of FLR1 (Alarco et al., 1997)
and ATR1 (Coleman et al., 1997). Activation of expression of these
genes is likely to explain many of the effects of this transcrip-
tion factor on drug resistance although little evidence exists that
Yap1-dependent transactivation can be stimulated by the presence
of drugs. Extensive documentation exists for activation of Yap1
function upon oxidative stress (Kuge et al., 1997; Coleman et al.,
1999; Delaunay et al., 2000, 2002). We will focus our discussion
on the Zn2Cys6 zinc cluster-containing proteins as the paradigms
for drug-induced transcriptional activation in S. cerevisiae (and
likely other fungi as well).

CONTROL OF TRANSCRIPTIONAL ACTIVATION IN S. CEREVISIAE
MULTIDRUG RESISTANCE
The identification of alleles of PDR1 as dominant, GOF mutations
suggested the possibility of regulatory modulation of the Pdr1

protein. The determination that Pdr1 and Pdr3 were closely
related Zn2Cys6 zinc cluster-containing transcription factors also
argued that these proteins were most likely to be indirect deter-
minants of multidrug resistance via their regulation of direct
effectors of this phenotype (such as PDR5). Sequence analysis
of a large number of these hyperactive mutant alleles of PDR1
and PDR3 demonstrated that this multidrug resistant phenotype
was routinely caused by single amino acid substitutions in three
main regions of these factors (Dexter et al., 1994; Carvajal et al.,
1997; Nourani et al., 1997; Simonics et al., 2000). A model of Pdr1
structure is shown in Figure 1. Early analyses of these GOF alle-
les indicated that target genes were overexpressed in the presence
of the mutant forms of the transcription regulators. For exam-
ple, PDR5 mRNA levels are increased by roughly 10-fold in the
presence of a PDR1 GOF allele compared to levels driven by the
wild-type gene (Meyers et al., 1992). This correlates well with the
observed increment in drug resistance.

While the characterization of the GOF mutants supported the
view that the factors regulating Pdr were under some type of
regulatory control, these alleles represent chronic functional alter-
ations in these transcription factors. Here we will summarize
more recent progress in elaboration of mechanisms controlling
activity of either wild-type Pdr1 or Pdr3. To date, regulatory
inputs to these two closely related proteins are unique to each
factor and will be considered separately.

PDR1 REGULATION
The first example of a trans-factor influencing Pdr1 activity came
from the identification of the Hsp70 protein Ssz1 (originally
Pdr13) as a positive regulator of Pdr1 function when overpro-
duced (Hallstrom et al., 1998). Later work demonstrated that this
Hsp70 was primarily associated with the ribosome (Hallstrom
and Moye-Rowley, 2000a) and has an important role in folding of
nascent polypeptide chains (Gautschi et al., 2001). Recently, these
findings have been extended with the determination that the dnaJ
protein Zuo1 (partner of the dnaK Ssz1 Michimoto et al., 2000)
can also stimulate Pdr1 function, possibly by direct binding to

FIGURE 1 | Structure and regulation of S. cerevisiae Pdr1. A cartoon of
the predicted structure of the S. cerevisiae Pdr1 transcription factor is
shown. The amino-terminal DNA binding domain containing a Zn2Cys6

cluster is located between amino acids 1–200 while the transcriptional
activation domain lies at the C-terminus of the protein spanning
approximately residues 900–1000. The presumptive regulatory domain that
is targeted by several stimulatory signals is referred to as the center
domain and lies between residues 200–900. The center domain is thought
to be independently regulated by the Hsp70 protein Ssz1, the dnaJ protein
Zuo1 and by direct binding to xenobiotics (illustrated here by azole drugs).
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this transcription factor (Eisenman and Craig, 2004). Zuo1 con-
tains a short C-terminal region of 13 residues that is necessary and
sufficient to induce Pdr1 transcriptional activity (Ducett et al.,
2013).

Both Zuo1 and Ssz1 are present at much higher levels than
Pdr1 and are thought to have their primary function at the ribo-
some (Gautschi et al., 2001). Work from the Craig lab has argued
that the Zuo1/Ssz1 protein pair can independently activate Pdr1
and are found directly associated with this factor on target pro-
moters (Prunuske et al., 2012). As these findings suggest, the
action of Zuo1/Ssz1 in terms of control of Pdr1 activity repre-
sents an extra-ribosomal function of these proteins (Eisenman
and Craig, 2004). Despite significant effort, the molecular ratio-
nale linking activity of these chaperone proteins to Pdr1 remains
obscure. An interesting possible tie between Pdr1 and protein
folding/degradation came from the finding that the gene encod-
ing the key proteasomal transcriptional regulator Rpn4 is a tran-
scriptional target of Pdr1 (Devaux et al., 2001; Owsianik et al.,
2002). Activation of Pdr1 function by Ssz1 can suppress defects in
endoplasmic reticulum-associated degradation (Bosis et al., 2010)
further strengthening the association of Pdr1 activity with protein
homeostasis.

An intriguing model for Pdr1 (and Pdr3) to act as xenobiotic
receptor proteins came from studies led by Anders Näär (Thakur
et al., 2008). This work provided evidence that the central regions
of both these transcription factors could directly bind radioactive
fluconazole and that this antifungal drug triggered an increase
in Pdr1/3-dependent gene expression. These data support the
attractive notion that Pdr1/3 were normally held in a low activ-
ity state but could be remodeled in the presence of an appropriate
ligand to a more potent transcriptional stimulator.

The simplicity and precedence of this model make it a com-
pelling view for the regulation of Pdr1/3 in physiology. It is still
difficult to rationalize why overproduction of either Pdr1 or Pdr3,
in the absence of any exogenous drug, can lead to increased gene
expression (see for example: Katzmann et al., 1994; Carvajal et al.,
1997). If activation of these factors required the presence of a
small molecule, then overproduction would not be expected to
lead to increase downstream gene expression. In cases where a
small molecule is known to be required for activity of a zinc
cluster-containing transcription factor, overproduction of the fac-
tor leads to downstream repression of gene expression. Examples
of this behavior include the heme-dependent activator Hap1
(Zhang et al., 1998) and the leucine biosynthetic activator pro-
tein Leu3 (Sze et al., 1993). The genetic behavior of Pdr1/3 seem
more easily fit to a situation in which a negative regulatory system
is outcompeted when these proteins are overproduced. Further
experiments are required to dissect the mechanism of Pdr1/3
control via by small molecules.

PDR3 REGULATION
Although hyperactive alleles of PDR3 were identified at the incep-
tion of the study of the Pdr network in S. cerevisiae (Dexter
et al., 1994), early analyses of the contribution of Pdr3 to drug
resistance suggested that this factor was a less important contrib-
utor to transcriptional control than its homolog Pdr1 (Delaveau
et al., 1994; Katzmann et al., 1994). Screening a library of

random transposon-induced null mutations to identify nega-
tive regulators of PDR5 expression uncovered an array of gene
involved in maintaining the mitochondrial genome (Hallstrom
and Moye-Rowley, 2000b). Loss of mitochondrial DNA (ρ0) led
to a strong induction of PDR5 gene expression that was strictly
Pdr3-dependent. This was the first example of a situation in yeast
in which the level of PDR5 expression and associated drug resis-
tance rivaled those seen in the presence of a hyperactive allele of
either PDR1 or PDR3.

Characterization of the requirements for this mitochondrial
signal to trigger Pdr3 induction demonstrated that of the many
types of mutations compromising mitochondrial function, only
those that also elicited loss of mitochondrial DNA were able
to elevate Pdr3 function (Zhang and Moye-Rowley, 2001). The
autoregulatory loop of PDR3 transcription was also essential for
the ρ0 response. However, driving Pdr3 expression from the PDR1
promoter was still able to produce a ρ0-dependent induction in
drug resistance (Hallstrom and Moye-Rowley, 2000b) arguing
that Pdr3 was regulated post-translationally. Together, these find-
ings suggest that a mitochondrial genome-dependent signal leads
to a release of Pdr3 from some negative regulatory system. This
in turn allows Pdr3 to engage with its own promoter and posi-
tively autoregulate transcription. Pdr3 regulation is diagrammed
in Figure 2.

Further genetic analyses identified several other factors that are
required for the normal mitochondrial control of Pdr3. A protein
of unknown function called Lge1 was identified as a participant in
ρ0-induced gene expression (Zhang et al., 2005). Lge1 is involved
in ubiquitination of histone H2B (Hwang et al., 2003) but this
function seems to be distinct from its role in ρ0 induction of
PDR5 expression (Zhang et al., 2005). Mutants lacking Lge1 fail
to fully induce PDR5 transcription in ρ0 cells. Overproduction of
an enzyme involved in biosynthesis of phosphatidylethanolamine
(PE) was discovered to increase Pdr3-dependent transactivation

FIGURE 2 | Regulation of S. cerevisiae Pdr3. A diagram showing the
regulatory inputs modulating Pdr3 function is presented. Loss of
mitochondrial DNA (ρ0) signals move through the PE carboxylase protein
Psd1 and via the nuclear factor Lge1. Azole drugs have been demonstrated
to directly bind to the center region of Pdr3. The Hsp70 protein Ssa1
associates with and represses activity of Pdr3. The PDR3 gene is under
positive autoregulation via the presence of two Pleiotropic Drug Response
Elements (PDREs) depicted as solid black boxes. Pdr3 also activates
transcription of downstream genes like PDR5 that confer the multidrug
resistance phenotype.
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even in ρ+ cells (Gulshan et al., 2008). This enzyme, called Psd1, is
one of two enzymes typically used to produce PE and is located in
the inner membrane space of mitochondria (reviewed in Voelker,
1997). Surprisingly, overproduction of a catalytically-inactive
form of Psd1 was still capable of inducing PDR5 expression even
though this mutant enzyme could no longer carry out PE biosyn-
thesis (Gulshan et al., 2008). The presence of Psd1 was required
for normal ρ0 signaling to occur consistent with this enzyme
having a role in wild-type signal transduction.

Mass spectrometric analysis of purified Pdr3 led to the iden-
tification of the Hsp70 protein Ssa1 as a negative regulator of
this transcription factor (Shahi et al., 2007). Overproduction of
Ssa1 caused a decrease in Pdr3-dependent gene expression and
hyperactive mutants exhibited less binding to Ssa1 in vivo than
wild-type Pdr3. This reduction in Hsp70 association correlated
with increased transcriptional activation capability is reminiscent
of the regulation of steroid hormone receptors (Pratt and Toft,
1997); however, the presence of other heat shock proteins docked
to Pdr3 has not been reported. Interestingly, both Pdr1 and Pdr3
have been reported to be induced by challenge with progesterone,
furthering the analogy with a regulatory mechanism resembling
steroid hormone receptors (Banerjee et al., 2008).

Further biochemical experiments seeking to identify inter-
acting proteins capable of binding to the KIX domain of the
transcriptional Mediator subunit Med15/Gal11 determined that
both Pdr1 and Pdr3 interacted with this protein region (Thakur
et al., 2008). The Mediator complex is composed of roughly 20
different proteins that act to provide a link between sequence-
specific transcriptional regulatory proteins and the RNA poly-
merase II machinery (see Casamassimi and Napoli, 2007 for a
review). Biochemical and genetic experiments have separated the
Mediator complex into two different forms referred to as either
S-Mediator (or core mediator) containing three and L-Mediator
containing four subdomains (Poss et al., 2013). The three sub-
domains of S-Mediator are called Head, Middle, and Tail with
Med15 contributing a component of the Tail complex of proteins
(Beve et al., 2005). L-Mediator contains an additional subcomplex
consisting of the cyclin-dependent kinase Cdk8 (or Med15/Srb8)
and attendant cyclin: cyclinC (Srb11) (reviewed in Conaway and
Conaway, 2011). Two other large proteins designated Med12
(Srb8) and Med13 (Srb9) complete the Cdk8 complex.

Interactions between Pdr3 (and Pdr1) and Med15 are crucial
for normal levels of downstream gene expression under all con-
ditions (Shahi et al., 2010). However, activation of Pdr3 function
in ρ0 cells still occurs in med15� cells. Loss of the Med12 pro-
tein from the Cdk8 complex completely blocked ρ0 induction
of PDR5 transcription but had a negligible effect on expression
in ρ+ cells. These findings argue that Med12 is a key target for
activated transcription supported by Pdr3, at least in ρ0 cells.
Generally speaking, the Cdk8 complex is thought to serve repres-
sive functions in terms of transcriptional control but more recent
data argue that this complex also has positive influences on gene
expression as illustrated by the case of Pdr3 activation in ρ0 cells.

MULTIDRUG RESISTANCE IN CANDIDA ALBICANS
The major human fungal pathogen is the yeast Candida albi-
cans. This organism, while susceptible to azole drug treatment,

is readily detected to acquire a multidrug resistance phenotype
that includes robust tolerance to this important class of antifun-
gal drug (reviewed in Pfaller, 2012). Next to the current picture of
S. cerevisiae multidrug resistance, the situation in C. albicans is the
best understood and has been the focus of authoritative reviews
(Cannon et al., 2009; Sanglard et al., 2009; Morschhauser, 2010).
Here we will focus our attention on the transcriptional regulatory
proteins implicated in clinically relevant resistance phenotypes.

MEMBRANE PROTEINS IMPORTANT IN MULTIDRUG RESISTANCE IN C.
ALBICANS
The two best characterized genes involved in multidrug resis-
tance in C. albicans are the ABC transporter-encoding CDR1
gene (Prasad et al., 1995) and the MFS protein-encoding MDR1
locus (Fling et al., 1991). Both of these resistance determinants
are localized to the plasma membrane in C. albicans (Manoharlal
et al., 2008; Basso et al., 2010; Kapoor et al., 2010). CDR1 was
isolated on the basis of complementation of the drug hypersen-
sitivity of a pdr5� mutant in S. cerevisiae. Loss of CDR1 led to
a pronounced drug sensitive phenotype in C. albicans. A closely
related ABC transporter-encoding gene, designated CDR2, also
contributes to drug resistance when overproduced or when CDR1
is deleted (Sanglard et al., 1997).

MDR1 has been documented to be overexpressed in a num-
ber of different clinical isolates (Morschhauser, 2002); however,
its loss does not appear to have significant effects on baseline drug
resistance. The plasma membrane location of these transporter
proteins supports the view that these proteins act as efflux pumps
for a range of different drugs (Schuetzer-Muehlbauer et al., 2003;
Lettner et al., 2010). Multidrug resistance in C. albicans is asso-
ciated in large part with transcriptional induction of the genes
encoding these membrane proteins.

TAC1
The first insight into the molecular basis of transcriptional reg-
ulation of multidrug resistance in C. albicans came from the
identification of the TAC1 locus. As with PDR1 and PDR3 in
S. cerevisiae, genetic observations drove the discovery of the TAC1
gene. Analyses of azole tolerant C. albicans isolates led to the
discovery of loss of heterozygosity/aneuploidy around the mat-
ing type loci (MTL) gene cluster (Rustad et al., 2002). Using
this observation as a starting point, Sanglard and colleagues
took a candidate gene approach by disrupting several different
Zn2Cys6 zinc cluster-encoding genes in this chromosomal region
(Coste et al., 2004). Loss of one of these genes, designated TAC1
(Transcriptional Activator of Cdr genes), resulted in a strain dis-
playing enhanced azole susceptibility and depressed expression of
the CDR1 ABC transporter-encoding gene.

Along with a requirement for TAC1 to confer normal wild-type
expression of CDR1 and drug resistance, evidence was obtained
that two different changes in the TAC1 gene influenced its func-
tion. First, a number of different substitution and even small
deletion mutations strongly enhanced the function of Tac1 (Coste
et al., 2007). Secondly, chromosomal rearrangements of chro-
mosome 5 were detected that led to loss of heterozygosity and
changes in the dosages of the linked ERG11 and TAC1 genes.
These structural changes in chromosome 5 were found to lead to
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the amplification and likely overexpression of ERG11 and TAC1
(Coste et al., 2007; Selmecki et al., 2008). These findings are
consistent with a model in which Tac1 can be activated either
by changes in its primary sequence or simply by overproducing
the wild-type factor. Consistent with the notion that increased
expression of Tac1 leads to increased function comes from data
that the TAC1 gene is positively autoregulated (Liu et al., 2007;
Znaidi et al., 2007).

Although we do not yet know the nature of the signals that
control Tac1, the currently available data suggest that its regula-
tion may resemble that of Pdr3 in S. cerevisiae. Both of these fac-
tors can be activated by mutations along their respective primary
sequence and the genes encoding these regulators are positively
autoregulated.

Mrr1
A second zinc cluster-containing transcription factor that is an
important contributor to drug resistance was identified in cells
that were already known to overproduce MDR1 (Morschhauser
et al., 2007). Transcriptional profiling experiments demonstrated
that fluconazole resistant isolates shared a common overpro-
duced transcript encoding a zinc cluster-containing transcrip-
tion factor. This regulatory protein was designated Mrr1 (mul-
tidrug resistance regulator). The presence of Mrr1 is required
for the observed overproduction of MDR1 in fluconazole resis-
tant strains. While the MDR1 promoter contains binding sites for
other positive regulators, loss of Mrr1 is sufficient to abrogate the
overproduction that occurs in drug resistant isolates. This argues
that Mrr1 is the key transcriptional regulator during develop-
ment of drug resistance involving MDR1 overproduction (Dunkel
et al., 2008). Importantly, azole resistant clinical isolates have been
described that overproduce MDR1 and are dependent upon the
presence of this MFS protein for this drug resistance (White, 1997;
Wirsching et al., 2000).

Genetic activation of Mrr1 shows similar behavior to other
zinc cluster-containing transcription factors in which single
amino acid substitutions lead to dramatic induction of Mrr1 tran-
scriptional activity (Dunkel et al., 2008). Detailed analyses of the
functional subdomains within Mrr1 indicate that the regulation
of this factor is likely to be complex with separable inhibitory and
activation domains (Schubert et al., 2011b). Chromatin immuno-
precipitation experiments also indicated that Mrr1 is likely to
control its own expression (Schubert et al., 2011a) as mentioned
above for Tac1. Both these C. albicans factors appear to share
common overall features with ScPdr3 that is also autoregulated
and can be genetically activated by a range of different mutations
(reviewed in Moye-Rowley, 2003b).

Along with their important effects on multidrug resistance and
critically azole tolerance, these transcription factors have been
examined for their influence on virulence. Systematic introduc-
tion of GOF forms of TAC1 and MRR1 indicated a fitness cost
in a gastrointestinal colonization model caused by either mutant
gene individually that was exacerbated with their combination
(Sasse et al., 2012). These authors suggested an interesting poten-
tial rationale for the common observation that clinical isolates of
azole resistant C. albicans contain either TAC1 or MRR1 muta-
tions but not both. Although the double TAC1 MRR1 strains

were robustly azole tolerant, the fitness cost could be so great
as to exclude this genetic combination in vivo. More recent data
suggests that certain combinations of azole resistance mecha-
nisms, including simultaneous presence of mutations in TAC1
and MRR1, may be tolerated (Morio et al., 2013).

A different infection model was used to investigate similar
mutations in these same transcription factor genes (tail vein injec-
tion) (Lohberger et al., 2014). Using this bloodstream infection
model, no significant fitness defect was found consistent with the
interpretation that, at least under certain conditions, GOF forms
of these transcription factors could be well-tolerated in vivo.

OTHER TRANSCRIPTION FACTORS INVOLVED IN DRUG RESISTANCE
The intensive investigation of drug resistance in C. albicans has led
to identification of a range of different transcriptional regulatory
proteins that participate at some level in drug resistance including
Ndt80 and Mcm1 among others. These factors in general have not
been associated with clinically-relevant drug resistance and seem
to play roles as expression modifiers of target genes involved in
azole resistance (Mogavero et al., 2011; Sasse et al., 2011).

Two other transcription factors have been linked to certainly
azole resistance if not multidrug resistance in C. albicans. The
Upc2 transcriptional regulator is a positive modulator of sterol
biosynthesis and mutations in this factor lead to pronounced
azole resistance (Flowers et al., 2012). The effects of Upc2 on drug
resistance occur via its role as a key regulator of sterol biosynthesis
making this factor unlikely to serve as a true multidrug resistance
determinant. CAP1 encodes the C. albicans ScYap1 homolog but
does not appear to participate in drug resistance when expressed
at normal levels. (Alarco et al., 1997; Alarco and Raymond, 1999).
Cap1 clearly regulates MDR1 (Rognon et al., 2006) but this may
have more to do with a role for Mdr1 in the oxidative stress
response than drug resistance.

MULTIDRUG RESISTANCE IN C. GLABRATA
Candida glabrata is the second most common cause of blood-
stream and mucosal candidiasis (10–30%) in the United States,
with a high mortality rate (38–53%) (Richter et al., 2005; Pfaller
and Diekema, 2007). C. glabrata is intrinsically resistant to flu-
conazole, a common azole drug that targets the fungal specific
ergosterol biosynthetic pathway, with resistance known to further
increase during drug therapy (8–27% of isolates demonstrating a
fluconazole MIC ≥ 64 μg ml−1) (Ostrosky-Zeichner et al., 2003;
Pfaller et al., 2004). As for other fungi, C. glabrata azole resistance
can be the result of an alteration of the target enzyme by either
overexpression or mutations in its encoding gene, ERG11, that
reduces the efficacy of the drug (Henry et al., 2000).

Another frequent basis for multiazole tolerance phenotype is
enhanced drug efflux mediated by the activation of expression
of ABC transporters like CgCdr1, CgCdr2 (Pdh1), and CgSnq2
(Sanglard et al., 1995, 1997; Miyazaki et al., 1998; Redding
et al., 2003; Bennett et al., 2004; Vermitsky and Edlind, 2004;
Sanguinetti et al., 2005; Torelli et al., 2008). CgCdr1 seems to
be the chief ABC transporter that is constitutively upregulated in
most of the drug resistant clinical isolates, either by itself, or as
a combination with CgCdr2 (Pdh1) and/or CgSnq2. Deletion of
CgCdr1 leads to increased intracellular azole accumulation and
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hypersensitivity to different azoles, both in clinical isolates as
well as lab strains. The ABC transporters mentioned above are
regulated by a Zn2Cys6 zinc cluster-containing transcription fac-
tor encoded by CgPDR1. It is now well established that CgPDR1
exhibits GOF mutations in most of the drug resistant clinical iso-
lates of C. glabrata leading to upregulation of the transcription
factor, which is responsible for high expression of the target genes
that encode drug efflux pumps mediating multidrug resistance. It
has been demonstrated that some of these CgPDR1 GOF muta-
tions also lead to hypervirulence in a mouse model for systemic
candidiasis (Ferrari et al., 2009). Interestingly, further work from
this same group found that CgPdr1 regulated ABC transporter
CgCdr1 and a mitochondrial protein, Pup1, is at least partially
responsible for this gain of virulence (Ferrari et al., 2011b).

CgPdr1
Consistent with the fact that C. glabrata is phylogenetically closer
to S. cerevisiae than C. albicans, the multidrug resistance pathways
in S. cerevisiae and C. glabrata share more extensive similarities
than with the cognate C. albicans system. The molecular players
involved in drug resistance, ρ0-induced PDR pathway activation,
and the fact that the pivotal control of multidrug resistance in C.
glabrata is at the transcriptional level are all shared with S. cere-
visiae. However, there are interesting differences as well. Unlike
S. cerevisiae, C. glabrata ABC transporters involved in multidrug
resistance is regulated by the single transcription factor CgPdr1.
CgPdr1 seems to be a blend of transcription factors ScPdr1 and
ScPdr3 that modulate drug resistance in S. cerevisiae. Though
CgPdr1 shares greater identity with ScPdr1 in terms of protein
sequence, the C. glabrata transcription factor has binding ele-
ments in its own promoter contributing to its autoregulation, just
as in the case of ScPdr3. Also like ScPdr3, CgPdr1 responds to
Pdr pathway activation in ρ0 cells that lack mitochondrial DNA,
as well as when the mitochondrial enzyme phosphatidylserine
decarboxylase (ScPsd1) is overproduced (Paul et al., 2011). The
role played by the Mediator component Gal11 in regulation of
CgPdr1 is also interestingly different in C. glabrata when com-
pared to its cognate role in S. cerevisiae. There are 2 GAL11
paralogs (CgGAL11A and CgGAL11B) in C. glabrata, of which
only CgGAL11A seems to be important for CgPdr1 induced drug
resistance (Thakur et al., 2008). The requirement for CgGal11A is
however seen only in ρ+ and not in ρ0 cells, unlike in S. cerevisiae
(Paul et al., 2011). Moreover, CgGal11A is required for induc-
tion of drug resistance upon azole challenge in ρ+ cells (Figure 3).
This phenomenon of xenobiotic/drug-induced efflux pump acti-
vation, while not consistently seen in S. cerevisiae, is similar to that
observed in C. albicans (Liu et al., 2005).

C. glabrata respiratory deficient mutants (ρ0) that have been
generated in vitro by either ethidium bromide or azole treatment
(where ρ0 cells occur at high frequency), exhibit a growth defect
phenotype and reduced virulence (Brun et al., 2005). However,
these same cells also possess robust drug resistance that is pri-
marily based on activation of the transcription factor CgPdr1
and upregulation of its target gene CgCdr1 (Vermitsky and
Edlind, 2004; Tsai et al., 2006). Interestingly, such mutants have,
albeit rarely, been recovered from patients undergoing flucona-
zole treatment, suggesting that this mechanism of drug resistance

FIGURE 3 | Regulation of multidrug resistance gene expression in

Candida glabrata. A model reflecting the currently identified players
controlling CgPdr1 activity and multidrug resistance gene expression is
shown. The solid black boxes indicate the PDREs in the promoters of
CgPDR1 and CgCDR1. To date, only signals that positively regulate CgPdr1
have been identified. Note the similarities with ScPdr3 regulation.

may be clinically relevant (Bouchara et al., 2000). Recently, it
was reported that an azole resistant C. glabrata ρ0 isolate from
the clinic (containing a wild-type CgPDR1 gene) exhibited higher
virulence and in vivo fitness in a murine infection model than
its azole-susceptible and respiration-competent parental strain
(Ferrari et al., 2011a).

Intrinsic low susceptibility and high frequency of resistance
to widely used azole antifungals have led to greater use of other
drugs, particularly amphotericin B and echinocandins in treat-
ment of candidemias involving C. glabrata (Sanguinetti et al.,
2005). Echinocandins such as caspofungin and micafungin are
lipopeptide inhibitors of β-1,3-glucan synthase and interfere with
fungal specific cell wall synthesis. This class of antifungals is active
against most Candida species, including C. glabrata (Ostrosky-
Zeichner et al., 2003; Pfaller et al., 2008) and has been used as
first-line therapy against C. glabrata infections (Pappas et al.,
2009). Echinocandin resistance in C. glabrata is rare by compar-
ison to azole tolerance but increasing in frequency in response
to increasing clinical use (Pfaller et al., 2012). Echinocandin
resistance maps to genes encoding components of the β-1,3-
glucan synthase (recently discussed in Alexander et al., 2013)
and as such is considered outside the typical multidrug resistance
determinants in this organism.

To overcome the intrinsic and high frequency acquisition of
azole resistance in C. glabrata, alternative therapies have also
been employed. As mentioned above, echinocandins are effec-
tive antifungal agents against C. glabrata but resistance to these
drugs is on the rise. Combined therapies have also been explored
but unexpected complications have arisen in some cases (Alves
et al., 2012). An oral drug that represents an alternative to azoles
is 5-flurocytosine (5-FC), although there are concerns regard-
ing resistance and toxicity associated with high doses used to
negate resistance. Surprisingly, 5-FC/azole combinations have
been reported to have an antagonistic effect in C. glabrata (Te
Dorsthorst et al., 2002; Alves et al., 2012). This antagonistic
effect seems to be mediated through the Pdr pathway as it was
found that this phenomenon was abrogated in Cgpdr1� and
Cgcdr1� strains (Steier et al., 2013). 5-FC exposure resulted in
6-fold induction of CgCdr1 that was CgPdr1-dependent even
though 5-FC is not a CgCdr1 substrate. Interestingly, 5-FC expo-
sure induced high frequency formation of petite (ρ0) mutants
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that upregulate CgPdr1-dependent CgCdr1 activation. Though
the molecular mechanism contributing to this antagonistic effect
is not clearly understood, it seems that the mitochondrial ret-
rograde signal that activate CgPdr1 is the likely basis for this
phenomenon in C. glabrata.

OTHER PATHWAYS OF MULTIDRUG RESISTANCE
As mentioned previously for C. albicans, C. glabrata also con-
tains a number of MFS-encoding genes. While function of these
membrane transporter proteins remains to be characterized, a C.
glabrata homolog of ScFlr1 has been investigated for its poten-
tial role as a multidrug resistance determinant (Chen et al., 2007).
The C. glabrata homolog was designated CgFLR1 and as in both
C. albicans and S. cerevisiae, disruption mutations lacking this
gene did have drug phenotypes but were unaffected in terms of
fluconazole susceptibility. CgFLR1 is regulated by the C. glabrata
homolog of ScYap1 (CgAP1) but this regulation does not appear
to be involved in normal azole tolerance. More recent experiments
have demonstrated that additional MFS proteins contributed to
multidrug resistance including CgTPO3 and CgQDR2 (Costa
et al., 2013, 2014).

MULTIDRUG RESISTANCE IN ASPERGILLUS FUMIGATUS
Significant increases in immunocompromised population over
the past few decades have resulted in a concomitant increase
in invasive aspergillosis, with Aspergillus fumigatus being the
most common causative agent (Denning et al., 2013a,b). Invasive
aspergillosis is associated with a high rate of morbidity and mor-
tality (as high as 50%) in these patients (Nivoix et al., 2008).
However, there are limited effective antifungal drugs available to
treat invasive apergillosis (see Pound et al., 2011 for a review).
Though amphotericin B has been used with some success, it has
been associated with high nephrotoxicity. Echinocandins such as
caspofungin have been effective only as a topical agent and has
been at best fungistatic. The only oral and the most widespread
treatment against invasive aspergillosis has been triazole drugs,
particularly itraconazole and voriconazole. However, continuous
use of triazoles has led to the development of resistance against
different azole drugs used for therapy, with clinical instances of
such drug resistance increasing significantly in the last decade.

A prevalent mechanism that is associated with multiazole
resistance against A. fumigatus has been alterations in the levels
of the target enzyme, 14α-sterol demethylase, encoded by cyp51A
gene (that also happens to have a paralog in A. fumigatus, namely
cyp51B). The L98H mutation in the cyp51A gene linked with a
34bp tandem repeat sequence in its promoter has been associated
with a large number of multi-azole resistant A. fumigatus clinical
isolates (Snelders et al., 2008). This mutation was first reported
in the Netherlands (where use of azoles as fungicides in agricul-
ture is common), and was later reported from different parts of
the world, indicating the spread of this mutation (Lockhart et al.,
2011; Camps et al., 2012a; Chowdhary et al., 2012). Other muta-
tional hotspots in cyp51A associated with drug resistant isolates
have also been identified, though they have been less common
and widespread (Recently reviewed in Lelievre et al., 2013).

Since 2008, a large proportion of multi-azole resistant A.
fumigatus clinical isolates have been shown to be non-cyp51A

dependent, implicating the role of other drug resistance mech-
anisms. A comprehensive study involving 64 azole resistant A.
fumigatus strains done in the United Kingdom revealed that 43%
of the cases had no cyp51A mutations associated with them (Bueid
et al., 2010). Subsequent studies have identified that non-cyp51A
based drug resistance is on the rise, with more than 50% of
the cases involving alternate mechanisms (Camps et al., 2012b;
Escribano et al., 2013). Analysis of these non-cyp51A based drug
resistance isolates have revealed overexpression of ABC trans-
porters in many of these cases, particularly that of cdr1B (abcB)
(Fraczek et al., 2013).

Overexpression of efflux pumps is a common and well docu-
mented mechanism involved in the drug resistance of pathogenic
yeasts such as C. albicans and C. glabrata as discussed above.
They involve two types: the ABC class and the MFS class. The
genes encoding these transporters [around 50 ABC (Kovalchuk
and Driessen, 2010) and nearly 300 MFS class] are highly redun-
dant in A. fumigatus, and some of them have been implicated in
multi-azole resistance in A. fumigatus in recent years (Slaven et al.,
2002; Nascimento et al., 2003; Ferreira et al., 2005). Among the
transporters so far characterized in drug resistant clinical isolates
of A. fumigatus, cdr1B (abcB) levels has been found to be most
consistently and prominently overexpressed, with cdr1B mRNA
transcript levels induced between 5–30 fold in these strains.
Deletion of cdr1B also resulted in a 4-fold increase in susceptibil-
ity to itraconazole in both drug susceptible and resistant strains
(Fraczek et al., 2013). In an independent study, the abcB gene was
disrupted in three different A. fumigatus genetic backgrounds,
resulting in susceptibility to different azoles tested: voriconazole,
itraconazole as well as ketoconazole (Paul et al., 2013). Deletion
of abcA, another ABCG class transporter like abcB, also resulted
in drug sensitivity, at least in two different A. fumigatus genetic
backgrounds, although to a lesser extent. Interestingly, overex-
pression of abcA led to an enhanced tolerance to azole drugs. This
study also demonstrated that both abcA and abcB promoters are
induced in the presence of drugs, just like in the case of CgCDR1.
The action of efflux pumps (AfuMDR4) has also been implicated
in fungal resistance within the biofilm, especially in CF patients
(Rajendran et al., 2011).

As of yet, we know very little of the identity of transcriptional
regulatory proteins involved in control of multidrug resistance
in A. fumigatus. Analysis of a truncated Afyap1 (A. fumigatus
homolog of ScYap1) determined that this mutant protein led
to antifungal drug resistance (as found for truncated ScYap1-
based drug resistance in yeasts), along with conferring tolerance
to oxidative stress. However, multiple copies of full-length Afyap1
exhibited voriconazole susceptibility comparable with that of a
wild-type A. fumigatus strain (Qiao et al., 2010). Together, these
data suggest that Afyap1, like the bZip cognate proteins in yeast,
exerts effects on antifungal drug resistance only upon mutational
activation.

PROSPECTUS
The limited repertoire of antifungal drugs makes developing new
modalities an important and pressing need. However, a goal of
crucial importance to the enterprise of antifungal therapies in
particular and drug-based therapies in general is to understand
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mechanisms of drug resistance. Multidrug resistance is an espe-
cially serious issue as a small number (often one) of genetic
changes can lead to loss of susceptibility to multiple drugs simul-
taneously. In terms of antifungal multidrug resistance, our most
developed picture applies to the yeast Saccharomyces cerevisiae,
due in large part to the facile genetics of this organism. In
recent years, important progress has been made in the two major
pathogenic Candida species, C. albicans and C. glabrata. While
there are significant similarities between the Candida species
and S. cerevisiae, important differences have been described. The
increasing development and application of genetic technologies
in the Candida species will expedite direct study of the resis-
tance mechanisms in these organisms. This is crucial to ensure
continued utility of existing and future antifungal drugs.

While we have a fairly extensive catalogue of genes that are
likely participants in the process of multidrug resistance, our
understanding of how these genes are regulated is still very incom-
plete. In some cases, the identities of the transcription factors that
control the multidrug resistance genes are well-established; yet a
detailed picture of how the activity of these factors is regulated
is not available. This will be an important future goal as inter-
ference with regulation of multidrug resistance gene expression
has promise as a potential avenue to prevent development of this
phenotype.

Improvements in medical care in regards to longer term sur-
vival in the face of immunosuppression has led to a greater
chronic reliance on antimicrobial chemotherapy. Candida blood-
stream infections are now the 4th most common form of
nosocomial infection seen (Lewis, 2009). The occurrence of
aspergillosis is also on the rise and outcomes associated with
azole tolerant forms of this filamental fungal pathogen are dra-
matically worsened compared to azole susceptible fungi (Van
Der Linden et al., 2011). Continued progress in the molecular
understanding of antifungal drug resistance is an crucial step
toward ensuring the sustainability of antifungal drug therapy and
confidently expecting to treat these microbial pathogens in the
future.
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