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Abstract

Background—Identification of blood biomarkers that prospectively predict progression of 

Mycobacterium tuberculosis infection to tuberculosis disease may lead to interventions that impact 

the epidemic.

Methods—Healthy, M. tuberculosis infected South African adolescents were followed for 2 

years; blood was collected every 6 months. A prospective signature of risk was derived from 

whole blood RNA-Sequencing data by comparing participants who ultimately developed active 

tuberculosis disease (progressors) with those who remained healthy (matched controls). After 

adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in 

untouched adolescent samples and in samples from independent cohorts of South African and 

Gambian adult progressors and controls. The latter participants were household contacts of adults 

with active pulmonary tuberculosis disease.

Findings—Of 6,363 adolescents screened, 46 progressors and 107 matched controls were 

identified. A 16 gene signature of risk was identified. The signature predicted tuberculosis 

progression with a sensitivity of 66·1% (95% confidence interval, 63·2–68·9) and a specificity of 

80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was 

validated in an untouched group of adolescents (p=0·018 for RNA-Seq and p=0·0095 for qRT-

PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) 

with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months 

preceding tuberculosis.

Interpretation—The whole blood tuberculosis risk signature prospectively identified persons at 

risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent 

the disease.
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Introduction

One-third of the global population is infected with Mycobacterium tuberculosis,1 but <10% 

will progress to active tuberculosis disease during their life time; the majority will remain 

healthy.2–6 Risk of progression is associated with young or old age, co-morbidities such as 

human immunodeficiency virus (HIV) infection and diabetes mellitus, socio-economic and 

nutritional compromise, and therapy with immune modulatory agents such as tumor necrosis 

factor inhibitors, among others.7,8 It is not possible to predict which M. tuberculosis infected 

individuals will develop active tuberculosis, given current tools. Our aim was to identify 

peripheral blood biomarkers of this disease risk. Knowledge gained could lead to targeted 

antimicrobial therapy to prevent tuberculosis disease, as treating all latently infected persons 

in endemic countries for 6–9 months is not feasible. Other potential applications of 

biomarkers of risk of tuberculosis disease include assessment of response to drug therapy 

and targeted enrollment into efficacy trials of new tuberculosis vaccines and drugs.

Our study evaluated whether global gene expression measured in whole blood of healthy 

persons allows identification of prospective signatures of risk of active tuberculosis disease. 

Previous systems biology approaches have identified diagnostic signatures that discriminate 

tuberculosis disease from latent M. tuberculosis infection and from other disease states.9–20 

For example, Berry, et al., identified and validated a 393 gene signature that allowed 

differentiation of persons with active tuberculosis disease and latent infection.11 Anderson, 

et al., identified and validated a 53 gene signature that distinguished active tuberculosis from 

other diseases in African children with or without HIV infection.13 In contrast to the 

published diagnostic studies, our focus was on prospective signatures of risk that could be 

identified in healthy individuals, up to 2 years before clinical tuberculosis disease manifests. 

Given that one third of the world’s population is latently infected with M. tuberculosis, our 

approach constitutes an opportunity to impact the burden of disease.

Methods

Cohorts and blood collection

Participants from multiple cohorts were included in analysis. First, participants from the 

South African adolescent cohort study (ACS) were evaluated to identify and validate a 

tuberculosis risk signature (Figure 1A). Briefly, 6,363 healthy adolescents, aged 12–18 

years, were enrolled between July 2005 and April 2007; follow-up was completed by 

February 2009 (exclusion criteria and more detail in the Supplementary Appendices). 

Approximately half the participants were evaluated at enrollment and every 6 months during 

2 years follow-up; the other half was evaluated at baseline and at 2 years. At enrollment and 

at each visit, clinical data were collected and 2.5mL blood was collected directly into 

PAXgene blood RNA tubes (PreAnalytiX), which were stored at −20°C.

Only adolescents with latent M. tuberculosis infection at enrollment were included in 

analysis aimed at identification of a tuberculosis risk signature. Latent M. tuberculosis 
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infection was diagnosed by a positive QuantiFERON TB GOLD In-Tube Assay (QFT, 

Cellestis; >0·35 IU/mL) and/or a positive tuberculin skin test (TST, 0·1mL dose of Purified 

Protein Derivative RT-23, 2-TU, Staten Serum Institute; >10mm). According to South 

African policy, QFT and/or TST positive adolescents were not given therapy to prevent 

tuberculosis disease.21 Adolescents who developed active tuberculosis disease during 

follow-up were included as “progressors” (cases). Tuberculosis was defined as intrathoracic 

disease, with either two sputum smears positive for acid-fast bacilli or one positive sputum 

culture confirmed as M. tuberculosis complex (mycobacterial growth indicator tube, BD 

BioSciences). For each progressor, two matched controls that remained healthy during 

follow-up were selected and matched by age at enrolment, gender, ethnicity, school of 

attendance, and presence or absence of prior episodes of tuberculosis disease. Participants 

were excluded if they developed tuberculosis disease within 6 months of enrollment to 

exclude early asymptomatic disease that could have been present at the time of evaluation, or 

if they were HIV infected. Prior to analysis, the ACS progressors (cases) and controls were 

randomly divided into training and test sets, at a ratio of 3:1 using the randomization 

function in Microsoft Excel.

The other cohorts consisted of South African and Gambian participants from the Grand 

Challenges 6-74 Study (GC6-74; http://www.case.edu/affil/tbru/collaborations_gates.html), 

who were enrolled between February 2005 and December 2010 to independently validate 

the tuberculosis risk signature (Figure 1B). Briefly, from a parent GC6-74 cohort 4,466 

healthy, HIV-negative persons aged 10–60 years who had household exposure to an adult 

with sputum smear positive tuberculosis disease, 1,197 and 1,948 were enrolled in South 

Africa and The Gambia, respectively (exclusion criteria and more detail in the 

Supplementary Appendices). At baseline, at 6 months (The Gambia only) and at 18 months 

(both sites), participants were evaluated clinically and blood was collected and stored in 

PAXgene tubes as above. Follow-up continued for 2 years, and concluded in November 

2012. Among GC6-74 participants, progressors (cases) had intrathoracic tuberculosis, 

defined on the basis of sputum culture, smear microscopy and clinical signs. For each 

progressor, four controls were matched according to recruitment region, age category (≤18, 

19–25, 26–35, ≥ 36 years), gender and year of enrolment.

The study protocols were approved by relevant human research ethics committees 

(Supplementary Appendix 3). Written informed consent was obtained from participants. For 

adolescents, consent was obtained from parents or legal guardians of adolescents, and 

written informed assent from each adolescent. In both studies, participants with diagnosed or 

suspected tuberculosis disease were referred to a study-independent public health physician 

for treatment according to national tuberculosis control programs of the country involved.

Overview of strategy for identifying and validating the tuberculosis risk signature

Figure 2A shows the analytical approach (detail in sections below). The tuberculosis risk 

signature was derived from mining RNA sequencing (RNA-Seq) data generated from the 

ACS training set. The RNA-Seq-based tuberculosis risk signature was then adapted to the 

quantitative real-time PCR (qRT-PCR) platform. The RNA-Seq- and qRT-PCR-based 

signature of risk was validated by blind prediction on untouched samples from the ACS test 
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set. The qRT-PCR-based TB risk signature was also validated by blind prediction on 

independent GC6-74 cohort samples from South Africa and The Gambia.

RNA-Seq analysis of the ACS training and test sets

RNA was extracted from PAXgene tubes of the ACS training set. Globin transcript depletion 

(GlobinClear, Life Technologies) was followed by cDNA library preparation using Illumina 

mRNA-Seq Sample Prep Kit. RNA-Seq was performed by Expression Analysis Inc., at 30 

million 50bp paired-end reads, on Illumina HiSeq-2000 sequencers. Read pairs were aligned 

to the hg19 human genome using gsnap22, which generated a table of gene expression 

abundances for each sample. This gene expression abundance was measured at the level of 

splice junction counts, which quantifies the frequency of specific mRNA splicing events in 

expressed genes; this approach would facilitate translation to qRT-PCR. For simplicity, 

splice junction expression levels are referred to as “gene expression levels” throughout.

Generation of the tuberculosis risk signature

The computational strategy employed was an extension of the k-top-scoring pairs (k-TSP) 

methodology, which has been used successfully for identifying cancer biomarkers23,24. The 

k-TSP approach identifies pairs of genes that discriminate better than either gene would 

individually24. We replaced the k-TSP rank-based gene pair models with so-called support 

vector machine (SVM)–based gene pair models for greater flexibility in predictions. This 

modification is similar to the k-TSP modification proposed by Shi et al.25, but holds the 

advantage of retaining the fault-tolerance and parsimony of k-TSP.

For analysis, prospective RNA-Seq data of progressors was realigned to the time point at 

which active tuberculosis was diagnosed (Figure 2B), thereby synchronizing the cohort with 

respect to outcome.

The genes that comprise the final tuberculosis risk signature were selected in two stages, 

using data from the ACS training set. First, a large set of genes was identified by comparing 

gene expression in progressors at the most proximal time point to diagnosis with that in 

matched controls. SVM models were trained on these data points for all possible pairwise 

combinations of risk-associated genes. Second, the models were filtered for predictive 

accuracy using the remaining prospective progressor and control samples. Surviving SVM 

models comprised the tuberculosis risk signature, which computes a “tuberculosis risk 

score” based on blood gene expression levels measured at a single time point. The algorithm 

is fully described in Supplementary Appendix 4.

Adaptation of the tuberculosis risk signature to qRT-PCR

The tuberculosis risk signature was adapted from the original RNA-Seq-based platform to 

qRT-PCR by directly matching splice junctions in the signature to commercial TaqMan 

primer sets (Thermo Fisher Scientific, Supplementary Appendix 4). A complete set of qRT-

PCR data for selected primers was generated for ACS training set samples, using the 

BioMark HD multiplex microfluidic instrument (Fluidigm). Parameters in the qRT-PCR-

based version of the tuberculosis signature were then assigned by fitting the model to the 

dataset.
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Blind prediction of tuberculosis risk in the ACS test set cohort

RNA-Seq and qRT-PCR analysis of samples from the ACS test set were performed as 

described above. Prior to analysis, all test set samples were assigned random numerical 

codes that masked study time points and progressor and control status. Prediction of 

tuberculosis risk on the masked ACS test set samples was then performed in a fully blinded 

manner, in parallel, using RNA-Seq and qRT-PCR-based versions of the signature.

Blind prediction on the independent GC6-74 validation cohorts using the qRT-PCR-based 
signature of risk

qRT-PCR analysis of samples from the South African and Gambian cohorts of GC6-74 was 

performed as described above, >1 year after ACS validation analysis. Prior to analysis, all 

samples were assigned random numerical codes. Fully blinded predictions were then made 

using the qRT-PCR-based signature of risk.

Applying the tuberculosis risk signature to published tuberculosis diagnosis datasets

To allow evaluation of the risk signature for diagnosis of active disease, results from 

published microarray-based studies of active tuberculosis vs. latent disease or other disease 

was used9–13. The signature was adapted from RNA-Seq to the Illumina platform and 

parameterized using tuberculosis cases and latently M. tuberculosis infected controls from 

the UK training cohort of Berry, et al11 (detail in Supplementary Appendix 4). The locked-

down Illumina microarray based risk signature was used to make predictions on the 

independent test and validation cohorts from the Berry, et al. study,11 and from the 

subsequent studies.9,10,12,13

The funders played no role in data collection, analysis, interpretation or writing of the 

manuscript. DEZ, APN, TJS, ET, LMA, AA and WAH had access to all of the data. All 

authors read and approved submission of the manuscript.

Results

Participants

Forty-six ACS participants with microbiologically confirmed tuberculosis were identified as 

progressors (Figure 1A, Supplementary Table 1). For progressors, the time between sample 

collection and diagnosis with active tuberculosis (“time to diagnosis”) ranged from 1 to 894 

days (Figure 2B, Supplementary Table 2). One hundred and seven controls who were 

infected with M. tuberculosis at enrollment but who remained healthy during 2 years of 

follow-up were matched to progressors. Prior to analysis, progressors and controls were 

randomly divided into a training set of 37 progressors and 77 controls, and a test set of 9 

progressors and 30 controls (Figure 1A and 2A).

GC6-74 participants were household contacts of newly diagnosed index cases with 

pulmonary tuberculosis disease (Figure 1B). Two GC6-74 sites, South Africa and The 

Gambia, had sufficient numbers of progressors and controls to allow analysis, and were 

therefore included in this study (Figure 1B and 2A). A total of 43 progressors and 172 
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controls were identified at the South African site, while 30 progressors and 129 controls 

were identified at the Gambian site (Figure 1B, Supplementary Tables 3 and 4).

Construction of the tuberculosis risk signature from the ACS training set

RNA was isolated from all progressor and matched control samples of the ACS training set 

and analyzed by RNA-Seq (Figure 2A and Supplementary Tables 5 and 6). Data mining of 

the RNA-Seq data derived a candidate signature of risk for tuberculosis disease progression. 

The signature comprised paired splice junction data from 16 genes (Supplementary Figure 

1A and Supplementary Tables 7–9 and 11). Expression of signature genes in samples from 

progressors increased as tuberculosis diagnosis approached (Figure 3A). Robust 

discrimination between progressors and controls based on the expression of the gene pairs in 

the signature was readily apparent (Figure 3B).

The predictive potential of the tuberculosis risk signature was demonstrated within the ACS 

training set by cross-validation (Figure 2A); the risk signature achieved 71·2% sensitivity in 

the 6 month period immediately prior to diagnosis, and 62·9% sensitivity 6–12 months 

before diagnosis, at a specificity of 80·6% (Figure 3C and Table 1). During the 12–18 month 

period prior to diagnosis, the signature achieved 47·7% sensitivity.

Validation of the signature of risk on the ACS test set

To facilitate broad application, the tuberculosis risk signature was adapted to a practical 

platform, qRT-PCR (Figure 2A and Supplementary Tables 13 and 14). The RNA-Seq and 

qRT-PCR versions of the tuberculosis risk signature were used to predict tuberculosis risk in 

the heretofore untouched ACS test set samples. This was done in a fully blinded manner, 

with all sample meta-data masked prior to making predictions. The ability of both versions 

of the signature to predict tuberculosis progression in healthy subjects was validated (Figure 

3D and Table 2).

To determine whether inclusion of a larger number of genes would have increased accuracy 

of predictions, the performance of a random forest-based classifier comprised of 631 genes 

was assessed; the outcome was equivalent to when the tuberculosis risk signature was used 

for classification (Supplementary Figure 2 and Supplementary Table 15)

Validation of the tuberculosis risk signature on the independent GC6-74 cohorts

For independent validation, the qRT-PCR-based signature was used to predict tuberculosis 

progression using samples collected from healthy participants in the GC6-74 adult 

household contact cohorts from South Africa and The Gambia (Figure 2A). Predictions were 

made in a blinded manner. The ability of the signature to predict tuberculosis progression in 

healthy subjects did validate in these independent cohorts, regardless of whether these were 

analyzed individually or collectively (p<0·0001; Figure 3E and Table 2). As for the ACS, the 

signature had greater sensitivity for predicting tuberculosis in samples collected closer to the 

time of diagnosis (Figure 3F, Table 2).
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Performance of risk signatures for diagnosis of tuberculosis and for response to therapy

Since the sensitivity of the tuberculosis risk signature increased as the time of diagnosis 

approached, we evaluated performance of the risk signature for diagnosis of active 

tuberculosis disease. We performed these analyses after adapting the signature to Illumina 

microarrays, using data from the UK training cohort of Berry, et al.11 (Supplementary Figure 

3A and Supplementary Table 17), which enabled use of published datasets9–13. The 

signature readily differentiated active tuberculosis from latent infection in adult cohorts from 

the UK, South Africa, and Malawi, including populations that were co-infected with HIV 

(Supplementary Figure 3B–C and Supplementary Table 17). The signature also 

discriminated active tuberculosis from other pulmonary diseases (Supplementary Figure 

3D–E and Supplementary Table 17). Despite being derived from adolescents, the signature 

discriminated active, culture confirmed, tuberculosis from latent M. tuberculosis infection 

and from other diseases in childhood (Supplementary Figure 3F–G and Supplementary 

Table 17). Finally, applying the signature to data from a treatment study9 showed that the 

active tuberculosis signature gradually disappears during 6 months of therapy 

(Supplementary Figure 3H and Supplementary Table 17).

Discussion

Approximately one third of the world’s population may harbour latent M. tuberculosis 
infection and is at risk of active disease. We have identified a gene expression signature for 

predicting risk of tuberculosis disease progression. This signature was discovered in a 

longitudinal analysis of South African adolescents with latent M. tuberculosis infection who 

either developed tuberculosis disease or remained healthy. The signature was then validated 

on blinded samples from untouched adolescents of the same parent cohort. The signatures 

were again validated, in independent cohorts of longitudinally followed household contacts 

of tuberculosis disease patients from South Africa and The Gambia, who either developed 

tuberculosis disease or remained healthy. These results demonstrate that it is possible to 

predict progression from latent to active disease, using whole blood gene expression 

measurements at any single time point up to 18 months before tuberculosis disease 

manifests.

The tuberculosis risk signature was discovered using RNA-Seq, a transcriptome analysis 

technology that is quantitative, sensitive, and unbiased.26 The signature was formulated 

using a framework termed SVM, an extension of the k-TSP approach23 which robustly 

generates a tuberculosis risk score from gene expression data, using simple arithmetics 

(Supplementary Table 11). The signature was adapted from RNA-Seq to qRT-PCR, a more 

targeted and affordable technology. The power of the approach was demonstrated by blinded 

validation of the qRT-PCR-based signature in the independent cohorts.

The tuberculosis risk signature predicted tuberculosis disease progression despite marked 

diversity between the ACS and GC6-74 cohorts. This result is encouraging given the 

different age ranges (adolescents versus adults), different infection or exposure status, 

distinct ethnicity and genetic backgrounds,27,28 differing local epidemiology,1 and differing 

circulating strains of M. tuberculosis29 between South Africa and The Gambia. It is 

conceivable that distinct mechanisms of progression will be revealed when specific sub-
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groups of progressors are analysed (e.g., early vs. late progressors in GC6-74). Targeted 

analyses to identify distinct mechanisms of progression are underway.

To explore potential application of the signature for targeted preventive therapy, we 

estimated the relative risk for tuberculosis disease between signature positive and negative 

persons from a representative adult population from South Africa, where tuberculosis is 

endemic. The relative risk of tuberculosis disease is approximately 2 when IGRA or TST is 

used30, whereas the relative risk using our risk signature was between 6 and 14. Moreover, 

this risk signature would aid in detection of asymptomatic and or undiagnosed tuberculosis 

disease. For example, when applied to combined data from 4 studies of HIV uninfected 

South African adults9–12, involving 130 prevalent tuberculosis cases and 230 controls, the 

signature discriminated between active tuberculosis patients and uninfected or tuberculosis 

infected healthy controls with 87% sensitivity and 97% specificity.

Although our focus was on prospective prediction of tuberculosis disease, we also showed 

that the risk signature was excellent for differentiating tuberculosis disease from latent 

infection and from other disease states. This ability to diagnose tuberculosis disease was not 

markedly impacted by HIV status. The risk signature could also diagnose culture positive 

childhood tuberculosis, but not culture negative childhood disease.31 These results suggest 

that the risk signature might reflect bacterial load in the lung, as culture positive childhood 

tuberculosis is likely associated with higher bacterial loads, compared with culture negative 

disease. An association between the risk signature and bacterial load was further supported 

by meta-analysis of a published treatment study9, in which the signature relaxed during 6 

months of antimicrobial therapy. It is presently not known whether the risk signature will be 

useful for predicting treatment failure or recurrence.

While enrichment analysis of published blood signatures for active tuberculosis implicates a 

variety of biological processes in the disease, the gene module “interferon response” was the 

sole module that was over-represented in the risk signature (Supplementary Tables 19–21). 

Overlap between 15 of the 16 genes in our prospective TB risk signature and the 393 gene 

signature of active tuberculosis disease from Berry, et al.11 suggests that chronic peripheral 

activation of the interferon response precedes the onset of active disease and the 

inflammatory manifestations of tuberculosis disease revealed by previously published gene 

expression studies9–13. Although additional research is required to understand the functional 

role of interferon responses during tuberculosis progression, pathogen induction of type I 

interferons and their detrimental effects on immunity to tuberculosis have been shown in 

several in vivo studies in mice32–34 and in in vitro experiments of human cells.35 

Nevertheless, not all interferon response genes may be associated with a poor outcome, as 

we showed that genes such as GBP1, STAT1, and TAP1 may play a protective role during 

tuberculosis infection (Supplementary Table 18).

Our predictive signature was obtained from transcriptomic analysis of peripheral whole 

blood. This compartment, although conveniently sampled, may not accurately reflect 

pathogenic events in the lung, primarily affected by tuberculosis disease. Regardless, 

circulating white blood cells can serve as sentinels of lung pathophysiology, as 

transcriptional changes occur when the cells migrate through this organ. To explore a 
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possible cell-type specific origin of the risk signature, we used data from published global 

gene expression in whole blood and sorted PBMC, monocytes, neutrophils, and T cells from 

healthy controls and tuberculosis patients10. Differential expression of the risk signature 

genes between healthy controls and tuberculosis patients was comparable in whole blood 

and PBMC (Supplementary Table 22), suggesting that contribution of granulocytes to the 

risk signature is redundant. Consistent with this result, comparable differential expression of 

risk signature genes was observed in monocytes and neutrophils. When compared to the 

diagnostic signature of Berry, et al.11, reported to be derived from neutrophils, these results 

suggest that progression to active tuberculosis involves more diverse cell types.

To date, Sloot, et al.36 published the only report of prospective associations between blood 

gene expression and tuberculosis disease risk. Using a pre-defined 141 gene panel, PBMC 

RNA expression in 15 HIV infected drug users who ultimately developed active tuberculosis 

disease was compared with 16 who did not develop tuberculosis. Four genes assayed 

exhibited nominal expression differences (unadjusted p<0·05) and, when combined, two 

genes, IL-13 and AIRE, fit the data (ROC AUC fit = 0·8). The association between these 

genes and tuberculosis progression was not validated in a test set or independent cohort; 

none of the four genes exhibited differences between progressors and controls in our whole 

blood RNA-Seq datasets.

Our results, demonstrating that blood-based signatures in healthy individuals can predict 

progression to active tuberculosis disease, pave the way for the establishment of diagnostic 

tools that are scalable and inexpensive. An important first step would be to test whether the 

signature can predict tuberculosis disease in the general population, rather than the select 

populations included in this project; for example, the risk of TB disease in our populations 

was much higher than the lifetime risk of 10% encountered in the general population. The 

newly described signature holds potential for highly targeted preventive therapy, and 

therefore for interrupting the global epidemic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Adolescent Cohort Study (ACS) and the Grand Challenges 6-74 Study (GC6-74) 
cohorts for the discovery and validation of the tuberculosis risk signature
(A) Inclusion and exclusion of participants from the ACS and assignment of eligible 

progressors and controls to the training and test sets. QFT: Quantiferon Gold In-Tube. TST: 

tuberculin skin test. (B) Inclusion and exclusion of adult household contacts of patients with 

lung tuberculosis from the GC6-74 cohorts, and assignment of eligible progressors and 

controls. HHC: household contact.
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Figure 2. Strategy for discovery and validation of the tuberculosis risk signature
(A) Flow diagram for the discovery and validation of the tuberculosis risk signature. The 

tuberculosis risk signature was obtained by data mining of a whole blood RNA-Seq dataset 

generated from the ACS training set. The predictive potential of the risk signature was 

evaluated by rigorous cross-validation. The tuberculosis risk signature was adapted to qRT-

PCR, and then the RNA-Seq and qRT-PCR versions of the signature were employed to 

predict tuberculosis progression using untouched blinded samples from the ACS test set. 

The qRT-PCR-based tuberculosis risk signature was then employed to predict tuberculosis 
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progression using untouched blinded samples from the South African and Gambian cohorts 

of GC6-74. (B) Synchronization of the ACS training set in terms of the clinical outcome. To 

ensure optimal extraction of a tuberculosis risk signature from the ACS training set, the time 

scale of the RNA-Seq dataset was re-aligned according to tuberculosis diagnosis instead of 

study enrolment, allowing gene expression differences to be measured before disease 

diagnosis. Each progressor within the ACS training set is represented by a horizontal bar. 

The length of the bar represents the number of days between study enrolment and diagnosis 

with active tuberculosis. During follow-up, each progressor transitioned from an 

asymptomatic healthy state (green) to pulmonary disease (red). Left side: alignment of 

PAXgene sample collection (black points) with respect to study enrolment. Right side: 

alignment of PAXgene sample collection with respect to diagnosis with active tuberculosis, 

for use in analysis.
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Figure 3. The tuberculosis risk signature and validation by prediction of tuberculosis disease 
progression in the untouched ACS test set and the independent GC6-74 cohorts
(A) Heatmap depicting relative expression level of genes comprising the tuberculosis risk 

signature in progressors, compared with controls. Higher expression in progressors relative 

to controls is indicated by intensity of red colour; the average and standard devations (+ and 

−) are shown. Individual heatmap rows represent distinct splice junctions of individual genes 

that comprise the signature. Relative expression in each of four 180-day time windows prior 

to tuberculosis diagnosis is shown. (B) The tuberculosis risk signature was generated by 

assessing multiple gene-pair interactions; two representative gene-pair signatures are shown. 
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In each scatterplot, the normalized expression of one gene within the pair is plotted against 

that of the other gene, for all ACS training set data points. The black dots represent control 

samples, whereas the red dots represent progressor samples. The dotted black line indicates 

the optimal linear decision boundary for discriminating progressors from controls. (C) 

Receiver operating characteristic curves (ROCs) depicting the predictive potential of the 

tuberculosis risk signature for discriminating progressors from controls. Each ROC curve 

corresponds to a 180-day interval prior to tuberculosis diagnosis. Prediction performance 

was assessed by 100 four-to-one training-to-test splits of the ACS training set. (D) ROC 

curves for blind prediction of tuberculosis disease progression on untouched ACS test set 

samples using the RNA-Seq-based (dotted line) or qRT-PCR-based (solid line) signature. (E) 

Blind prediction on the combined GC6-74 cohort (blue), South African cohort (purple) or 

Gambian cohort (green); (F) Stratification of prediction on the overall GC6-74 cohort by 

time before tuberculosis diagnosis.
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Table 1

Cross-validation performance of the TB risk signature on the ACS training set.

Days before TB ROC AUC (95% CI) Accuracy Threshold

1–180 0·791 (0·763, 0·820) 71·2% (66·6, 75·2) 61%

181–360 0·771 (0·749, 0·794) 62·9% (59·0, 66·4) 61%

361–540 0·726 (0·698, 0·755) 47·7% (42·9, 52·5) 61%

541–720 0·540 (0·490, 0·591) 29·1% (23·1, 35·9) 61%

> 720 0·496 (0·433, 0·559) 5·4% (2·4, 13·0) 61%

1–360 0·779 (0·761, 0·798) 66·1% (63·2, 68·9) 61%

360–720 0·647 (0·621, 0·673) 37·5% (33·9, 41·2) 61%

Full ACS 0·743 (0·729, 0·758) 58·4% (56·1, 60·7) 61%

Specificity -- 80·0% (78·6, 81·4) 61%
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