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Abstract: Aquaporins constitute a group of water channel proteins located in numerous cell types.
These are pore-forming transmembrane proteins, which mediate the specific passage of water
molecules through membranes. It is well-known that water homeostasis plays a crucial role in
different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful
fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the
process of spermatogenesis, and they have been reported to be involved during the storage of
spermatozoa. It is noteworthy that aquaporins are relevant for the physiological function of specific
parts in the female reproductive system, which will be presented in detail in the first section of
this review. Moreover, they are relevant in different pathologies in the female reproductive system.
The contribution of aquaporins in selected reproductive disorders and aging will be summarized
in the second section of this review, followed by a section dedicated to aquaporin-related proteins.
Since the relevance of aquaporins for the male reproductive system has been reviewed several times
in the recent past, this review aims to provide an update on the distribution and impact of aquaporins
only in the female reproductive system. Therefore, this paper seeks to determine the physiological and
patho-physiological relevance of aquaporins on female reproduction, and female reproductive aging.

Keywords: female reproductive system; aquaporin; physiology; connexin; gap-junctions; mammals;
aging; ovary; uterus; placenta

1. Introduction

An important milestone in the study of water fluxes through biological membranes was the
discovery of an aqueous pore serving as a specific water channel (Figure 1), today, known as aquaporin
(AQP). In 1992, Peter Agre et al. described this structure for the first time in erythrocytes, and it
was termed Aquaporin-1 (AQP1) and proved to be a paradigm shift in the knowledge of molecular
and trans-membrane water transport [1]. Since water is the main and essential component in a wide
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variety of cells, AQPs are very important since they are able to increase the water permeability of
cell membranes [1,2]. Water movements through cell membranes are important features for the
osmoregulation and water homeostasis of a cell [3,4]. It is well-known that biological membranes
with their hydrophobic character of the lipid bilayer have an intrinsic permeability for water due
to their lipid composition [5]. Since the first discovery of AQP1 until today, a total of thirteen AQP
isoforms have been identified in humans (AQP0–12) and are all classified as membrane channels that
contribute to the permeation of water through membranes, due to osmotic gradients [6,7]. To date,
the mRNA or protein expression of the thirteen human aquaporin isoforms have been described in
numerous organs and tissues. The classification of human AQPs into three groups is based on the
primary structure and permeation abilities of AQPs [8–10]. In general, the architecture of AQPs in
cell membranes can be described as homo tetrameric and each monomer constitutes a pore, which is
functionally independent [11]. The discovery of AQPs started with ground-breaking experiments in
1992, where a glycosylated component of a 35–60 kD protein of human erythrocytes was described on
the electrophoretogram. Only few years later, a new integral membrane protein of human erythrocytes
was described, which was composed out of a non-glycosylated component (28 kD) and a glycosylated
component (35–60 kD). This functional unit of a membrane water transporter was named “CHIP28”
(channel-forming integral protein). However, in 1993, CHIP28 was renamed AQP1 by Agre et al.,
who were Nobel Prize laureates in chemistry for the discovery of water channels [12,13] in 2003.
Since that time, over the last three decades, AQPs have been described as being present in several
organ systems, and in this paper, their importance for the female reproductive system is elaborated.
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Figure 1. Schematic illustration of the cellular location of aquaporins and related proteins. (a) shows
the localization and function of aquaporins and related proteins; (b) shows the localization of aquaporin
and related proteins in the oocyte-cumulus-complex. Abbreviations: AQP—aquaporin; Cx—Connexin;
CFTR—Cystic Fibrosis Transmembrane Conductance Regulator; Panx—Panexin; InsP3R1—Inositol
trisphosphate receptor 1; VDAC1—Voltage dependent anion channel 1; ER—Endoplasmatic
Reticulum; cGMP—cyclic Guanine Monophosphate; cAMP—cyclic Adenosine Monophosphate,
ATP—Adenosine Triphosphate.

2. Aquaporins in the Female Mammalian Reproductive System

Previous studies have provided strong evidence, that at least eleven aquaporin isoforms, i.e., AQP 1,
2, 3, 4, 5, 6, 7, 8, 9, 11, and 12, have been identified in the female reproductive tract of different mammals,
including the human, ovine, canine, and porcine species, and rodents (Table 1). The first aquaporin in the
female reproductive system was confirmed by isolating the complementary DNA encoding for a water
channel generated from a human uterus. In this first report, the cloned cDNA appeared with a high
(99.8%) homology to the 28 kDa human erythrocyte CHIP28 which was earlier mentioned [13]. Further,
Li et al., who investigated the cDNAs of CHIP28 and uterus AQP, showed that the primary structures
deduced from the cDNAs show 99% identity and the only difference is an alanine to valine substitution
at position 45 of the human CHIP28 [14,15]. Some years later, the localization of AQP1 in rat uterine
tissue was confirmed by mRNA expression [16]. In general, aquaporins in the female reproductive
system appear to be involved in water movement at an intraluminal, interstitial, and capillary level,
and their expression seems to be regulated by steroid sex hormones e.g., progesterone [17–20]. Due to
these results provided by numerous research groups, aquaporins appear to be important for the female
reproductive physiology, which will be discussed in the following section in a more detailed fashion.
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Table 1. Overview of the expression of aquaporins (AQP) at mRNA and/or protein levels in the female reproductive tract of different mammalian species. Numbers in
brackets indicate the references.

AQP Vagina Cervix/Cervical
Carcinoma Uterus Oviduct Ovary Follicle/Oocyte Embryo/Amnion/Chorion

AQP1 Human [21]
Rodent [22,23] Human [24]

Human [25]
Rodent [19]

Porcine [26–29]
Canine [30]

Human [31]
Rodent [22]

Porcine [26–29]

Human [32–34]
Porcine [26–29] Porcine [26–29]

Human [35–39]
Rodent [40,41]

Ovine [42]

AQP2 Human [21]
Rodent [43]

Human [25,44–46]
Canine [30] Human [47] Human [34] Human [39]

AQP3
Human [21] Human [24]

Human [47]
Human [34] Human [35–39]

Rodent [43,48,49] Rodent [50,51] Rodent [52] Rodent [40,41,53,54]
Ovine [42]

AQP4 Rodent [49] Rodent [50] Rodent [19] Human [34] Human [35–39]

AQP5
Human [21] Rodent [19,55] Rodent [56]

Porcine [26–29]
Human [35,39]

Rodent [41]Rodent [48] Porcine [26–29] Porcine [26–29]
Canine [30]

AQP6 Human [21] Rodent [41]
Rodent [48]

AQP7 Rodent [55] Rodent [57–59] Human [39]
Rodent [41,54]

AQP8
Humans [24]

Rodents [19,55] Rodent [56] Rodent [57–59]
Human [35,36,60–62]

Rodent [50] Rodent [40,41,52,63,64]
Ovine [42]

AQP9 Rodent [19,55] Human [31] Porcine [26–29] Rodent [57] Human [35,36,65,66]
Porcine [26–29] Ovine [67]

AQP10 Rodent [48]

AQP11 Rodent [48] Human [35,39]
Rodent [54]

AQP12 Rodent [48] Rodent [58] Human [39]
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2.1. The Expression of Aquaporins in the Vagina

As shown in Table 1, the abundance of AQP1–6 and AQP10–12 has been so far reported in the
vagina, and the main role of AQPs in this part of the female reproductive tract is considered to be
vaginal lubrication [21,48]. In pre-menopausal women, AQP1 appeared to be mainly localized (after
immune-labelling) in the small blood vessels of the vaginal wall, i.e., in the capillaries and venules [21].
The proteins AQP2, 5, and 6 were immuno-localized in the cytoplasm of the vaginal epithelium,
whereas the AQP3 protein was mainly detected in the plasma membrane of the vaginal epithelium [21].
Further, AQPs have also been detected in rat vagina [43,48]. When compared to the human species,
rat AQPs show similar characteristics: similar protein localization, AQP1 in the rat vagina is localized in
small blood vessels of the vaginal wall, AQP2 was detected in the cytoplasm of the vaginal epithelium,
and AQP3 was also immune-localized in the plasma membrane of the vaginal epithelium [43,48].
Another study on intermediate layer cells of the murine vaginal epithelium provided strong evidence
that AQP3 was detected in their plasma membrane [49]. Additionally, AQP4 was immune-localized in
the basolateral membrane of superficial layer cells in the murine vaginal epithelium [49]. In summary,
aquaporins appear to be mainly relevant for the moisture environment of the vaginal mucosa.

2.2. Aquaporins and the Functioning of the Ovary

Interestingly, AQP1 localization in the ovary is comparable to its localization in the vagina, i.e.,
in the microvascular and in the epithelial cells of small blood vessels, and its expression is rarely present
in ovarian tumor cells [32,33]. The relative mRNA abundance for AQP1, 2, 3, and 4 was investigated
in human ovarian follicles. More precisely, the expression of these four AQPs was present in theca
and granulosa cells (GC) and their expression seemed to be dependent on the time to ovulation [34].
Therefore, it was assumed that the relative mRNA expression of AQP1–4 in the human ovary is
controlled by ovarian hormones. Furthermore, a previous study provided evidence that AQP7–9
are also expressed in ovarian follicles of rats, where they most likely play a role during follicular
development since AQPs seem to be responsible for the trans-cellular movement of H2O to form
the antrum in antral follicles [57]. It was also shown that the mRNA expression of AQP5, 7, 8, 11,
and 12 was detectable not only in neonatal murine ovaries, but also in murine GC of pups at the age
of four weeks [58,59]. Further, the expression of mRNA and proteins has been reported for AQP5,
8, and 9, which appeared to be localized in the epithelium of rat oviducts, and, more specifically,
the immune-localization for AQP5 and 8 was revealed in the cytoplasm, and AQP9 was localized in the
plasma membrane [56]. AQP1, 5, and 9 have been demonstrated in the porcine female reproductive
system, i.e., in the ovary, oviduct, and uterus [26–29]. Interestingly, AQP1 was detected in the
endothelium of the ovarian capillaries, whereas AQP5 expression was analyzed in cells of primordial
follicles, in GC of developing follicles, and epithelial cells of the oviduct [26]. In this part of the female
reproductive tract aquaporins appear to be mainly involved in the supply of fluid, which is crucial for
follicular development and growth according to the physiological function of the estrous cycle.

2.3. Aquaporins and the Functioning of the Uterus

The relevance of AQPs for the physiological function of the mammalian uterus as the crucial
female organ of the reproductive tract is linked again to the vasculature, as already shown in other
organs of this tract. The uterus is the major organ involved in feto-maternal communication, and fluid
homeostasis during implantation, pregnancy, and early embryonic development [3]. AQP1 is highly
expressed in the endothelium of uterine blood vessels [25]. Interestingly, AQP1 gene expression is much
more abundant in capillaries and arteries compared to the same size veins of endometrial vasculature in
women [44]. Contrary to the localization of AQP1, the expression of AQP2 was present in the glandular
endometrial cells generated from women with physiological fertility [45]. Further, AQP3 was also
reported to be expressed in the endometrium of women [47], and AQP3 was also highly abundant in
human cervical cancer [68], but this will be presented in a more detailed fashion in the section related
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to female disorders. It has been reported that the AQP9 protein was localized in the cytoplasm of
human oviductal epithelial cells [31]. Other studies have shown the expression of AQP1, 5, and 9 in
the porcine uterus [27] and porcine oviduct [28] at different estrous cycle stages, namely at days 2–4,
at days 10–12, and at days 14–16. Further, in the late stage of estrous cycle (days 18–20), there was also
an expression detectable of AQP1, 5, and 9 in the porcine uteri [27] and oviducts [28]. It has also been
assumed that the expression dynamics of AQP1, 5, and 9 in pigs appear to be influenced by the stages
of the estrous cycle and early pregnancy due to hormonal composition [27–29]. Taking into account
the uterine fluid homeostasis during the time of embryonic implantation, a fluid reduction has to take
place during this crucial time to ensure the close contact of the early embryo to the superficial cells of
the endometrium [69]. With regards to this, AQP 5 and 9 mediate the absorption of glandular fluid [3].
After implantation, placentation is also a crucial biological process, and the relevance of AQPs during
this process will be reviewed in the following section. To sum up, aquaporins appear to be mainly
responsible for creating the proper fluid micro-environment in the uterus and they contribute to the
lubrication of the endometrium, which is crucial for sperm movement and implantation.

2.4. Aquaporins and the Functioning of the Placenta

Numerous AQPs have been reported to be present in fetal membranes and are crucial during
placentation and early stages of pregnancy. The haemochorialis placenta of the human species has
shown a high relative mRNA abundance of AQP1, 3, 9, and 11 in the chorionic villi, whereas the mRNA
abundance for AQP4, 5, and 8 was lower in the earlier mentioned part of the placenta [35]. Both gene
and protein expression for AQP1, 3, 8, 9, and 11 have revealed the presence of these aquaporins in
the human amnion and chorion during the entire length of pregnancy [36,37]. The relative mRNA
abundance of AQP1 was reported to be in the placental vasculature [38] and AQP3 gene-expression was
detected in the trophectoderm [37]. Further, the localization of the AQP3 protein in the human placenta
has been reported in epithelial cells of the chorion and amnion [70]. Evidence has been provided that
the expression of AQP4 was decreased in cells of the syncytiotrophoblast, but endothelial and stromal
cells of placental villi collected in the first and third trimester of pregnancy showed an increase in AQP4
expression [71], which suggests that the expression of AQP4 appears to be pregnancy stage-dependent.
AQP8 and AQP9 have been localized to the epithelium of the human amnion [60] and AQP9 was
further shown to be present in trophoblast cells, in cytotrophoblast cells, and syncytiotrophoblast cells
of the chorion [65,66]. During the phase of implantation and early placentation, the expression of
AQP1, 5, and 9 have also been detected in the porcine species [27–29].

3. Aquaporins and Reproductive Aging

Female reproductive aging in numerous mammalian species is linked to a progressive decline of
the ovarian function, where a decrease in the quantity and quality of oocytes with advancing age has
been reported. The female reproductive system is one of the first organ system to show symptoms
of aging in comparison with other organs. However, the molecular mechanisms underlying the
reproductive aging processes of oocytes need further elucidation [72–75]. In humans, this decline
of women’s fertility also has implications for society, since the number of first pregnancies, at an
advanced age, has increased significantly in most industrialized countries [76]. This delay is due to
prolonged education, career ambitions, and awaiting financial security and stable relationships [77–79].
Although numerous assisted reproductive technologies are well-established nowadays, they are
not always successful and require substantial financial investment, too [80]. It is well-known that
oocytes, generated from women of advanced age (≥35 years), show an increased risk after fertilization
of miscarriage and/or aneuploid offspring [80]. Oocytes produce energy predominantly through
oxidative phosphorylation since glycolysis in the oocyte is possible only with limitations due to the
low content of phosphofructokinase [81]. Previous research provided evidence, that the ATP content
of an oocyte is related to its developmental competence [82–84], and mitochondrial dysfunction was
shown to be related to oocyte maturation arrest, chromosomal misalignment, and reduced embryonic
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development [85–87]. However, during the ATP production, reactive oxygen species (ROS) are
generated as a by-product, and there is a chronic exposure to ROS while oocytes are arrested in
prophase I prior to ovulation. Due to the fact that chronic exposure to ROS can damage not only DNA
but also lipids and proteins, the ‘Oxidative Stress Theory of Aging’ was introduced, which suggests
that a progressive accumulation of oxidative damage results in a reduction of oocyte quality with
advancing age. Taking into consideration aquaporins and aging, it has been reported that AQP8 and
some other members of the mammalian AQP family facilitate H2O2 passage across plasma membranes,
and it has been shown that AQP3 is required for (NOX)-derived H2O2 signaling [88]. More recent
studies have provided evidence that AQP8 transports NOX-generated H2O2, which is involved in
intra-cellular signal transduction pathways [89–91]. These latter-mentioned functions are visualized in
Figure 2, which shows the role of aquaporins in the transport of reactive oxygen species and oxidative
metabolism. With regard to the importance of mitochondria for the reproductive aging, it is worth
mentioning that AQP8 is also expressed in the inner mitochondrial membranes [92]. Further, it was
suggested in a previous study that mtAQP8-mediated H2O2 transport might play a role in human
spermatozoa [93]. Interestingly, the knockdown of mtAQP8 expression in HepG2 cells resulted not only
in a reduction of H2O2 release generated in mitochondria but also in mitochondrial depolarization due
to ROS accumulation and reduced ATP levels [94,95]. Therefore, it is not surprising that the quality of
oocyte mitochondria is determining the quality of the oocyte, too [96]. In murine oocytes, the expression
of AQP3 was detected where it appears to be responsible for the water permeability increase with low
activation energy, and AQP3 has also been reported to be crucial for the permeability of low molecular
weight nonelectrolytes. In another study, the APQ3 protein was localized via immunofluorescence in
the plasma membrane of oocytes, which was intended to be shown in Figure 1 in combination with the
importance of aquaporin-related proteins [53,97].
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Figure 2. The role of aquaporins in the transport of reactive oxygen species and oxidative metabolism.
The main physiological sources of reactive oxygen species include: mitochondria, nicotinamide adenine
dinucleotide phosphate oxidase, xanthine oxidase and lipoxygenases. AQP3 and AQP8 belong to the
family of aquaporins and can be classified as aquaglyceroporin and orthodox aquaporin, respectively.
A growing body of research has demonstrated the involvement of these two membrane channels in
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mediating hydrogen peroxide cellular uptake, as described in the text. AQP-regulated H2O2

accumulation can amplify or diminish signal transduction pathways in which this molecule serves as a
second messenger. As shown in other cell types, AQP3 and AQP8 expression changes influence
complex biological processes, such as immune responses, proliferation, wound healing or cell
migration. AQP8 was also detected in the inner mitochondrial membrane and its deregulation
may be implicated in ROS accumulation which leads to mitochondrial depolarization and a reduction
in ATP production. Therefore, aquaporins may play a role in oocyte oxidative metabolism changes
observed with aging. Abbreviations: AQP—aquaporin; e—electron; ETC—electron transport
chain; IMM—inner mitochondrial membrane; NADPH—dihydronicotinamide adenine dinucleotide
phosphate; NADP—nicotinamide adenine dinucleotide phosphate; N—nucleus; M—mitochondrion;
P—peroxisome; LO—lipoxygenase; XO—xanthine oxidase NOX—NADPH oxidase; PM—plasma
membrane ROS—reactive oxygen species; SOD—superoxide dismutase, (according to [88,98–106] and
this review).

4. Aquaporins in Female Reproductive Tract Disorders

Comparable to the importance of aquaporins for female reproductive physiology, they also
contribute to several female reproductive disorders, e.g., polycystic ovary syndrome, ovarian and
cervical cancer and endometrial diseases. The extent to which aquaporins are involved in all of these
mentioned pathologies will be described in detail in the following sections.

4.1. Polycystic Ovary Syndrome (PCOS)

PCOS is a common and complex endocrine disorder in women, which could lead to infertility. It is
estimated that approximately 10% of the total female population has PCOS. Other studies indicate that
70% of infertility in women and about 40% of miscarriages are due to the presence of PCOS [107]. PCOS is
described as a systemic disease with multifaceted symptoms, for instance, disorders of the menstrual
cycle, increased levels of androgens and anovulation, irregular menstrual cycles, hirsutism, numerous
metabolic abnormalities in the form of obesity, dyslipidemia, and insulin resistance. Studies suggest
that 3 out of 12 AQP isoforms show altered expression in PCOS (AQP7, 8, 9) [108]. Despite knowledge
of this disease, its pathogenesis has not been fully characterized. Wawrzkiewicz-Jałowiecka et al.
suggest that PCOS is a systemic disease caused by a set of various mutations [109]. These mutations
cause, among others, overexpression of AQPs [109]. Research indicates that there may be cause-effect
relationships between the expression of AQP 7–9 in adipocytes and GCs and the symptoms of
PCOS [110]. The high level of androgens in PCOS patients leads to reduced AQP9 expression, as well
as impaired function in GCs, thus, hindering follicle development [105]. The use of modulators to
lower the expression of AQPs (especially AQP7 and AQP9) may improve glycerol metabolism and
indirectly improve ovulation by reducing the level of androgens. Studies conducted at the mRNA level
indicate a significantly higher expression of AQP8 and a significantly lower expression of AQP9 in the
ovarian tissues of patients with PCOS compared with the control sample [111]. It appears, therefore,
that the above scheme may become a biological indicator of the disease.

Depending on the conducted studies, it is suggested that changes in AQP9 expression may
affect the normal development of ovarian follicles, which may be related to the clinical symptoms
of PCOS [105,112]. Lu et al. did not find any significant differences in the expression of AQP9 in
luteinized GCs from PCOS women compared to the control sample (women with normal follicle
development, referred to the in vitro fertilization (IVF) procedure due to obstruction of the fallopian
tube) [113]. Moreover, they found no correlation between the level of AQP9 expression in the GCs
layer and the level of E2 (Estradiol), P4 (Progesterone) in the follicular fluid [113]. Identifying the
function of AQP in the ovary of women, especially in the GCs, also provides better insight into the
pathophysiology of PCOS. In further research, it seems important to pay attention to the problem of
insulin resistance and obesity in PCOS. It should also be investigated whether altered pH in insulin
resistance affects the expression and transport properties of AQPs. Moreover, it is worth examining
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whether the increased level of androgens correlates with the expression of AQPs. These results will
help to identify the role of AQPs in identifying the causes and treating symptoms of PCOS.

4.2. Ovarian Cancer

AQPs are primarily responsible for cell proliferation, migration, and adhesion, as well as for
angiogenesis of healthy tissues. Nevertheless, AQPs can also be expressed in cancer tissues. The presence
of one type of AQPs in several types of cancer makes it impossible to select specific AQPs as molecular
markers of particular types of cancer. The results of studies on the expression of AQP1 in vascular
endothelial cells indicate a key role of AQP1 in tumor angiogenesis by accelerating the migration of cancer
cells. AQP1 knockout mice showed low angiogenesis in the cancer tissue resulting in subcutaneously
induced melanoma tumor necrosis in these mice [114]. However, the overexpression of AQP1 in cancer
tissue resulted in strong migration, invasion and metastasis of cancer cells to other organs [115,116].
The above property presents a new face of AQP1, thanks to which it may become a potential target for
the development of anti-cancer drugs. AQP1 may also contribute to the high permeability of blood
vessels and be responsible for the formation of exudates and edema fluid. Mobasheri et al. observed a
slight increase in ovarian cancer tumor tissue expression and a significant increase in advanced breast
cancer [117].

In malignant forms of ovarian cancer, a much higher expression of AQP1, AQP5, AQP9 was
observed [118] compared to benign forms of ovarian cancer or normal ovaries. Ovarian cancer is a
very complex disease with a high death rate among women [119]. Late detection gives little chance of
a complete recovery. Advanced ovarian cancer is associated with ascites. One of the causes of ascites is
an imbalance in water transport, which is the result of changes in the expression of AQPs [120,121].
AQP1 has been shown to be present in the microvascular endothelium of ovarian tissue but rarely in
ovarian tumor cells [120]. Moreover, AQP1 was localized mainly in vessels and microvessels, not in
cancer cells. There is also a positive correlation between AQP1 expression and the occurrence of
ascites and the progression of an ovarian tumor [121]. Overexpression of AQP9 was characteristic
not only of normal ovarian superficial epithelium but also of malignant ovarian tumors. As with
AQP9, high AQP5 expression was characteristic of malignant ovarian tumors associated with lymph
node metastases. AQP5 protein has been located in the basolateral membrane of the epithelial layer
in benign tumors and plasma membranes of borderline and ovarian tumors. A change in AQP5
expression was also noted in the ovarian cancer cell line CAOV3 and SKOV3. In the first case, the use
of cisplatin reduced the expression of AQP5 and the rate of tumor cell proliferation [122]. When treated
with epigallocatechin gallate, the SKOV3 cell line showed reduced AQP5 expression while inhibiting
the proliferation of tumor cells [123]. Expression of AQP5 was evident in GCs and theca cells (TCs) in
normal ovaries while immunohistochemistry revealed the presence of AQP5 in surface epithelium,
fibroblast cells of the stroma and cells lining tumor and acini. Western Blot analysis showed higher
AQP5 concentrations in cancerous ovaries compared to healthy ovaries.

Yang et al. characterized the presence and localization of individual AQP subtypes in ovarian
epithelial carcinomas [124]. Each of the AQP subtypes expressed a different pattern of expression
and a different localization. As in the above-mentioned studies, AQP1 was expressed mainly in the
microvascular endothelium, and AQP2–9 in cancer cells. AQP1, 5, and 9 expression was significantly
higher in malignant tumors than in benign tumors [124]. The immunohistochemical studies showed
that AQP6 expression was significantly lower in malignant tumors than in benign or normal tissue.
Moreover, high AQP1 expression was correlated with the occurrence of ascites in patients with ovarian
malignancy [120]. Research indicates that AQP1, 3, 5, and 9 expression may become useful biological
markers in ovarian cancer prognosis, but their correlation with a prognosis depends on the type of
cancer present [125].



Cells 2020, 9, 2570 10 of 25

4.3. Cervical Cancer

Cervical cancer is another one of the most common causes of death from cancer in women.
In recent years, early diagnosis has increased significantly, especially cervical smear tests in developing
countries [126]. The overexpression of AQP is characteristic of many types of human cancers, but their
role in cervical cancer has not yet been precisely defined [126]. Cervical cancer has also been reported to
be associated with an altered pattern of AQPs expression. As in the case of ovarian cancer, most studies
focus primarily on the expression of AQP1, 3, 5. Molecular studies can give a large prognostic value to
these proteins [127,128]. Chen et al. observed the overexpression of only two AQP subtypes (1 and 3
in cervical cancer) and also analyzed the correlation between AQP1 and 3 expression and prognosis
in cervical cancer [127]. The expression of AQP 1 and 3 in cervical carcinoma, cervical intraepithelial
neoplasia, and normal cells was compared by RT-PCR, immunohistochemistry and immunofluorescence.
AQPs showed different expression in both the mRNA and protein level in different cell types. AQP1 was
localized in the tumor vessels, while AQP3 showed increased expression in cervical cancer, compared
to intraepithelial neoplasia, and normal cells [127]. It was also noticed that the expression of AQP1 and
AQP3 was increased in the advanced stage of cancer, the larger tumor, in patients with metastases,
which correlates with the patient’s prognosis. The results of Chen et al. clearly indicate that AQP1 and
AQP3 are associated with the progression, development of vascularization, and metastasis of cervical
cancer [127]. Other studies have demonstrated that tumor angiogenesis in AQP1 knockout mice after
tumor xenograft was clearly inhibited [114]. Zhang et al. also observed increased expression of AQP5
mRNA and protein during the proliferation of cancer cells in cervical cancer. Overexpression correlated
with lymph node involvement. AQP5 was also found to correlate positively with the Ki-67 proliferation
index. Analysis of the survival rate of patients with AQP5 and Ki-67 overexpression was associated
with a much worse prognosis [129]. Another result concerning the expression of AQP1 in cervical
cancer was presented by Wei et al. [126] who demonstrated decreased expression of AQP1 mRNA and
protein in cervical cancer. AQP1 was positively expressed in normal healthy tissues. The decreased
expression correlated AQP1 with progressive symptoms characteristic of cervical cancer [126]. Shen et al.
examined the expression of AQP1, 3, 4, 5, and 8 in cervical intra-epithelial neoplasia (CIN), squamous
cervical cancer (SCC) and normal cervical tissues [130]. AQP3, 4, 5, and 8 expression was higher in SCC
than in normal tissues. Expression of AQP3 and 8 was correspondingly higher in SCC than in CIN.
AQP4 expression was higher in CIN than in normal cervical tissues. There were significant changes
in AQP1 and 3 expression at different tumor stages [130]. Despite many studies, the role of AQPs in
human cervical cancer is still not fully defined. The only observed AQPs with increased expression are
AQPs 1 and 3. However, further studies are needed to determine the role of AQPs in the diagnosis and
prognosis of cervical cancer in women. These observations suggest that AQP5 plays one of the key roles
in the development of cervical cancer. At the same time, according to the authors of the above studies,
it may become a new therapeutic target, and at the same time, a prognostic marker for this disease.

4.4. Endometrial Diseases

Endometrial cancer is related to the development of a tumor in the lining of the uterus
(the endometrium). Zou et al. observed that AQP2 expression levels were low in the early stages of
the disease [131], while Jiang et al. noted that AQP5 expression increased in the later stages of the
tumor [132]. In adenocarcinoma and endometrial hyperplasia, AQP1 was localized in the microvascular
epithelium and small vessels of the tumor. Depending on the type of disease, the ratio of AQP1
expression to intra-tumor microvessels was the highest in adenocarcinoma. The amount of expression
was also correlated with the severity of the disease, including ectopic metastases [103]. Blocking AQP5
expression reduced cell migration of this tumor [133]. As mentioned previously, AQP is responsible for
the migration of cancer cells, and thus changing the shape of the cells and their volume can promote
tumor metastasis [134]. It is known that AQP5 expression depends on the E2 (estradiol) level. A study
by Jiang et al. provided evidence that elevated AQP5 expression is present in endometrial cancer as
well as endometriosis [135]. AQP5 is also present in physiological tissues, as well as in endometriosis.
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It was also determined that the amount of AQP5 expression in the endometrium depends on the phase
of the menstrual cycle [136]. The above-mentioned studies show that the expression of individual
AQPs correlates with the patient’s prognosis and with the cancer stage. Most of the described AQPs in
ovarian, cervical or endometrial tumors show increased expression. At the same time, the migration
and proliferation of neoplastic cells may be dependent on the expression of AQP.

5. Aquaporins and Related Proteins

For fluid homeostasis and proper functioning of eukaryotic cells, aquaporin-related proteins are of
specific relevance, particularly for communication between cells, movements of specific ions, adenosine
triphosphate and second messengers (Figure 1). In addition, previous reports indicated that the normal
function of AQP is linked to the expression of other proteins. The following section elucidates how
important aquaporin-related proteins are for the functioning of the female reproductive tract. There are
six main types of ion channels: (1) Sodium channels; (2) Calcium channels; (3) Potassium channels;
(4) Chloride channels; (5) Porins and (6) Gap junction proteins [137–139] (Table 2). Calcium channels
have a selective permeability to calcium ions. Within this family, 3 out of 5 groups can be distinguished,
closely related to the proper functioning of the reproductive system and proper fertilization [140,141].
Further, there are cation channels, which are associated with spermatozoa (also known as CatSper 1, 2,
3, 4). When sperm enter the alkaline environment of the female reproductive system, the concentration
of ions in the sperm flagella changes. Therefore, it can be assumed that these channels are responsible
for proper fertilization [142]. TPCN1 and 2 proteins are closely related to CatSper of the sperm
tail [143–145].

Another group of proteins showing a relationship with AQPs is inositol triphosphate (InsP3R).
This membrane glycoprotein complex acts as a CA2+ channel and its activation is mediated by
inositol triphosphate (InsP3). It is responsible for a number of physiological processes, including:
Proper fertilization, cell proliferation, and cell division [146–148]. The preservation of the proper
functioning of the reproductive system is also provide by the chloride channels, ATP-gated CFTR. It is
an anion channel regulated by cAMP-dependent phosphorylation found in many tissues, including
the reproductive system [149–151]. CFTR gene mutation can cause cystic fibrosis, chronic lung
disease, and infertility [152]. Channels formed by CFTR proteins are responsible, under physiological
conditions, for the proper passage and secretion of fluids within the reproductive system (concentrate
sperm, fluid secretion in the seminiferous epithelium, luminal fluid in oviduct) [152]. These proteins
are located in various parts of the reproductive system of both animals and humans. CFTR expression
is dependent on ovarian hormones and at the same time influences the volume of fluids in the female
reproductive system [153]. Like AQPs, voltage-dependent anion channels (VDAC) belong to the
porin family. The role of AQPs in both the female and male reproductive systems has been partially
explained and described in the literature by many authors [102,111,115]. The second family of porin
genes includes genes responsible for the expression of three different proteins: VDAC1, 2, 3 [154–156].
VDACs form hydrophilic pores that allow metabolites to pass through the outer mitochondrial
membrane, and are involved in metabolite transport, signal transduction, fatty acid ions and Ca2+

transfer [157–159]. It has also been suggested that these proteins are found in extra-mitochondrial
membranes [137]. VDAC expression, otherwise known as mitochondrial porins, is important in sperm
function [160]. VDAC is located in Sertoli cells while VDAC2 has been localized in the acrosomal
region and principal piece, and in late spermatocytes, and spermatids. VDAC3 has been localized
in the acrosomal region and mid-piece, and all cell types of the testis (mainly Leydig cells) [161–163].
Blocking VDAC expression with DIDS significantly reduced the quality of sperm and significantly
limited their mobility, viability and fertilization [160]. The first reports of VDAC expression in porcine
oocytes appeared in 2009. Cassara et al. identified the presence of VDAC1 and 2 in porcine oocytes
(GV-germinal vesicle, MII—meiosis II). The VDAC1 protein was located across the entire surface of the
oocyte [137]. However, little is known about the expression and localization of VDAC in gametes and
the mammalian reproductive system. Further research on these proteins may serve as non-hormonal
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contraceptives for men and women. The role of VDAC in the maturation of mammalian oocytes has
not yet been fully established.

Another group of transmembrane proteins responsible for intercellular communication are
gap junction proteins also called connexins (Cxs). These proteins form gap junction connections
(GJCs) [164–166]. GJCs were discovered 40 years ago [167,168], and in recent years, it has been
found that they interact with other membrane channels to maintain homeostasis in specific tissues.
The interactions between connexins and other transport channels may be direct or indirect, depending
on the type of proteins involved in transport. These are channels enabling the exchange of ions
as well as small metabolites (1–2 kDa). Recent studies indicate the significant role of Cxs in the
reproductive system, as well as in the maturation and development of development skills by the
oocyte [166,169–171]. Proteins that build cell-cell connections are becoming increasingly important
in the proper functioning of individual systems, including the reproductive system. It seems that
their individual types have been well-known and described in the literature. Quite a new and still
unknown area of knowledge is the study of dependencies and interactions between particular types
of connections. The first evidence of an interaction between the GJCs and other transport channels
appeared in cystic fibrosis research. Mutations in the CFTR gene cause water and dissolved substances
to pass through cells inadequately, which are symptoms of the disease. It has also been suggested that
the CFTR gene, as already mentioned, is expressed in many tissues, not only epithelial cells [167,168].
Johnson et al. suggested that GJCs play a significant role in enhancing the functional effects of cells in
correcting cystic fibrosis by inserting the wild-type CFTR gene [172,173]. Chanson et al. suggested that
the malfunction of the GJCs is related to the tissue malfunction in cystic fibrosis. This indicates some
kind of relationship between GJC and the presence of mutations in CFTR [174]. Many studies suggest
that CFTR plays an important role in the Cxs gating mechanism, which affects the voltage sensitivity
of a given channel. Kotsias et al. also suggest that cytoplasmic proteins may play a significant role in
the CFTR-Cx interaction, e.g., in Xenopus oocytes [175]. It has been suggested that the mechanisms
of these interactions are not fully understood and elucidated in many tissues, especially not in the
reproductive system [174,175]. The research on functional relationships between AQPs and Cxs was
carried out using lens because it has no blood supply. Delivering and/or exchange of electrolytes and
metabolites takes place via GJCs. The structural proteins of junction of chicken lens epithelial cells are
Cxs, especially Cx43, Cx45.6, Cx56 [106,176]. Studies by Yu and Jiang using confocal microscopy clearly
indicated the co-localization of the above proteins in the lens of a chicken embryo [177,178], as well as
their cooperation in intercellular communication. Interactions and complications in Cxs and AQPs
have also been observed in mouse brain astrocytes [179,180] and during postnatal neurogenesis [181].
In the perivascular membranes of astrocytes, AQP4 is responsible for water transport, while Cx43 is a
protein of the gap junctions. In studies of murine astrocytes, Nicchia et al. noticed that AQP4 gene
silencing is closely associated with a decrease in Cx43 expression [180]. Although it was concluded that
Cx43 mediates the regulation of the flow of ions and water, the molecular mechanism of the interaction
is unknown [180,181]. Other studies on postnatal neurogenesis also indicate the expression of Cx43
and AQP4 in the ventricular zone (VZ) cells [182].

Interestingly, it is believed that there three types of “large pore” channels (AQPs, Cxs, Panxs;
Pannexins). The function of these channels is most likely regulated in three ways; regulation of solute
gradient; cytoskeleton signalling related to changes in cell volume, and; nucleotide signalling. The flow
of individual ions through Cx43 and Panx1 most likely depend on the ability of AQP4 to regulate
the solute concentration gradients. Changes in cell volume during proliferation are related to the
movement of water and the activity of AQP4 inside the cell, which is related to changes taking place in
the cytoskeleton of nerve cells [181]. Panx1, on the other hand, most likely mediates the release of ATP
from cells [181]. It has also been proven that Cx30 is involved in maintaining water and ion homeostasis
in the nervous tissue [183]. Deletion of both Cxs (Cx43 and Cx30) leads to a reduction in expression of
total AQP4 protein [183]. Although other studies have indicated an important role of Cx43 and AQP4 in
the formation of cerebral edema, the authors of those studies indicate that the mechanism of interaction
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and mutual correlations between the two types of channels is not fully understood [184]. Correlations
between different types of intercellular connections were also noted during myocardial edema after
cardiopulmonary bypass. These symptoms are related to the high expression of AQP1, which affects the
amount of Cx43 expression during the onset of myocardial edema [185,186]. Communication between
the oocyte and cumulus cells (CCs) is possible through GJC (Figure 1). Although the role of Cxs in the
reproductive system has been thoroughly described by many authors [187–190], increasing attention
has been paid in recent years to the role of Panxs in the reproductive system. These proteins forming
single membrane channels allow the cytoplasm to contact the extracellular environment [191–193].
Dye et al. found differential expression of Panx1 in COCs of bovine isolated vesicles of various sizes
and suggested the involvement of Panx1 in the process of oocyte maturation [194]. It has been shown
that the PANX1 gene mutation causes the degeneration of oocytes since they release much more ATP
into the extracellular space [195]. Other studies suggest a close relationship between the occurrence of
AQP and Cx. in porcine luminal epithelium cells. Wojtanowicz et al. investigated this relationship in a
short term (7 days) in vitro culture. The expression of 10 AQPs (AQP2, AQP3, AQP4, AQP5, AQP6,
AQP7, AQP8, AQ9, AQP10, AQP11) and 4 Cxs (Cx36, Cx37, Cx40, Cx43) and linking their expression
to a real-time proliferation assay were examined. The tests were performed on endometrial cells taken
from the porcine uterus. The expression of individual AQPs and Cxs was examined at the mRNA and
protein levels [196]. Although, all analyzed Cxs and AQPs were shown to be present, they showed
different expression patterns at different culture time intervals. Expression studies at the transcript
level indicate an increase in the expression of Cx37, Cx40 and Cx43 as well as AQPs in relation to
the starting point of the culture (24 h—reference value). The ultrastructure of the endometrial cells
showed changes during the menstrual cycle. A large role in these processes is assigned to GJC and
water channels. Due to these connections, cells can quickly react to hormonal and nervous stimuli,
as well as changes in water volume [196]. The results of the research by Wojtanowicz et al. indicate
that the determination of the expression of AQPs and Cxs in endometrial epithelial cells may be an
important indicator in the development of the endometrium, and may also be related to its function
and changes occurring during the menstrual cycle in humans.
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Table 2. The main types of ion channels and related proteins in the reproductive system. Numbers in brackets indicate the references.

Type of Ion Channel Type of Protein Location Function

Porins VDAC1, 2, 3

Sertoli cells [162]; GV (germinal vesicle) and MII (meiosis
II) stage porcine oocytes [137] outer dense fibers of the

bovine sperm flagellum; head of bovine sperm, late
spermatocytes, spermatids and spermatozoa of the
bovine testis [161]; GV (germinal vesicle) and MII

(meiosis II) stage porcine oocytes [137]; mouse granulosa
cells [197] outer dense fibers of the bovine sperm

flagellum in porcine [161];

participation in follicular development and
autophagy suppression to folliculogenesis in
mammals [197]; deficient males are infertile

because of structural abnormalities in the
sperm tail, leading to sperm immotility [198]

Cation channels sperm associated CATSPER1, 2, 3, 4 Plasma membrane of the sperm tail [144] testis [199] key role in the motility, hyperactivation and
fertilization function of sperm [141,200]

Inositol trisphosphate receptor InsP3R1, 2,3 human GCS [146] mouse oocyte [201] proper fertilization [148]

CFTR

rat epididymal epithelial cells [174]; porcine vas deferens
epithelial cells [202]; vagina, cervix, uterus and fallopian

tubes, in rodents and humans [153,203,204]; mouse
endometrial cells [205]

CFTR plays a key role in regulating Cl−

secretion, and thus fluid volume in male and
female reproductive tract [152,202]; sperm

capacitation [206]

Gap junction protein Cxs

mouse, human, rat, pig, dog seminiferous tubules [190];
mouse, human, swine, bovine, canine ovary [207–210];

oocyte and granulosa cells (GCs) [171,211]; human,
mouse and baboon endometrium [170,212]

function as nurturing the germ cell lineage;
developmental competence by oocyte,

communication with cumulus oophorus
cells; connection between GCs population,

mural—mural GCs communication;
folliculogenesis [213,214]
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6. Conclusions

Aquaporins have been intensively investigated in the female reproductive system since their
discovery in the uterus. Further studies have identified the expression of at least eleven AQP isoforms
in the female mammalian reproductive system. These expressions have been detected by molecular
biological and pharmacological methods in different species. AQPs are one of the best-characterized
membrane protein families, which enables a particular understanding of their basic mechanism activity,
due to substrate specificity and the regulation of the characterized membrane proteins above. Moreover,
other proteins may participate in maintaining proper cellular homeostasis in biological cooperation
with AQPs. This paper analyses the research results which have been provided in the past to provide
an interesting update for other research groups who are working on aquaporins in relation to the
female reproductive tract. This review serves as a resource for future research projects seeking for
further elucidate further the interaction of AQPs, related to the physiology, pathology, and aging of the
female reproductive system in mammals.
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