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Abstract
Most of the filtered glucose is reabsorbed in the early proximal tubule by the so-
dium-glucose cotransporter SGLT2. The glycosuric effect of the SGLT2 inhibitor 
ipragliflozin is linked to a diuretic and natriuretic effect that activates compensatory 
increases in fluid and food intake to stabilize body fluid volume (BFV). However, 
the compensatory mechanisms that are activated on the level of renal tubules remain 
unclear. Type 2 diabetic Goto-Kakizaki (GK) rats were treated with vehicle or 0.01% 
(in diet) ipragliflozin with free access to fluid and food. After 8 weeks, GK rats were 
placed in metabolic cages for 24-hr. Ipragliflozin decreased body weight, serum glu-
cose and systolic blood pressure, and increased fluid and food intake, urinary glu-
cose and Na+ excretion, urine volume, and renal osmolar clearance, as well as urine 
vasopressin and solute-free water reabsorption (TcH2O). BFV, measured by bioim-
pedance spectroscopy, and fluid balance were similar among the two groups. Urine 
vasopressin in ipragliflozin-treated rats was negatively and positively associated 
with fluid balance and TcH2O, respectively. Ipragliflozin increased the renal mem-
brane protein expression of SGLT2, aquaporin (AQP) 2 phosphorylated at Ser269 
and vasopressin V2 receptor. The expression of SGLT1, GLUT2, AQP1, and AQP2 
was similar between the groups. In conclusion, the SGLT2 inhibitor ipragliflozin in-
duced a sustained glucosuria, diuresis, and natriuresis, with compensatory increases 
in fluid intake and vasopressin-induced TcH2O in proportion to the reduced fluid 
balance to maintain BFV. These results indicate that the osmotic diuresis induced by 
SGLT2 inhibition stimulates compensatory fluid intake and renal water reabsorption 
to maintain BFV.
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1 |  INTRODUCTION

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral 
antihyperglycemic drugs that suppress glucose reabsorption in 

the early proximal tubules (Vallon & Thomson, 2017). Recent 
large-scale clinical trials have shown that SGLT2 inhibitors 
exhibit cardiorenal-protective properties in type 2 diabetic 
patients (Neal et al., 2017; Perkovic et al., 2019; Wanner et 
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al., 2016; Wiviott et al., 2019; Zinman et al., 2015). In par-
ticular, SGLT2 inhibitors induce robust benefits with regard 
to reducing heart failure hospitalization with and without ath-
erosclerotic cardiovascular diseases or a prior history of heart 
failure (Zelniker et al., 2019), suggesting an important role of 
the diuretic property of SGLT2 inhibition. Because SGLT2 
cotransports glucose with Na+ (in a 1:1 ratio) (Kanai, Lee, 
You, Brown, & Hediger, 1994; Vallon et al., 2011), SGLT2 
inhibition decreases Na+ reabsorption in the early proximal 
tubule and the non-reabsorbed glucose induces an osmotic di-
uretic effect (Lambers Heerspink, Zeeuw, Wie, Leslie, & List, 
2013). In accordance, human and animals studies reported 
that SGLT2 inhibitors can modestly increase urinary Na+ 
excretion and urine volume (Ansary, Nakano, & Nishiyama, 
2019; Masuda et al., 2017; Ohara et al., 2019).

We recently reported that SGLT2 inhibition with ipragli-
flozin induced a persistent natriuretic and diuretic tone, but 
euvolemia was maintained by an increase in fluid and food 
intake (Masuda et al., 2018). The only modest diuretic and 
natriuretic effects caused by SGLT2 inhibition induce ho-
meostatic mechanisms that largely maintain body fluid status, 
which may help to attenuate the risk of body fluid depletion 
and acute kidney injury (AKI) (Nadkarni et al., 2017; Wiviott 
et al., 2019). In comparison, the more pronounced natriuretic 
and diuretic effects of loop diuretics decrease body fluid 
volume (Hu, Maslanik, Zerebeckyj, & Plato, 2012) and in-
crease acute renal dysfunction in a dose-dependent manner 
(Mullens et al., 2019).

Although adaptations in fluid and food intake constitute 
systemic effects to maintain volume homeostasis during 
SGLT2 inhibition, the compensatory mechanisms that are 
activated on the level of the renal tubules are less clear. The 
analysis of these tubular mechanisms would be facilitated by a 
rodent model in which SGLT2 inhibition induces a sustained 
diuretic effect. Some diabetic rodent models do not respond 
with a sustained increase in urine volume to chronic SGLT2 
inhibition (Chen et al., 2016; Chung et al., 2019; Masuda et 
al., 2018). This is in part due to the fact that these models are 
more severely hyperglycemic and, as a consequence, basal 
glucosuria and urine flow rate are very high and do not sig-
nificantly further increase in response to SGLT2 inhibitors. 
The latter is due to a strong reduction in blood glucose in re-
sponse to SGLT2 inhibition in these models, which together 
with the associated lowering in GFR, reduces filtered glucose 
load to a similar extent as the drugs inhibit proximal tubu-
lar glucose reabsorption, such that glucosuria and urine flow 
rate remain largely unchanged, consistent with mathematical 
modeling (Layton, Vallon, & Edwards, 2016). In comparison, 
non-obesity type 2 diabetic Goto-Kakizaki (GK) rats only 
have mild hyperglycemia and in this regard mimic patients 
with type 2 diabetes and likewise show a sustained increase 
in glucosuria and urine volume in response to SGLT2 inhibi-
tion (Iuchi et al., 2017). We therefore examined the effects of 

the SGLT2 inhibitor ipragliflozin on renal water handling in 
diabetic GK rats.

2 |  MATERIALS AND METHODS

2.1 | Experimental animals

The protocol of this study was approved by the Jichi Medical 
University Animal Ethics Committee. Non-obesity type 
2 diabetic GK rats at 4 weeks of age were purchased from 
the CLEA Japan Inc. GK rats were housed in a 12 hr:12 hr 
light:dark cycles in normal cages with free access to fluid and 
food (0.35% Na+, 1.01% K+, 4.92% fat, CLEA Rodent Diet 
CE2, CLEA Japan Inc.). GK rats at 18–22 weeks of age were 
randomly divided to receive normal food CE2 (Veh) or CE2 
containing 0.01% ipragliflozin (Ipra) (Astellas Pharma Inc.) 
(Tahara et al., 2012a, 2012b) with free access to fluid and 
food, as described previously (Masuda et al., 2012, 2018). 
After 8 weeks of treatment, GK rats were put in metabolic 
cages to collect 24-hr urine. Blood pressure was measured by 
a tail-cuff method (Softron BP-98A, Softron), as described 
previously (Masuda et al., 2012, 2018). This was followed 
by bioimpedance spectroscopy (BIS) using the ImpediVet 
BIS1 system (ImpediMed) to measure body fluid volume 
(total body water, extracellular fluid and intracellular fluid) at 
8 weeks of treatment, as previously described (Chapman, Hu, 
Plato, & Kohan, 2010; Masuda et al., 2014, 2018). The BIS 
measurement was carried out during 2.5% isoflurane anes-
thesia (Dainippon Sumitomo Pharma Co. Ltd). Results were 
expressed as absolute values. Finally, blood samples were 
collected by cardiac puncture and the kidneys were taken 
under terminal anesthesia with isoflurane.

2.2 | Plasma and urine analysis

The measurement of serum and urine parameters, includ-
ing electrolytes, glucose, and osmolality, as well as uri-
nary vasopressin concentrations was entrusted by the SRL 
laboratory (Masuda et al., 2018; Yasuoka et al., 2013). 
Urinary vasopressin concentration is a more reliable in-
tegrated index of vasopressin secretion than the concen-
tration of vasopressin in a single blood sample (Matsui, 
Share, Wang, Crofton, & Brooks, 1983). Creatinine clear-
ance (CCr) was calculated by the following formula: CCr 
(L/day)  =  urine creatinine concentration (mg/dl)  ×  urine 
volume (L/24-hr)/serum creatinine (mg/dl). Osmolar clear-
ance, solute-free water reabsorption, and electrolyte-free 
water clearance were calculated by the following formulas: 
osmolar clearance = Uosm × UV/Sosm; solute-free water 
reabsorption  =  osmolar clearance  −  UV; electrolyte-free 
water clearance = UV × [1 − (UNa + Uk)/SNa] (UV: urine 
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volume, Uosm: urine osmolality, Sosm: serum osmolal-
ity, UNa: urine Na, Uk: urine K, SNa: serum Na) (Dolgor 
et al., 1998; Huang, Pfaff, Serradeil-Le Gal, & Vallon, 
2000; Nguyen & Kurtz, 2005; Sansoe, Aragno, Smedile, 
Rizzetto, & Rosina, 2009).

2.3 | Western blot analysis

The membrane fraction obtained from whole kidneys was 
used for western blot analysis as described previously 
(Masuda et al., 2018; Sabolic et al., 2012; Vallon et al., 
2011). Lysates at 40  µg/lane of proteins were resolved 
on Nu-PAGE 4%–12% Bis–tris gels in MOPS buffer. Gel 
proteins were transferred to a polyvinylidene difluoride 
membrane (Hybond-P, GE Healthcare) and immunoblotted 
with the primary antibodies: polyclonal rat SGLT2 (dilu-
tion 1:1,000) (Masuda et al., 2018; Sabolic et al., 2012), 
polyclonal rat SGLT1 (dilution 1:2000) (Balen et al., 2008; 
Masuda et al., 2018), glucose transporter 2 (GLUT2, di-
lution 1:5,000, ab95256, Abcam) (Masuda et al., 2018), 
aquaporin 1 (AQP1, dilution 1:1,000, AB2219, Millipore) 
(Montiel et al., 2014), aquaporin 2 (AQP2, dilution 1:200, 
AQP-002, Alomone Lab) (Abdeen, Sonoda, El-Shawarby, 
Takahashi, & Ikeda, 2014), phosphorylated (Ser269) 
AQP2 (dilution 1:1,000, p112-269, PhosphoSolutions) 
(Yui, Sasaki, & Uchida, 2017), vasopressin V2 receptor 
(AVPR2, dilution 1:200, AVR-012, Alomone Lab) (Chung 
et al., 2019), and mouse anti-β-actin (1:2,000, sc-47778, 
Santa Cruz Biotechnology) (Maric-Bilkan, Flynn, & 
Chade, 2012), and followed by treatment with horserad-
ish peroxidase-conjugated secondary antibody. Protein ex-
pression was detected autoradiographically by ECL Plus 

(Amersham Pharmacia). Densitometric analysis was per-
formed using the ImageJ Software (version 1.52a, National 
Institutes of Health).

2.4 | Statistical analysis

Data are expressed as means  ±  SE. Statistical differences 
were analyzed by unpaired t tests to compare the two groups. 
p values less than .05 were considered to be statistically 
significant.

3 |  RESULTS

3.1 | The SGLT2 inhibitor ipragliflozin 
increased food intake, fluid intake, and urinary 
fluid and Na+ excretion in diabetic GK rats

Basal blood glucose and body weight (BW) before treatment 
were similar in the two groups of GK rats [blood glucose: 
Veh 194 ± 31 mg/dl vs. Ipra 191 ± 20 mg/dl, not significant 
(NS), BW: Veh 366 ± 6 g vs. Ipra 365 ± 7 g, NS]. At 8 weeks 
of treatment, ipragliflozin treatment led to higher absolute 
(Figure 1a) and fractional (Table 1) urinary glucose excretion 
versus vehicle and lower serum glucose levels (Figure 1b). 
This was associated with higher food intake (Figure 1c), such 
that body weight only declined slightly (Figure 1d) despite 
increased urinary glucose and thus calorie loss in response 
to ipragliflozin.

Ipragliflozin increased both fluid intake and urine vol-
ume to a similar extent (Figure 2a and b), such that fluid bal-
ance (fluid intake – urine volume) was also similar between 

F I G U R E  1  Ipragliflozin increased urinary glucose excretion in diabetic GK rats, associated with lower serum glucose and higher food intake. 
Effect of ipragliflozin on urinary glucose excretion (a), serum glucose (b), food intake (c), and body weight (d). Veh: normal diet (CE2, CLEA 
JAPAN Inc.); Ipra: normal diet containing ipragliflozin [100 mg/kg diet]. *p < .05 versus Veh. Values are expressed as means ± standard error; 
n = 8–11/group
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the two groups (Figure 2c). Urinary excretions of Na+, Cl−, 
K+, and urea nitrogen were significantly increased by ip-
ragliflozin treatment for 8 weeks (Figure 2d and e, Table 1), 
as expected based on the higher food intake. This was related 
to greater fractional excretion of Na+ and fluid, respectively 
(Table 1). Blood urea nitrogen and creatinine clearance were 
similar between the groups, arguing against major differ-
ences in GFR. The hematocrit and the concentrations of the 
main cation and anion in serum, Na+ and Cl−, were slightly 
but significantly higher in response to ipragliflozin (Table 
1), potentially indicating a small reduction in circulating 
volume. This was associated with decreased systolic blood 
pressure during ipragliflozin treatment (Figure 2f), while so-
dium balance (sodium intake - sodium excretion) (Table 1) 
and heart rate (Veh: 389 ± 27 min−1, Ipra: 345 ± 20 min−1, 
NS) were not significantly different between the groups.

3.2 | Ipragliflozin increased urine 
vasopressin excretion in diabetic GK rats, 
which was positively associated with solute-free 
water reabsorption

Ipragliflozin did not change total serum osmolality, but the 
increase in serum Na+ and Cl− concentrations (see above) 
was associated with increased urine vasopressin excretion 
(Figure 3a and b), while urine osmolality was lower in dia-
betic GK rats treated with ipragliflozin (Figure 3c). Among 
the determinants of urinary osmolality, the concentra-
tion of urinary Na+, urinary K+, and urinary urea nitrogen 
was significantly decreased by ipragliflozin, whereas the 

T A B L E  1  Urine and blood parameters after 8-week treatment of 
ipragliflozin

  Vehicle Ipragliflozin

Kidney weight (g) 1.64 ± 0.05 1.77 ± 0.07

Urinary protein (mg/day) 56.5 ± 16.2 46.7 ± 8.9

Calculated urine osmolality 
(mOsmol/kgH2O)a

1529 ± 146 1,259 ± 56*

Urinary glucose (mEq/L) 411 ± 95 589 ± 28*

Urinary Na+ (mEq/L) 87 ± 17 48 ± 2*

Urinary K+ (mEq/L) 170 ± 27 89 ± 6*

Urinary Cl− (mEq/L) 103 ± 18 55 ± 2*

Urinary Cl− (mEq/day) 2.3 ± 0.1 3.0 ± 0.1*

Urinary urea nitrogen (mEq/L) 682 ± 98 398 ± 17*

Urinary urea nitrogen (mg/day) 421 ± 32 604 ± 21*

Sodium balance (mEq/day) 1.9 ± 0.6 1.9 ± 0.4

Hematocrit (%) 45.3 ± 0.8 47.1 ± 0.4*

Blood urea nitrogen (mg/dl) 19.5 ± 1.4 21.4 ± 0.8

Serum creatinine (mg/dl) 0.25 ± 0.01 0.27 ± 0.01*

Creatinine clearance (L/day) 3.8 ± 0.3 4.1 ± 0.2

Serum Na+ (mEq/L) 142 ± 1 144 ± 1*

Serum Cl− (mEq/L) 101 ± 2 105 ± 1*

Serum K+ (mEq/L) 5.5 ± 0.4 5.1 ± 0.1

Fractional excretion of glucose (%) 16 ± 4 46 ± 3*

Fractional excretion of Na+ (%) 0.35 ± 0.03 0.44 ± 0.02*

Fractional excretion of fluid (%) 0.8 ± 0.1 1.3 ± 0.1*
aCalculated formula: 2*[urinary Na+ (mEq/L) + urinary K+ (mEq/L)] + urinary 
urea nitrogen (mEq/L) + urinary glucose (mEq/L). 
*p < .05 versus Vehicle. Values are means ± SE; n = 4–11/group. 

F I G U R E  2  Ipragliflozin increased 
urinary fluid and Na+ excretion in diabetic 
GK rats, but did not significantly change 
fluid balance (fluid intake - urine volume) 
due to an increase in fluid intake. Effect 
of ipragliflozin on fluid intake (a), urine 
volume (b), fluid balance (c), urinary Na+ 
excretion (d), and urine K+ excretion (e). 
At 8 weeks, ipragliflozin decreased systolic 
blood pressure (f). Veh: normal diet (CE2, 
CLEA JAPAN Inc.); Ipra: normal diet 
containing ipragliflozin [100 mg/kg diet]. 
*p < .05 versus Veh. Values are expressed 
as means ± standard error; n = 8–11/group
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concentration of urinary glucose was significantly increased 
(Table 1). As a result, the urinary osmolality calculated by 
the formula (2*[urinary Na+ + urinary K+] + urinary urea 
nitrogen + urinary glucose) is significantly decreased by ip-
ragliflozin (Table 1). Similarly, the direct measurement of 
urine osmolality is also significantly decreased by ipragliflo-
zin (Veh 1617 ± 112 vs. Ipra 1,371 ± 64 mOsmol/kgH2O, 
p = .028) (Figure 3c). Ipragliflozin increased osmolar clear-
ance, solute-free water reabsorption, and electrolyte-free 
water clearance (Figure 3d–f).

To gain further functional insights, specific param-
eters were correlated with urine vasopressin excretion. 
Fluid intake (Veh: r = .256, NS; Ipra: r = −.068, NS) and 
urine volume (Veh: r  =  .481, NS; Ipra: r  =  −.217, NS) 
were not correlated with urine vasopressin (Figure 4a and 
b). Fluid balance tended to be negatively correlated with 
urine vasopressin with a stronger relationship in ipragli-
flozin-treated diabetic rats (Veh: r  =  −.385, NS; Ipra: 
r = −.561, p = .058) (Figure 4c). These results are consis-
tent with the notion that the lower fluid balance in response 

F I G U R E  3  Ipragliflozin increased 
urine vasopressin and solute-free water 
reabsorption in diabetic GK rats. Effect 
of ipragliflozin on serum osmolality (a), 
urine vasopressin (b), urine osmolality (c), 
osmolar clearance (d), solute-free water 
reabsorption (e), and electrolyte-free water 
clearance (f). Veh: normal diet (CE2, CLEA 
JAPAN Inc.); Ipra: normal diet containing 
ipragliflozin [100 mg/kg diet]. *p < .05 
versus Veh. Values are expressed as 
means ± standard error; n = 8–11/group
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F I G U R E  4  The relationship between fluid intake, urine volume, fluid balance, and urine vasopressin. Fluid intake and urine volume were not 
correlated with urine vasopressin (a and b). Fluid balance was negatively correlated with urine vasopressin with a stronger relationship in diabetic 
GK rats treated with ipragliflozin (c). Veh: normal diet (CE2, CLEA JAPAN Inc.); Ipra: normal diet containing ipragliflozin [100 mg/kg diet]. 
Values are expressed as means ± standard error; n = 8–12/group
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to ipragliflozin increased vasopressin secretion in an ef-
fort to stabilize body water. Urinary glucose excretion in 
ipragliflozin-treated diabetic rats was positively and sig-
nificantly correlated with urine vasopressin (Veh: r = .300, 
NS; Ipra: r  =  .630, p  =  .028) (Figure 5a). Urinary Na+ 
excretion (Veh: r = .630, p = .088; Ipra: r = .554, p = .062) 
tended to be related to urinary vasopressin (Figure 5b). 
Urine vasopressin in ipragliflozin-treated diabetic rats was 
significantly and positively related to solute-free water re-
absorption (Veh: r =  .545, NS; Ipra: r =  .739, p =  .006) 
(Figure 5c). In ipragliflozin-treated rats, urinary glucose 
excretion was positively and significantly correlated with 
urine volume (Veh: r  =  .926, p  <  .001; Ipra: r  =  .629, 
p = .029) (Figure 5d) and there was a positive trend rela-
tionship between urinary glucose excretion and serum Na+ 
(Veh: r = −.701, NS; Ipra: r =  .453, NS) (Figure 5e). In 
contrast, urinary glucose excretion in ipragliflozin-treated 

rats was not associated with fluid balance (Veh: r = .454, 
NS; Ipra: r = .213, NS) (Figure 5f). In ipragliflozin-treated 
diabetic rats, serum osmolality (r = .208, NS), serum glu-
cose (r  =  .045, NS), serum Na+ (r  =  −.151, NS), serum 
Cl− (r  =  .453, NS), serum K+ (r  =  −.282, NS), serum 
([Na+] + [Cl−]) (r = .209, NS), and serum ([Na+] + [K+]) 
(r = −.202, NS) did not significantly correlate with urine 
vasopressin excretion.

3.3 | Ipragliflozin treatment increased 
phosphorylation of AQP2 at Ser269 in diabetic 
GK rats

Ipragliflozin increased the renal membrane SGLT2 expres-
sion in diabetic GK rats, without affecting the expression 
of SGLT1 (Figure 6a and b) or of the basolateral facilitative 

F I G U R E  5  The relationship between urinary glucose and Na+ excretion and urine vasopressin. Urinary glucose excretion was positively 
correlated with urine vasopressin (a). Urinary Na+ excretion tended to be correlated with urinary vasopressin (b). Urine vasopressin in ipragliflozin-
treated diabetic GK rats was significantly and positively correlated with solute-free water reabsorption (c). In ipragliflozin-treated diabetic GK rats, 
urinary glucose excretion was positively and significantly correlated with urine volume (d), and there was a positive trend relationship between urinary 
glucose excretion and serum Na+ (e). Urinary glucose excretion in ipragliflozin-treated rats was not associated with fluid balance (f). Veh: normal diet 
(CE2, CLEA JAPAN Inc.); Ipra: normal diet containing ipragliflozin [100 mg/kg diet]. Values are expressed means ± standard error; n = 4–12/group
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glucose transporter GLUT2 (Figure 6c). Upregulation of 
SGLT2 protein expression has previously been observed in 
response to SGLT2 inhibition (Masuda et al., 2018; Vallon 
et al., 2014). In contrast, upregulation of renal gluconeo-
genesis in mice lacking tubular NHE3 is associated with 
marked suppression of SGLT2 expression (Onishi et al., 
2019), probably due to a negative feedback mechanism 
to prevent excessive intracellular glucose concentrations. 
In this regard, blocking SGLT2-mediated glucose uptake 
would lower intracellular glucose levels and inhibit this 
negative feedback on SGLT2 expression. AQP1 is ex-
pressed and mediates fluid transport in the proximal tubule 
and the descending limb of Henle's loop (Vallon, Verkman, 
& Schnermann, 2000), and its expression was also similar 
between the two groups (Figure 6d). AQP2 is expressed in 
connecting tubules and cortical collecting ducts, where it 

regulates water excretion under the control of vasopressin 
(Xie et al., 2010). Total AQP2 protein expression was nu-
merically increased with ipragliflozin treatment (Figure 7a).  
Ipragliflozin, however, increased the phosphorylation of 
AQP2 at Ser269 (Figure 7b), an indicator of vasopressin 
action and active AQP2 (Xie et al., 2010) and increased 
renal AVPR2 expression (Figure 7c).

3.4 | Ipragliflozin treatment maintained 
body fluid volume in diabetic GK rats

Body fluid volume including total body water and extracel-
lular and intracellular fluid determined by BIS were similar 
between the two groups (Figure 8a–c), consistent with the 
similar fluid balance (Figure 2c). These results suggest that 

F I G U R E  6  Renal membrane expression of transporters in diabetic GK rats with vehicle or ipragliflozin. (a and b) Ipragliflozin increased 
SGLT2 expression in diabetic GK rats, but did not change SGLT1 expression. (c and d) The expression of GLUT2 or AQP1 was not affected by 
ipragliflozin. Veh: normal diet (CE2, CLEA JAPAN Inc.); Ipra: normal diet containing ipragliflozin [100 mg/kg diet]. Values are expressed as 
means ± standard error; n = 4–10/group. *p < .05 versus Veh
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SGLT2 inhibitor ipragliflozin maintained body fluid vol-
umes in diabetic GK rats, confirming previous data obtained 
in another rat strain (Masuda et al., 2018).

4 |  DISCUSSION

This study showed that the SGLT2 inhibition with ipragliflo-
zin induced a sustained glucosuria, diuresis, and natriuresis in 
moderately hyperglycemic GK rats. This was associated with 
increased vasopressin levels (as measured by urinary vaso-
pressin excretion). The latter is expected to induce compen-
satory increases in fluid intake and renal water reabsorption, 
thereby preventing detectable changes in body fluid volume, 
as documented in this study. Vasopressin was negatively cor-
related with fluid balance, indicating that the osmotic diuresis 
induced by SGLT2 inhibition enhanced vasopressin tone and 
stimulated compensatory mechanisms of body fluid volume 
homeostasis.

The SGLT2 inhibitor ipragliflozin increased solute-free 
water reabsorption with a positive correlation to urine va-
sopressin, which is expected to attenuate polyuria and body 
fluid depletion. Solute-free water is the water without osmotic 
agents, and solute-free water clearance is calculated by the for-
mula: urine volume - osmolar clearance. A negative value of 
solute-free water clearance means that solute-free water is reab-
sorbed in the tubule. In this study, ipragliflozin induced osmotic 
diuresis together with increased urinary glucose and Na+ excre-
tion, and increased compensatory solute-free water reabsorp-
tion. Without the latter compensatory mechanism, ipragliflozin 
might induce excessive urine flow rates that could accelerate 
body fluid depletion and result in renal dysfunction.

Vasopressin is a peptide hormone secreted from vasopress-
inergic nerve endings in the neurohypophysis, and plays an 
important role in regulating body fluid balance through fluid 
reabsorption in the renal collecting duct (Ettema et al., 2014; 
Ishikawa & Schrier, 2003; Knepper, Kwon, & Nielsen, 2015). 
In the current study, ipragliflozin increased urine vasopressin, 
which was positively associated with solute-free water reab-
sorption. This poses the question, what triggered the release 
of vasopressin? The observed correlations suggest that the 
osmotic diuretic action, mainly due to glucosuria, the reduced 

fluid balance, and the lower blood pressure were main stimu-
lators of vasopressin release during SGLT2 inhibition. In more 
detail, the osmotic diuretic action of ipragliflozin may have 
been a trigger of vasopressin release, because urinary glucose 
and Na+ excretion, which both contribute to the osmotic di-
uresis, were positively associated with urine vasopressin. The 
correlation was stronger for urinary glucose excretion than for 
urinary Na+ excretion. While the positive correlation between 
urinary Na+ concentration and vasopressin secretion was previ-
ously reported (Hew-Butler, Noakes, Soldin, & Verbalis, 2010), 
the current study is the first to report a positive relationship 
between urinary glucose excretion and vasopressin excretion. 
These data suggest that the osmotic diuretic action mainly due 
to glucosuria stimulated vasopressin release. In our previous 
study in non-diabetic Sprague–Dawley (SD) rats, ipragliflozin 
also increased urinary fluid, glucose and Na+ excretion in ad-
dition to urine vasopressin (Masuda et al., 2018). In contrast, 
ipragliflozin did not increase urine vasopressin in non-obesity 
diabetic SDT rats, in which ipragliflozin did not change uri-
nary fluid, glucose and Na+ excretion (Masuda et al., 2018). 
Second, the reduced fluid balance decreases circulating blood 
volume, which is a non-osmotic stimulus for vasopressin secre-
tion (Ettema et al., 2014; Ishikawa & Schrier, 2003). Third, the 
blood pressure reduction in ipragliflozin-treated diabetic GK 
rats might play a role for the increase in vasopressin release, 
because hypotension is a potent mechanism of vasopressin re-
lease (Ettema et al., 2014; Ishikawa & Schrier, 2003). Blood 
pressure is a function of cardiac output and peripheral arterial 
resistance, and cardiac output is directly associated with the cir-
culating volume of the venous return to the heart (Blaustein, 
Zhang, Chen, & Hamilton, 2006). Thus, a small reduction in 
circulating volume in ipragliflozin-treated rats, potentially re-
flected by the small increase in hematocrit and serum Na+ and 
Cl−, might contribute to blood pressure reduction.

In general, elevation of circulating osmolality is a main 
trigger for releasing vasopressin (Ettema et al., 2014; 
Ishikawa & Schrier, 2003), but serum osmolality in this study 
was not different between the diabetic rats with and without 
ipragliflozin. However, among the determinants of serum os-
molality, serum Na+ and Cl− was higher and serum glucose 
was lower in the diabetic GK rats treated with ipragliflozin, 
suggesting that the similar total values of serum osmolality 

F I G U R E  8  Ipragliflozin maintained 
total body water (a), extracellular fluid 
(b) and intracellular fluid (c) in diabetic 
GK rats. Veh: normal diet (CLEA Rodent 
Diet CE2); Ipra: normal diet containing 
ipragliflozin [100 mg/kg diet]. *p < .05 
versus Veh. Values are expressed as 
means ± standard error; n = 4–5/group. 
*p < .05 versus Veh
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were an offset result. Previous studies demonstrated that va-
sopressin release is elevated in hyperglycemic patients and 
experimental diabetic animals (Iwasaki, Kondo, Murase, 
Hasegawa, & Oiso, 1996; Vokes, Aycinena, & Robertson, 
1987; Zerbe, Vinicor, & Robertson, 1979). In the insulin-de-
ficient state of type 1 diabetes, blood glucose acts as an im-
portant stimulus for vasopressin release, because glucose 
transport into the osmosensor cells is dependent on insulin, 
and thus hyperglycemia induces an osmotic gradient between 
outside and inside of the osmoreceptor cells (Vokes et al., 
1987). In contrast, glucose has been proposed not to be an 
effect osmolyte in normoglycemia and in hyperglycemia with 
intact insulin (Iwasaki et al., 1996; Sladek & Knigge, 1977; 
Thrasher, Brown, Keil, & Ramsay, 1980; Zerbe & Robertson, 
1983), which should apply to type 2 diabetic GK rats. In the 
latter, ipragliflozin induced higher urine vasopressin associ-
ated with lower serum glucose levels, indicating that a change 
in serum glucose levels was not the stimulator of vasopressin 
release during SGLT2 inhibition, leaving the small increases 
in serum Na+ and Cl− as alternative mechanisms. Thus, the 
most convincing mechanism to explain the correlation be-
tween urinary glucose excretion and vasopressin secretion 
is that the osmotic diuretic effect of glucose enhances water 
loss and causes a small increase in serum Na+ concentration, 
which then triggers vasopressin release. This mechanism was 
suggested by the positive relationship between urinary glu-
cose excretion and serum Na+ levels.

The higher vasopressin levels in ipragliflozin-treated 
GK rats were associated with increased phosphorylation of 
AQP2 at Ser269. AQP2 is expressed throughout the collect-
ing-duct system where vasopressin regulates osmotic trans-
port of water (Knepper et al., 2015). Regulation of AQP2 by 
vasopressin is a result of vasopressin V2 receptor activation 
which triggers cyclic AMP-dependent activation of a protein 
kinase network that causes increased transcription of AQP2, 
changes in its phosphorylation status, and redistribution of 
AQP2 to the luminal membrane (Knepper et al., 2015). The 
vasopressin-induced increases in AQP2 phosphorylation at 
Ser269 has been proposed to be a more effective indicator of 
vasopressin activity than phosphorylation at Ser256 (Ando et 
al., 2018; Xie et al., 2010). In the current study, ipragliflozin 
increased vasopressin levels, the renal expression of the V2 
vasopressn receptor, the phosphorylation of AQP2 at Ser269, 
and solute-free water reabsorption, consistent with the notion 
that iplagliflozin-stimulated vasopressin release increased 
free water reabsorption, at least in part, by AQP2 phosphor-
ylation at Ser269.

SGLT2 inhibitor ipragliflozin increased urine volume, 
but maintained body fluid volume in GK rats, as we re-
cently reported (Masuda et al., 2018). A recent human study 
of non-hypervolemic type 2 diabetic patients showed that 
SGLT2 inhibitors empagliflozin or dapagliflozin maintained 
extracellular fluid volume for 6  months with a transient 

short-term fluid reduction (Schork et al., 2019). Similarly, 
another study in type 2 diabetic patients reported that em-
pagliflozin induced a transient short-term diuresis and nega-
tive fluid balance but did not change long-term overall fluid 
balance (Yasui et al., 2018). Thus, while the body fluid main-
tenance by SGLT2 inhibitors has recently been demonstrated 
in human studies, the current study provided first evidence 
for compensatory mechanisms that include vasopressin-in-
duced free water reabsorption in addition to increased fluid 
intake. The current data were obtained at 8 weeks of ipragli-
flozin treatment, when the animals are expected to be in 
steady state with regard to drug concentrations and effects 
and compensatory body responses. Therefore, we would ex-
pect the observed effects to last with longer treatment, unless 
the basic physiology changes (e.g., due to development of 
kidney disease).

The homeostatic mechanisms to maintain body fluid vol-
ume are likely important for the renal safety of SGLT2 inhib-
itors. Recent large-scale clinical trials and meta-analysis have 
shown that SGLT2 inhibitors may even protect type 2 diabetic 
patients from AKI, although an increase in AKI related to the 
diuretic property and resulting volume depletion have been 
a concern (Donnan et al., 2019; Gilbert & Thorpe, 2019). In 
contrast, the commonly used and more potent loop diuretics 
decrease body fluid volume, as shown in euvolemic rats (Hu 
et al., 2012), and may worsen renal function due to body fluid 
reduction in chronic kidney disease patients (Khan, Sarriff, 
Adnan, Khan, & Mallhi, 2017). SGLT2 inhibitors exhibit an 
initial transient diuretic peak within the first week followed 
by only a moderate sustained diuresis (Masuda et al., 2017; 
Tanaka et al., 2017; Yasui et al., 2018). The present results 
indicate an important role for vasopressin in this regard as it 
attenuates the diuretic action of SGLT2 inhibitors and main-
tains body fluid volume by stimulating fluid intake.

In conclusion, the SGLT2 inhibitor ipragliflozin induced 
a sustained osmotic diuresis with compensatory increases 
in vasopressin-induced solute-free water reabsorption via 
phosphorylation of AQP2 at Ser269 to maintain body fluid 
volume. Furthermore, vasopressin was inversely correlated 
with fluid balance, indicating that the osmotic diuresis in-
duced by SGLT2 inhibition stimulates compensatory fluid 
reabsorption as a homeostatic mechanism to maintain body 
fluid volume.
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