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1.  Introduction 
 
Readers of journal articles are usually aware of what 
the clinician or experimenter is trying to demonstrate, 
but sometimes become confused with the resulting 
barrage of statistics that usually ensue from most 
experiments.  This confusion is magnified due to the 
fact that the statistician usually tests a hypothesis 
which is the complete reverse of what the clinician is 
trying to show.  This paper attempts to make the 
reader more aware of the manner in which the 
statistician analyses data, and the fundamental tools 
used to make these analyses. 
 
2.  What is a hypothesis? 
 
The Australian Concise Oxford Dictionary defines it 
as  ' ....supposition made as a starting-point for further 
investigation from known facts....'.  In the medical 
field, hypotheses are proposed and tested constantly, 
and journals can afford to be choosy about which 
articles will be published by them.  But exactly what 
are these hypotheses? 
 
This would seem like a trivial issue, if it weren't for 
the fact that most articles do not state their hypothesis 
in the 'statistical' sense, and only in an 'optimist' sense.  
The greatest problem is that hypotheses proposed by 
the optimist are usually the reverse of the hypothesis 
proposed by the statistician (1).  Take for example a 
chiropractor who wants to know whether or not 
smoking increases the risk of back pain.  The 
hypothesis in question here is 'Smoking increases the 
risk of back pain'.  To make sure that the chiropractor 
covers all possibilities, he/she may choose to 
hypothesise 'The risk of back pain is altered when 
smoking', that is, perhaps smoking may increase or 
decrease the risk of back pain.  However, the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
hypothesis statisticians test is always that no change 
will occur.  That is, smoking does not effect 
the incidence of back pain, or, the incidence of back 
pain is independent of smoking status. 
 
The chiropractor may be interested in showing that 
risk changes with smoking status, and then interested 
in the magnitude of that change.  Therefore, to show 
that a change does exist, all the statistician needs to do 
is show that the occurrence of  'no change' is unlikely.  
Thus, simply show that the hypothesis 'No change' is 
untrue, and it follows that the hypothesis 'Some 
change' is true.  It is left to confidence intervals (1) to 
then give an indication of that change (confidence 
intervals to be discussed later). 
 
In other words, the clinician sees smoking as a factor 
which may increase the risk of back pain.  Once a 
difference is observed, it is the statisticians job to 
determine whether or not that difference is attributed 
to a chance random variation or a genuine difference.  
That is, is the observed difference due only to chance? 
 
In general, the statistical hypothesis for (almost) any 
experiment is the statement that says 'NOTHING 
HAPPENS'.  For this reason, this hypothesis is 
universally knows as the null (1) hypothesis, but shall 
simply be referred to as the 'hypothesis'.  If we can 
prove that this is untrue, then obviously something 
happens, and it is a matter of estimation to show the 
size of that change.  These steps are outlined below for 
the general case: 
 
• Collect data to (hopefully) show that change 
 occurs. 
• Test the hypothesis 'Change does not occur'. 
• Decide whether or not to reject the 

hypothesis.  Rejecting the hypothesis leads to 
"Change does occur". 

 
3. When do we reject a hypothesis? 

 
Abstract:  In this  paper, the definition of a 
statistical hypothesis is discussed, and the 
considerations which need to be addressed when 
testing a hypothesies.  In particular, the p-value, 
significance level, and power of a test are reviewed.  
Finally the often quoted confidence interval is 
given a brief introduction. 
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For most hypotheses, statistical tests are available for 
use which provide us with a probability known as the 
p-value (2), and is defined below: 
 
P-value: The probability of observing data as or more 
 extreme than what we observed ('extreme' 
with  respect to the hypothesis). 
 
In everyday terms, the probability of our observed 
result being due simply to random variation. 
 
For example, it may be of interest to study the 
difference in blood pressure (difference = blood 
pressure before treatment - blood pressure after 
treatment) after some treatment (eg. soft tissure 
massarge) was applied, and to see if the treatment 
reduced blood pressure.  The hypothesis to test is δ = 0 
(where δ = mean difference between groups).  That is, 
on average, there is no change between before and 
after blood pressure values.  For the purposes of this 
example assume that the distribution of the mean 
difference is 'normal' (1), and is illustrated below. 
 

 
NB:  The 'distribution' of any set of data is a graphical 
(and mathematical) representation of the way the data 
is spread, and can be estimated by empirical methods. 
 
Under the hypothesis δ = 0 (the mean difference is 
zero), the distribution of the mean difference looks like 
(with some examples of observations * and **) the 
example below with all the data centred around zero. 
 

 

Suppose 100 people have had their blood pressures 
measured before and after treatment, and the mean 
difference of the sample is calculated and represented 
by * (for example, a mean difference of 0.9 mm Hg) 
above.  The experimental results suggest little to 
oppose the hypothesis that the mean difference is zero 
mmHg.  Now suppose the experimental results yield a 
mean difference represented by ** (for example, a 
mean difference of 13.2 mm Hg).  In relation to the 
distribution of the data and the hypothesis, this looks 
like an unlikely event since it lies so far away from the 
hypothesised mean of zero mmHg.  Accordingly, the 
probability of such an event would be quite small and 
most people would consider this an aberration.  The 
fact is, however, that the data was observed, and the 
experimenter can only assume that this result observed 
is representative of the entire population of data.  
Thus, it is not the observation that looks unlikely, but 
rather the hypothesis and the distribution it suggests as 
the true distribution of the entire population. 
 
This argument is the essence of the p-value.  In fact, 
the p-value for ** is the proportion of the total area 
underneath the curve and to the right of **, and then 
multiplied by 2 (two sided test, 1).  As can be seen, the 
area to the right of ** is quite small, making the p-
value small, and thus the hypothesis seems highly 
unlikely.  On the other hand, the proportion of area to 
the right of * will be quite substantial, and thus the p-
value will be large making it difficult to reject the 
hypothesis. 
 
In short: 
• Conclude no difference exists: observed result 
 is a chance finding. 
• Conclude a difference exists: observed result 
 represents a true difference. 

The p-value indicates which is the more 
likely explanation. 

 
4. How small does the p-value need to be to reject 
the hypothesis? 
 

The most common criteria used for 'too small p-value' 
is 0.05.  That is, when we observe a p-value smaller 
than 0.05, then we rejected the hypothesis.  After 0.05, 
0.1 and 0.01 are also used frequently. 
 

This criteria is known as the significance level (2).  
Journal articles frequently have statements such as 
'....the data was significant at the 0.05 level ....'.  This 
means that the data has yielded a p-value small 
enough to suggest a significant deviation from the 
hypothesis to be able to reject this hypothesis. 
The general notation is 
 

Reject the hypothesis when the p-value < α 
α = significance level 
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It must be noted that a possible error can arise when 
performing any hypothesis test. 
 
Rejecting the hypothesis when the hypothesis is, in 
fact, true, is known as a 'Type I' error (1).  Obviously 
the statistician would like to minimise the probability 
of this mistake, or even nullify it altogether.  
Unfortunately, this mistake will always remain a 
possibility since the probability of a Type I error 
occurring is equal to the significance level.  That is: 
 

P(Type I error occurring) = α 
 
The dilemma is now trying to choose α small enough 
to make the Type I error unlikely, but large enough to 
reject the hypothesis if it is false.  For example, 
suppose the 100 blood pressures are measured before 
and after treatment, and the mean difference is 
calculated to determine whether or not the population 
mean difference is equal to zero.  Now suppose that 
the true mean difference is zero (of course the 
experimenter will never know this prior to performing 
the experiment).  The statistician chooses α = 0.05, 
and proceeds with the hypothesis test.  The choice of α 
= 0.05 = 1/20 can be interpreted in the following way:  
If the experiment were done 20 times, we would 
expect to falsely reject the hypothesis once.  That is, 
out of 20 similar experiments, probability dictates that 
we can expect to give spurious results. 
 
On the other hand, making α very small will mean 
that we will almost never reject the hypothesis even 
when it is false. 
α = 0.05 is commonly accepted for most situations. 
 
5.  How can we be sure that we make the correct 
decision? 
 
There are 2 incorrect decisions that can be made when 
testing hypotheses.  The first, the Type I error has 
already been discussed above.  The second, is useful 
for the calculation of appropriate sample sizes. 
 
The 'Type II' error (1) is made when the hypothesis is 
accepted when it is false.  The probability of a type II 
error is denoted as β.  The interpretation of 1-β is 
given below. 
 
P(Type II error) 

= P(Accept the hypothesis when it is false) = β 
 
P(Reject the hypothesis when it is false)  
 = 1 - P(Accept the hypothesis when it is false) 
 = 1 - β 
 

Historically, 1-β is known as the 'Power' (1) of a test, 
and although it is not obvious, the equation 
 

P(Reject the hypothesis when it is false) = 1 - β 
 
is the basis of most sample size calculations (equally 
important is specifying how large a deviation from the 
hypothesis we want to detect). 
 
NB:  The notation P(event X) is used to denote 'the 
probability of event X'. 
 
Important to note is that the magnitudes of α and β 
are usually chosen before the start of the study.  That 
is, the researcher should explicitly state what values 
are to be used before the study begins.  β is used in the 
design of the study to ensure sufficient numbers of 
subjects are collected, and α after using the data to 
choose α. 
 
As a final note, the reader should consider this 
question.  If a significance level of 0.05 is chosen, is 
there a difference between the p-values 0.051, and 
0.049?  Implicitly, the answer is yes, and a strict 
criterion of α = 0.05 suggests this also.  That is 0.051 
suggests we do not reject the hypothesis, and 0.049 
suggests we do reject the hypothesis.  However, the 
difference between 0.051 (51 per 1000), and 0.049 (49 
per 1000) is 0.002 and the change from rejection to 
acceptance of the hypothesis could easily be due to a 
minor chance fluctuation in the data.  Thus, p-value's 
in this region should be considered with care, and, 
although interpreted as small, should always be 
regarded in terms of the implications of rejecting or 
not rejecting the particular hypothesis. 
 
6.  What is a 'Confidence Interval'? 
 
Hypothesis testing provides an indication of the 
likelihood of a hypothesis.  This area of statistics is 
referred to as inferential (2).  Another area of statistics 
is estimation (3).  A sample mean difference is an 
estimate of the population mean difference.  In the 
above notation, the sample mean difference δ, is an 
estimate of the population mean difference ∆. 
 
More and more journals are demanding their writers 
to produce confidence intervals (1).  This is due to the 
fact that they are easier to interpret, and much more 
appealing to the eye of a non-statistician (and certainly 
a large number of statisticians).  They represent a 
range which the statistician is 'confident' the true 
value of the statistic lies within. 
 
For example, a chiropractor may be interested in the 
mean change in heart rate (beats/minute) δ after C1 



HYPOTHESIS TESTING 
UGONI 

 
 
 
COMSIG REVIEW 
Volume 2 • Number 2 • July 1993           48 

manipulation for male patients aged between 20-30 
years of age, and wants to test the hypothesis that δ = 
5 beats/minute.  Suppose the hypothesis is successfully 
rejected due to a small p-value.  The chiropractor is 
now interested in the best estimate of the mean change 
in heart rate. 
 
The reader should now be made aware of variation 
between sampling.  For example, to estimate ∆, the 
chiropractor may take a random sample of 20 such 
men and calculate the sample mean to be (say) 11.  
Another random sample may yield an estimate of 13, 
and another may give 6, etc.  Obviously the random 
sample will produce a sample mean change which is 
not exactly equal to the population mean change. 
 
A simple experiment to illustrate this is to try and 
estimate the probability of heads turning up on the flip 
of a coin.  Flip the coin 10 times, and count the 
number of heads.  The estimated probability of heads 
is then the number of times heads appear divided by 
10.  Ten trials of this experiment gave the following 
number of heads: {2,5,6,5,4,4,4,8,5,4}, where we 
expected 5 heads.  Had we not known the true 
probability (1/2), it would be difficult at best to try and 
be confident about quoting a single number for the 
probability of heads. 
To overcome this problem, statisticians have devised 
the 'Confidence Interval'.  Instead of quoting one 
number for the estimate of δ,statisticians quote an 
interval (or range) of numbers which they are 
confident that δ lies within. 
 
How confident are the statisticians? 
 
Within a number of assumptions (most of them well 
founded), the statistician can quote any degree of 
confidence desired, but the most common degree of 
this confidence used is 95%.  For example, the 95% 
confidence interval for δ may have been 6 to 13 beats 
per minute.  That is, we are 95% confident that ∆ (the 
true population mean) lies between 6 and 13 beats per 
minute.  The stricter interpretation of a (say 95%) 
confidence interval is: for 100 independently 
calculated 95% confidence interval's, we can expect 95 
of them to encompass the true value of ∆, and 5 of 
them to not encompass ∆ within their bounds.  A 
simulation of 1000 such confidence intervals, where 
the known mean is zero, had 956 (95.6%) intervals 
where zero was encompassed. 
 
 
 
 
7.  Discussion 
 

Without delving into the mathematical detail, the 
foundations of hypothesis testing and a basic 
introduction to confidence  intervals were discussed.  
While most readers of journal articles are unaware of 
the design of the experiment to begin with, they 
should always keep in mind the question that asks:  Is 
the design competent, and the sample size large 
enough to test the hypothesis proposed?  Large sample 
sizes lead to large powers, whereas small sample sizes 
are rarely ever able to reject the hypothesis in 
question.  A test to determine which of treatment A 
and treatment B is more beneficial (for example) will 
never discriminate between the two if a small sample 
size is used, thus a possibly new and better method 
may be left unused. 
 
The interpretation of a p-value was mentioned, and 
basically the rule is, 'The smaller the p-value, the less 
likely the observed result was a chance finding. 
 
The reader would do well to remember that the 
conviction of a criminal is analogous to hypothesis 
testing.  The alleged criminal is innocent until proven 
guilty.  In other words, we assume the alleged criminal 
has done nothing (no change), and then use all the 
evidence to show that innocence is highly unlikely 
(reject hypothesis). 
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