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Abstract
The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world,

with a strong ability to adapt to a variety of complex environments. However, the molecular

mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota

composition associated with the adaptation mechanism were studied by analyzing the tran-

scriptome and 16S rDNA pyrosequencing of the P. americanamidgut, respectively. Midgut

transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively

involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response

(16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid

further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-

amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the

transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting

finding was that three digestive enzymes positively responded to cycloxaprid application.

Tissue expression profiles further showed that most of the selected genes were midgut-

biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via

16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the

Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were

the main orders which might assist the host in the food digestion or detoxification of noxious

compounds. The preponderant species, Clostridium cellulovorans, was previously reported
to degrade lignocellulose efficiently in insects. The abundance of genes involved in diges-

tion, detoxification and response to oxidative stress, and the diversity of microbiota in the

midgut might provide P. americana high capacity to adapt to complex environments.
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Introduction
The insect midgut plays critical roles in digestion and nutrient uptake as well as detoxification
and oxidative stress responses. These roles are essential for environmental adaptation. In most
insects, digestion occurs mainly in the midgut, where a large portion of the insect’s digestive
enzymes are produced and secreted, including proteases, lipases, and carbohydrases [1–3]. The
insect midgut is also considered to be the centre of detoxification metabolism and stress
response, which include three major interrelated pathways: oxidation-reduction, conjugation
and hydrolysis [4, 5]. Generally, cytochrome P450 monooxygenases (P450s) are the most
important catalysts of oxidation-reduction reactions and able to detoxify many types of xenobi-
otics [6–13]. Other oxidation/reduction enzymes, such as superoxide dismutases, catalases and
peroxidases, can degrade the byproducts of oxidation-reduction reactions [4]. Glutathione S-
transferases (GSTs) are particularly important conjugation enzymes, participating in the detox-
ification of oxidized lipids and exogenous toxins as well as participating in intracellular trans-
port and hormone synthesis [14, 15]. Detoxification is also carried out via hydrolysis and plays
an important role in the degradation of insecticides, such as carboxylesterases (CarEs) catalyz-
ing the hydrolysis of pyrethroids and organophosphates [16]. Other proteins, including cad-
herins, heat shock proteins (Hsps) and ATP-binding cassette transporters (ABC transporters),
are also involved in detoxification metabolism or stress response [17, 18].

The most common symbiont in insects is bacteria, which has been reported to mainly exist
in insect guts [19–21]. The microbiota of insects have long been known to play significant roles
in food digestion and nutrition, host mating preference, protection against pathogens, resis-
tance against parasitoids and detoxification of noxious compounds [22–26]. For example, the
cellulase enzyme produced by gut bacteria facilitates lignin degradation, a process vital for
hosts to acquire nutrients [27]. Moreover, the gut microbiota of the coffee berry borer,
Hypothenemus hampei, are able to mediate caffeine detoxification, which is hypothesized to
participate in disrupting herbivory inhibition in plants [28]. The bean bug, Riptortus pedestris,
can acquire Burkholderia from the soil and these bacteria confer the ability to degrade feni-
trothion [25]. In addition to participating in digestion and detoxification, gut microbiota can
produce siderophores to protect the host insect from pathogens such asMetarhizium aniso-
pliae [29]. Thus, a comprehensive understanding of the gut microbiota of insects will facilitate
studies on host adaptation to complex environments.

Cockroaches are one of the oldest known winged insects and maintain close contact with
humans. Approximately thirty of the over four thousand species of cockroaches found to date
are harmful to humans [30–32]. Generally, cockroaches exist in environments with large
amounts of toxic substances, including pollutants, microbial toxins, insecticides and other
xenobiotics [33–35]. Thus, the detoxification abilities and oxidative stress response of cock-
roaches are essential for cockroaches to overcome toxic xenobiotics. In addition, cockroaches
show an extremely high digestive capability [3, 36–38]. The most common domestic species of
cockroaches and a model organism for entomological research, Periplaneta americana, has
been well-studied. Previous researches mainly focused on the reproduction, digestive charac-
teristics, effects of adipokinetic hormones, sexually dimorphic glomeruli and related interneu-
rons of P. americana [3,32,39–41]. However, the transcriptomic information from the midgut
of P. americana is insufficient. In this study, in order to understand the abundance of genes
involved in digestion, detoxification and response to oxidative stress, and the diversity of
microbiota in the midgut of P. americana, Illumina sequencing and 16S rDNA pyrosequencing
were performed to characterize the midgut transcriptome and microbiota in the midgut. The
results may provide clues to understand the mechanism of host adaptation to complex envi-
ronments in P. americana.

Mechanisms of Periplaneta americana Adaptation
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Materials and Methods

Insects and Reagents
A colony of P. americana was purchased from Feitian Medicinal Animal Co. Ltd. (Danyang,
Jiangsu, China). The cockroaches were grown on flours of milled corn and bran cob with an
unlimited supply of water, at room temperature 26±1°C, humidity 60–70% and 12 h light/12 h
dark photoperiod [41–43]. The insects could not contact pesticides through the provided food,
water and rearing box.

Acetone (reagent grade) was purchased from Sigma–Aldrich (St. Louis, MO, USA). Cyclox-
aprid (97%) was kindly provided by Prof. Li Zhong from the Eastern China University of Sci-
ence and Technology (Shanghai, China).

Toxicity Bioassay
The 9th instar nymphs of P. americana were selected for the toxicity bioassay by topical appli-
cation method [44–46]. Five dilutions of cycloxaprid were made with acetone. After anestheti-
zation with CO2, 10 μL of cycloxaprid solution were applied to the intercoxal space of the
ventral mesothorax of P. americana with a pipette, with acetone alone as the control [46, 47].
Each treatment was replicated three times, with thirty cockroaches in each treatment. Mortality
was checked 48 h after treatment.

RNA Extraction and Transcriptome Sequencing
The 9th instar nymphs of P. americana were surface-washed with 75% ethanol and rinsed with
distilled water. Tissues were dissected on ice with sterile needles and forceps. For transcrip-
tomic sequencing, one sample included the midguts from five nymphs at the 9th instar was col-
lected. Total RNA was extracted with Trizol reagent (Life Technologies, USA) according to the
manufacturer’s instructions. DNA contaminants were removed by treating RNA extraction
products with RNase-free DNase (Ambion, Austin, TX, USA), and then were purified through
phenol-chloroform extraction. The quantity and quality of the RNA were checked by agarose
gel electrophoresis (1.5% agarose) and spectrophotometry (Nanodrop Technologies, Wilming-
ton, DE, USA). Extracted RNA was stored at -80°C until use.

Library construction was completed by BGI (Shenzhen, China), and Illumina sequencing
was performed using an Illumina HiSeq 2000 sequencer (Illumina Inc., San Diego, CA, USA)
[41,48,49].

DNA Extraction and 16S rDNA Pyrosequencing
For 16S rDNA pyrosequencing of microbiota in midguts of P. americana, one sample included
the midguts from five nymphs at the 9th instar was collected and microbes were obtained
according to the method described by Walter et al [50]. Total microbial DNA from P. ameri-
canamidguts were isolated using a PowerSoil DNA Isolation Kit (MO BIO laboratories, San
Diego, USA) according to the manufacturer’s protocol. The quantity and quality of the DNA
were checked as mentioned above. Extracted DNA was stored at -80°C until use.

The V1–V3 hypervariable 16S rDNA regions were sequenced using a 454 Life Sciences
Genome Sequencer FLX Titanium sequencer (GS-Titanium; 454 Life Sciences, Branford, CT,
USA) [51, 52].

Analysis of Transcriptome Sequencing
After transcriptome sequencing, de novo assembly was carried out with Trinity, a short-read
assembly programme, after the remove of low-quality reads [53]. All assembled unigenes were
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BLASTed against NCBI non-redundant (Nr) protein database, Swiss-Prot, the Kyoto Encyclo-
paedia of Genes and Genomes (KEGG) database and the Cluster of Orthologous Groups
(COG) with a cut-off E-value of 10−5. Coding regions and sequence directions were determined
by the best aligned results. If the results of different databases conflicted with each other, a pri-
ority order of NR, Swiss-Prot, KEGG and COG was followed. The expression abundance of
unigenes was calculated using the RPKMmethod (Reads Per Kilobase per Million mapped
reads) [54].

Analysis of 16S rDNA Pyrosequencing
For analyzing the microbiota, chimera sequences were processed with MOTHUR, and raw
reads were preliminarily filtered by QIIME [55,56]. Resulting high-quality sequences were clus-
tered into different operational taxonomic units (OTUs) with a 97% similarity cut-off and
aligned to the Greengenes database to determine taxonomic assignments [57]. Sequences were
assigned to the following levels: phylum, class, order, family and genus. The relative abun-
dances of each taxon were calculated using R (version 3.1.2) based on the number of sequences
belonging to each OTU. Rarefaction curves, sample coverage and richness estimators were cal-
culated using MOTHUR.

Quantitative Real-Time PCR
For tissue expression profile analysis, foregut, midgut, hindgut, fat body, gastric caecum, Mal-
pighian tubule and salivary gland were collected from the 9th instar nymph, and one kind of
tissue from five nymphs at the 9th instar was pooled to one sample. To analyze expression
induction, cycloxaprid at LD50 dose were applied to the 9th instar nymphs, with acetone treat-
ment as control. After 48 h, midguts were collected from the treated and control nymphs,
respectively, and the tissues from five cockroaches were pooled to one sample. Three samples
for each tissue or each treatment were prepared for total RNA extraction, as mentioned above.
Extracted RNA was stored at -80°C until use.

cDNA was synthesized with Superscript III and random hexamers (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. Expression profiling and induction
expression analysis of seven selected detoxifying and digestive genes was performed using
quantitative real-time PCR (qRT-PCR) with the One Step SYBR PrimeScript RT-PCR Kit
(Takara, China). For each qRT-PCR experiment, three independent biological replications,
analyzed in three technical replications, were measured. The expression level of each gene was
calculated relative to the reference genes β-actin and GAPDH according to the 2-ΔΔCT method
and a previously described strategy [41,58,59]. All primers for qRT-PCR were designed with
Beacon Designer 7.7 (PREMIER Biosoft International, CA, USA) and are listed in S1 Table.

Statistical Analysis
Toxicity bioassay data were analyzed using Data Processing System (DPS) software [60]. Statis-
tical analysis of all data was performed using SPSS 20.0 (IBM Corporation, USA). One-way
analysis of variance (ANOVA) was used to analyze the expression abundance of selected genes
in seven tissues and the effects of cycloxaprid (treated vs. control) on the gene expression levels
in the midguts of P. americana. The least significant difference (LSD) test was further used to
compare the means of expression abundance of selected genes in different tissues or between
treatments and control at p< 0.05 or p<0.01. Results were shown as the average ± SEM and
were considered to be significant at p< 0.05 and very significant at p<0.01.
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Results and Discussion

Transcriptome Sequencing and Unigene Assembly
The raw data and assembled data of transcriptome had been deposited in the NCBI database
under the accession number of SRX1659265 and GEIF00000000, respectively. Approximately
88,619,510 raw reads were generated from Illumina sequencing of a cDNA library from P.
americanamidguts. After clustering and filtering out low quality sequences, approximately
67,183,862 clean reads were obtained, which were further assembled into 161,821 contigs with
a mean length of 261 bp and an N50 length of 327 bp (S2 Table). These contigs were assembled
into 82,905 longer sequences (14,814 clusters and 68,091 singletons) with a mean length of 462
bp and the N50 length of 631 bp, which were defined as unigenes [49, 61]. Among these uni-
genes, 9.21% of the transcriptome assembly was over 1,000 bp (S2 Table).

Homology Analysis and Gene Ontology (GO) Classification
With a cut-off E-value of 10−5, 24,827 from 82,905 unigenes were matched by the Blastx
homology search to entries in the NCBI non-redundant (Nr) protein database. The highest
match percentage is to Tribolium castaneum (11.96%), followed by Pediculus humanus corporis
(10.11%),Megachile rotundata (5.83%), Acyrhosiphum pisum (5.24%), Nasonia vitripennis
(4.99%), Camponotus floridana(4.44%), and Harpegnathos saltator (3.98%) (S3 Table).

To further elucidate the functions of these unigenes, Gene Ontology (GO) assignments were
used to classify 82,905 unigenes into different functional groups according to GO category
[62]. Based on sequence homology, 10,940 unigenes (13.20%) were annotated and classified
into one or more functional groups corresponding to the three biological processes (Fig 1).
Ultimately, 41,250 annotation hits were aligned to biological process, 23,363 to cellular compo-
nents, and 13,701 to molecular functions. Among 10,940 annotated unigenes, more than half
were aligned to cellular process (60.94%), binding (50.74%), and catalytic activity (51.26%).

Identification of Putative Genes Related to Detoxification, Digestion and
Oxidative Stress Response
P. americanamaintains close contact with humans and exists in environments with abundant
toxic substances [34]. In the current study, the transcriptomic database of the P. americana
midgut is mined to understand the high capability of insects in digestion, detoxification and
oxidative stress response. Sixty-four genes were identified to be putatively involved in diges-
tion, detoxification, and oxidative stress response via Blastx homology search with a cut-off E-
value of 10−5. A total of thirty-seven putative detoxification genes were identified, including
thirty-one P450s, four GSTs, one CarE, and one ABC transporter (Table 1). Eleven putative
digestive genes were identified, including five carbohydrases, three lipases, and three protein-
ases (Table 2). Sixteen putative genes related to oxidative stress response were also obtained
(Table 3). The abundances of the sixty-four genes in the transcriptome are shown in Fig 2.

Detoxifying Enzymes
Cytochrome P450s (P450s), one of the largest representative families in the P. americanamid-
gut, play a critical role in insecticide/xenobiotic metabolism and detoxification in all living
organisms [6, 63, 64]. P450s are mainly divided into four clades: CYP2, CYP3, CYP4 and mito-
chondrial CYP [65]. Previous studies have reported that high expression of P450s allows
insects to metabolize nearly all classes of insecticides and other xenobiotics, and consequently
resulted in high insecticide resistance in many insect species [7–10]. In the transcriptomic data-
base generated in this study, thirty-one P450s were assigned well to appropriate P450 clades
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according to the Nr annotation, including two in CYP2, sixteen in CYP3, six in CYP4, and five in
mitochondrial clade (Table 1). More than half P450s were assigned to CYP3 clade, which agreed
with results observed in other insect species [6, 9]. Seven transcripts (CYP301A1, CYP6K1,
CYP6J1, CYP4C1, CYP6BS1, CYP4C44, and CYP9E2) were more abundant than the other P450
genes, suggesting that these seven P450 genes might play important roles in insecticide/xenobiotic
metabolism or other physiological and biochemical processes in P. americanamidguts (Fig 2A).

GSTs are multifunctional conjugation enzymes and can catalyze the conjugation of reduced
glutathione (GSH) with oxidized lipids and exogenous toxins, making the toxins less toxic,
more water-soluble and easier to excrete [14]. Several previous studies have shown that
increased GST activity resulted in enhanced insecticide resistance in insects [66, 67]. Insect
GSTs can be divided into seven classes: Delta, Epsilon, Omega, Sigma, Theta, Zeta and Micro-
somal, among which the Epsilon and Delta classes were insect-specific and contributed to envi-
ronmental stress responses, especially during xenobiotic detoxification [68]. In the present
study, four GSTs were obtained and assigned to the Delta, Theta, Omega, and Microsomal clas-
ses (Table 1). Among four GSTs identified, the Delta GST was the most abundant (Fig 2A),
indicating the important role of GSTs from Delta class in xenobiotic metabolism.

CarEs and ABC transporters are also involved in the metabolic activation or detoxification
of various drugs, carcinogens and environmental toxicants [69–72]. In this study, one CarE

Fig 1. Gene ontology (GO) classification of the P. americanamidgut transcriptome. Unigenes are classified into three main
categories: biological process (A), cellular component (B) and molecular function (C).

doi:10.1371/journal.pone.0155254.g001
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Table 1. Putative enzymes involved in detoxification that were identified in P. americanamidgut transcriptome.

Name Gene ID Length
(bp)

Putative
identification

Species Acc. number Score E-value

P450s (CYP2) Unigene42978 227 CYP2J5 Strongylocentrotus
purpuratus

XP_794251.3 55.8 7.00E-07

Unigene482 1582 CYP304E1 Tribolium castaneum EEZ99196.1 423.7 1.00E-
116

Unigene20298 1731 CYP305A1 Tribolium castaneum EFA01265.1 454.5 8.00E-
126

Unigene46294 629 CYP306A1 Manduca sexta ABC96068.1 215.7 1.00E-54

P450s (CYP3) Unigene59287 512 CYP345A1 Tribolium castaneum EFA12856.1 180.6 2.00E-44

CL2311.
Contig1

1576 CYP6A13 Nasonia vitripennis XP_001599214.2 403.7 1.00E-
110

Unigene41639 241 CYP6A14 Nasonia vitripennis XP_001604822.1 58.9 8.00E-08

CL991.Contig2 237 CYP6AE27 Zygaena filipendulae ACZ97416.2 55.5 9.00E-07

Unigene53000 218 CYP6B29 Spodoptera litura ADA68173.1 82.8 5.00E-15

Unigene33798 1505 CYP6BD10 Laodelphax striatella AFU86445.1 416 2.00E-
114

Unigene59250 365 CYP6BK5 Tribolium castaneum EFA12633.1 147.5 1.00E-34

Unigene14721 410 CYP6BK6 Tribolium castaneum EFA12632.1 152.1 7.00E-36

CL5642.
Contig2

331 CYP6BK7 Tribolium castaneum EFA12631.1 89.7 4.00E-17

Unigene17337 299 CYP6BQ13 Tribolium castaneum EEZ99338.1 140.6 2.00E-32

Unigene15697 646 CYP6BS1 Tribolium castaneum EEZ99243.1 166.8 7.00E-40

Unigene39411 228 CYP6DJ2 Dendroctonus ponderosae AFI45041.1 57.4 2.00E-07

CL6126.
Contig2

1843 CYP6J1 Blattella germanica Q964R1.1 528.9 3.00E-
148

CL104.Contig5 2479 CYP6K1 Blattella germanica Q964R0.1 824.7 0

CL5911.
Contig2

1355 CYP9E1 Diploptera punctata AAR97606.1 565.5 2.00E-
159

Unigene26161 1914 CYP9E2 Blattella germanica Q964T2.1 776.2 0

P450s (CYP4) Unigene33391 2270 CYP4C1 Blaberus discoidalis P29981.1 891 0

Unigene49581 1438 CYP4C21 Blattella germanica Q964T1.1 459.1 2.00E-
127

CL6424.
Contig2

2032 CYP4C39 Carcinus maenas JC8026 495.7 3.00E-
138

CL3839.
Contig1

241 CYP4C44 Reticulitermes flavipes ABB86767.1 138.7 8.00E-32

Unigene33799 2311 CYP4C62 Laodelphax striatella AFU86425.1 107.1 4.00E-21

Unigene7659 1637 CYP4U3 Reticulitermes flavipes ABB86762.2 481.5 5.00E-
134

P450s
(Mitochondrial)

Unigene49004 200 CYP11A1 Culex quinquefasciatus XP_001847403.1 65.1 1.00E-09

CL5257.
Contig1

1891 CYP301A1 Tribolium castaneum EFA02906.1 471.1 9.00E-
131

Unigene53425 509 CYP314A1 Laodelphax striatella AFU86480.1 142.9 5.00E-33

Unigene56311 1466 CYP315A1 Apis florea XP_003698627.1 453.8 1.00E-
125

Unigene9903 252 CYP49A1 Apis florea XP_003693990.1 63.2 4.00E-09

GSTs Unigene34767 798 Delta Cryptocercus punctulatus AFK49803.1 249.6 1.00E-64

CL6198.
Contig1

3264 Theta Locusta migratoria AEB91980.1 285 1.00E-74

(Continued)
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and one ABCG were observed (Table 1). However, the relative abundances of these two genes
were low (Fig 2A).

Digestive Enzymes
The digestive enzymes of insects consist mainly of carbohydrases, lipases and proteinases [3,
73, 74]. The majority of digestive enzymes are produced in the midgut, gastric caeca and sali-
vary glands, and these enzymes can somehow be transported to other tissues such as the fore-
gut [3]. In our transcriptomic database, eleven digestive enzymes were identified, including
carbohydrases (alpha-amylase, membrane-bound trehalase, beta-glucosidase, alpha-glucosi-
dase, and beta-galactosidase), lipases (neutral lipase, lipase, and lipase 3), and proteinases
(trypsin, chymotrypsin-2, and aminopeptidase) (Table 2). This observation is consistent a pre-
vious study regarding digestive enzymes in P. americana [3]. Three genes (alpha-amylase,
beta-glucosidase, and aminopeptidase) were more abundant than other digestive enzyme genes
(Fig 2B). These results indicated that active digestive processes were underway in the P. ameri-
canamidgut. In addition to digestive functions, aminopeptidases can also detoxify Bt Cry tox-
ins, mycotoxins, organophosphonates, pyrethroid esters, and microbial as well as botanical
pesticides [75–77], implying that digestive enzymes might be involved in the positive response
towards xenobiotics in insects.

Enzymes Related to Oxidative Stress Response
Hsps play key roles in various biological and physiological processes, including folding and
unfolding of proteins, preventing aggregation of denatured proteins, and detoxifying heavy
metals [18, 78, 79]. In the present study, ten Hsps (Hsp10, Hsp16, Hsp20, Hsp40, Hsp60,

Table 1. (Continued)

Name Gene ID Length
(bp)

Putative
identification

Species Acc. number Score E-value

CL6536.
Contig3

4547 Microsomal Nilaparvata lugens AFJ75808.1 197.6 5.00E-48

Unigene14342 564 Omega Nilaparvata lugens AFJ75806.1 120.2 5.00E-26

CarEs Unigene33193 372 CarE Laodelphax striatella ADR73024.1 146.4 4.00E-34

ABC transporters Unigene26028 3120 ABCG Nasonia vitripennis XP_003426604.1 913.3 0

doi:10.1371/journal.pone.0155254.t001

Table 2. Putative enzymes involved in digestion that were identified in P. americanamidgut transcriptome.

Name Gene ID Length (bp) Putative identification Species Acc. number Score E-value

Carbohydrases Unigene31916 1952 Alpha-amylase Blattella germanica ABC68516.1 666.4 0

Unigene16802 2592 Membrane-bound trehalase Bemisia tabaci AFV79627.1 881.3 0

Unigene20412 1707 Beta-glucosidase Neotermes koshunensis BAB91145.1 658.7 0

CL1697.Contig2 5600 Alpha-glucosidase Harpegnathos saltator EFN85516.1 483 8.00E-134

CL5753.Contig1 2403 Beta-galactosidase Camponotus floridanus EFN73255.1 693.7 0

Lipases CL4999.Contig2 711 Neutral lipase Danaus plexippus EHJ73093.1 211.5 3.00E-53

Unigene19384 1103 Lipase Aedes aegypti XP_001654155.1 254.6 6.00E-66

Unigene19398 1578 Lipase 3 Acromyrmex echinatior EGI70294.1 156 5.00E-36

Proteinases Unigene13217 950 Trypsin Blattella germanica AAZ78212.1 237.3 8.00E-61

Unigene55680 836 Chymotrypsin-2 Culex quinquefasciatus XP_001861618.1 232.3 2.00E-59

Unigene33558 3041 Aminopeptidase Harpegnathos saltator EFN87052.1 726.5 0

doi:10.1371/journal.pone.0155254.t002
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Hsp70, Hsp70b2, Hsp70b, Hsp70c, and Hsp90) were obtained according to the Nr annotation
(Table 3). The majority of these Hsps were Hsp70 genes (4/10) or small Hsp genes (3/10), a
profile similar to the common cutworm, Spodoptera litura [80]. Hsp70 and Hsp90 were highly
abundant in this transcriptome (Fig 2C). The Hsp70 family, the most pervasive Hsps, prevents
indiscriminant protein aggregation by tightly binding to denatured proteins under conditions
of stress [81]. A previous study of Drosophila melanogaster showed that upregulated expression
of Hsp70 was closely associated with cold exposure or cold acclimation [82]. Under normal
physiological conditions, Hsp90 is an abundant protein that is essential for cold survival during
insect diapause [83]. Small Hsps are a family of molecular chaperones that have been exten-
sively studied in insects recently. Small Hsps were upregulated in response to environmental
stresses such as thermal stress [84]. In addition to Hsps, six oxidation/reduction enzymes were
found in database: catalase, disulphide oxidoreductase, peroxidase, and three superoxide dis-
mutases (Table 3). These oxidation/reduction enzymes could degrade reactive oxygen species,
including hydroxyl radicals, hydrogen peroxide, and superoxides [4]. Catalase and superoxide
dismutase had relatively high abundances (Fig 2C), suggesting that P. americanamay possess
high capacity to overcome complex environmental stresses.

Expression Regulation of Some Genes by Insecticide Cycloxaprid
The toxicity of cycloxaprid, a novel neonicotinoid insecticide with high insecticidal activities
against a range of insect species [85], against P. americana was tested. The toxicity regression
equation was computed as y = 2.3031+1.9996x (r = 0.9906). Based on this toxicity regression
equation, the calculated LD50 value of the 9th instar nymphs was 22.32 μg/pest (95% CI 19.25–
25.89).

Table 3. Putative enzymes involved in oxidative stress response that were identified in P. americanamidgut transcriptome.

Name Gene ID Length
(bp)

Putative identification Species Acc. number Score E-value

Hsps Unigene20081 751 Hsp10 Apis florea XP_003691248.1 178.3 3.00E-43

Unigene11971 838 Hsp16 Pediculus humanus
corporis

XP_002425729.1 141 6.00E-32

CL509.Contig1 2408 Hsp20 Locusta migratoria ABC84493.1 313.9 2.00E-83

Unigene5620 1854 Hsp40 Locusta migratoria ABC84495.1 608.6 3.00E-
172

Unigene24161 2524 Hsp60 Schistocerca gregaria AEV89752.1 954.1 0

CL4484.
Contig1

2427 Hsp70 Cryptocercus
punctulatus

AFK49798.1 1261.5 0

Unigene12491 519 Hsp70b2 Tribolium castaneum XP_973521.1 302 8.00E-81

Unigene1076 623 Hsp70b Paratlanticus ussuriensis AGG36437.1 395.6 8.00E-
109

Unigene19495 1081 Hsp70c Paratlanticus ussuriensis AFP54305.1 515.4 2.00E-
144

Unigene16700 2780 Hsp90 Paratlanticus ussuriensis AFP54306.1 1361.7 0

Oxidation/reduction
enzymes

Unigene22150 3016 Catalase Reticulitermes flavipes AFV36369.1 987.3 0

Unigene24256 547 Disulfide oxidoreductase Culex quinquefasciatus XP_001864945.1 200.7 2.00E-50

Unigene15114 5083 Peroxidase Apis florea XP_003694462.1 723 0

Unigene26872 726 Cu/Zn superoxide
dismutase

Brachymyrmex
patagonicus

ADX36418.1 184.1 5.00E-45

Unigene31254 1429 Mn superoxide
dismutase

Bombyx mori NP_001037299.1 332.4 3.00E-89

Unigene31277 1024 Superoxide dismutase Schistocerca gregaria AEV89750.1 267.7 6.00E-70

doi:10.1371/journal.pone.0155254.t003
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To evaluate the response to insecticide pressure at the transcriptional level, changes in the
expression of seven genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-gluco-
sidase and aminopeptidase) in P. americanamidguts after cycloxaprid treatment at the LD50

dose was determined. Before the test of expression levels of above genes, an alignment analysis
of deduced amino acid sequences was performed through comparing with sequences from
other insect species. High similarities among aligned sequences and the conservation in impor-
tant motifs indicated the annotations to these genes were appropriate (S1, S2, S3, S4 and S5
Figs). The genes were selected based on their expression abundances in the transcriptome.
Compared to a control, all selected genes were upregulated to at least 2.0-fold at the transcrip-
tional level. Four genes (CYP6K1, alpha-amylase, beta-glucosidase and aminopeptidase) were
upregulated more than 10.0-fold (Fig 3B). These results suggested that these genes might be
associated with insecticide (e.g., cycloxaprid) metabolism, which was in agreement with previ-
ous reports. For example, studies have found that the CYP3 and CYP4 clades play roles in
insecticide/xenobiotic metabolism and that the overexpression of CYP3 or CYP4 genes, such
as CYP6ER1, CYP6AY1, CYP6G1, CYP4C27, and CYP4G19, can result in high insecticide
resistance to neonicotinoid insecticides [8, 86–89]. A previous study also reported that Delta

Fig 2. Transcriptomic abundances of sixty-four genes putatively involved in detoxification (A), digestion (B) and oxidative stress response
(C). Expression abundance of each genes is indicated by RPKM (Reads Per Kilobase per Million mapped reads) values.

doi:10.1371/journal.pone.0155254.g002
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GST was involved in xenobiotic detoxification [68]. An interesting finding was that the fold
increase of three digestive enzyme genes was higher than that of detoxification enzyme genes
(Fig 3B). Aminopeptidases have been found to participate in the detoxification of many types
of toxins [75–77], indicating that these digestive enzymes might also be involved in the positive
response to cycloxaprid application in insects. These results have prompted us to study the
roles of digestive enzymes, especially alpha-amylase and beta-glucosidase, in insect responses
to the application of insecticides and xenobiotics in future.

Analysis of Tissue Expression Profiles
To investigate the general expression profiles of seven selected genes, we employed qRT-PCR to
determine mRNA levels in various tissues (foregut, midgut, hindgut, fat body, gastric caecum,
Malpighian tubule and salivary gland). From the transcriptome database, the selected genes were
found to differ in expression abundance. Their abundances were confirmed by qRT-PCR, with
exception of CYP6J1 and CYP6K1 (Fig 3A). The result indicates that the transcriptome generally
reflects the expression abundances of most genes, albeit incompletely and with some admissible
errors. This result was in line with previous reports [47, 61]. The qRT-PCR results showed that
CYP4C1, Delta GST and aminopeptidase were more abundant than other selected enzyme genes
(Fig 3A), suggesting the pivotal roles that these enzymes play in the P. americanamidgut.

Four selected detoxifying enzymes (CYP6J1, CYP4C1, CYP6K1, and Delta GST) were more
highly expressed in the midgut and fat body than that in other tissues with the exception of
CYP6K1, which was only slightly expressed in the midgut (Fig 4A–4D). This result indicates the
important role of the midgut and fat body in detoxification. In insects, detoxification and defence
functions mainly proceed in the midgut and fat body and serve to help the insect cope with com-
plex environments. For instance, the major enzyme involved in the primary detoxification path-
way of insecticides and other exogenous compounds is mainly found in the midgut and fat body
of the cotton bollworm (Helicoverpa armigera) [90]. These detoxifying enzymes were also detected
in the other five tissues investigated, albeit at much low abundances (Fig 4A–4D). In the hindgut
andMalpighian tubule, Delta GST was more highly expressed than the three other detoxifying
enzyme genes. Because they are parts of the insect excretory system, the hindgut andMalpighian
tubule are mainly involved in maintaining homeostasis and waste elimination [91]. Thus, Delta
GSTmay play a role in the excretion of toxic compounds in the hindgut andMalpighian tubule.

The expression levels of the selected digestive enzymes (alpha-amylase, beta-glucosidase
and aminopeptidase) were much higher in the midgut than in other P. americana tissues

Fig 3. Relative expression levels of seven selected genes (A) and fold changes in the expression of these
genes after cycloxaprid treatment (B) in the P. americanamidgut. In (A), different letters indicate significant
differences at p< 0.05 level among genes. In (B), stars (**) indicate significant differences between the
control and cycloxaprid treatment at p < 0.01 level.

doi:10.1371/journal.pone.0155254.g003
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(Fig 4E–4G). This result agrees with previous studies, which reported that the main digestive
enzymes are produced and secreted in insect midguts [3]. In general, these genes were highly
expressed in the hindgut, gastric caecum and salivary gland. Expression of aminopeptidase in
the salivary gland was low (Fig 4E–4G). These results imply that the gastric caecum and sali-
vary gland are involved in the secretion of digestive enzymes in P. americana. In addition, it
has been proposed that these digestive enzymes were mainly secreted in the midgut or in the
gastric caeca, and transported to the foregut by counter current fluxes and peristaltism and to
the hindgut by the normal traffic of food along the gut according to previous studies [3, 92],
although their transcriptional expression was also detected in the foregut and hindgut. The
abundances of three selected digestive enzymes were lower in Malpighian tubule than that in
other tissues (Fig 4E–4G).

Basic Statistics of Bacterial Communities in P. americanaMidguts
Microbes in insect midguts could aid the insect in responding to pressures from food ingestion,
invasion of exogenous microorganisms, insecticide exposure and other external threats [23–

Fig 4. Relative expression levels of seven selected genes in various P. Americana tissues.Different letters show significant
differences among tissues for each gene at p < 0.05 level.

doi:10.1371/journal.pone.0155254.g004
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26]. Therefore, the bacterial communities in the P. americanamidgut were analyzed via 16S
rDNA pyrosequencing.

A total of 27,451 high-quality sequences were obtained after chimaera checking and a strict
quality control process. The sequences had an average length 492 bp. The richness estimators
and rarefaction curves suggest that the current analysis captured the most dominant phylo-
types. Based on a 97% identity, 514 operational taxonomic units (OTUs) were obtained. The
species composition of the bacterial community in P. americanamidguts was calculated for
various classification levels (phylum, class, order, family, and genera) according to Greengene
database. At the phylum level, the composition of the microbiota mainly contained four phyla:
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. The microbiota was dominated
by Firmicutes, which represented 69.02% of total sequences (Fig 5A). This result was in agree-
ment with a previous study of the Diamondback moth (Plutella xylostella) midgut microbiota,
which was also dominated by these four phyla [19]. At the order level, Clostridiales was the
most dominant microbiota, comprising approximately 62.10% of total sequences. The Flavo-
bacteriales, Actinomycetales, Bacillales, Lactobacillales, Bacteroidales, Campylobacterales and
Burkholderiales orders were also detected (Fig 5B). Some orders have been previously shown

Fig 5. Microbial composition in P. americanamidgut at the phylum level (A), at the order level (B), and at the species level (C). Detected
taxa which have more than 1.0% relative abundance in each level are shown.

doi:10.1371/journal.pone.0155254.g005
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to play pivotal roles in detoxification or digestion. For example, in the termite Reticulitermes
flavipes hindgut, Clostridiales have been shown to play a vital role in the breakdown of ligno-
celluloses [93]. Detoxifying genes have been acquired by insects via symbionts such as Burkhol-
deriales and Pseudomonas over the course of evolution [25, 28]. Lactobacillales was shown to
potentially play a role in conferring P. xylostella resistance to toxins such as the insecticides
fipronil and chlorpyrifos [19]. It is noteworthy that Clostridium cellulovorans is the most pre-
ponderant species in the P. americanamidgut (Fig 5C), which contains a cellulosome that can
efficiently degrade cell walls [94]. Results suggest that midgut microbiota might play key roles
in food ingestion and insecticide/xenobiotic metabolism.

Conclusions
The transcriptome and microbiota data from the P. americanamidgut was obtained via several
techniques. Genes related to digestion (eleven genes), detoxification (thirty-seven genes) and
oxidative stress response (sixteen genes) were identified. Induction expression analysis revealed
that four genes (CYP6K1, alpha-amylase, beta-glucosidase and aminopeptidase) were upregu-
lated more than 10.0-fold in response to insecticide pressure. Tissue expression profiles implied
that the selected detoxification enzymes were midgut- and fat body-biased. In addition, the
expression of digestive enzymes was found to be much higher in the midgut than in other tis-
sues. The midgut microbiota was found to contain primarily four phyla: Firmicutes, Bacteroi-
detes, Actinobacteria and Proteobacteria. The microbiota organisms that correlated with
digestion, detoxification or oxidative stress response were found to include orders Clostridiales,
Lactobacillales and Burkholderiales. These results may provide important information for us to
understand the high capacity to adapt to complex environments in P. americana.

Supporting Information
S1 Fig. Amino acid sequence alignment of three putative P450s with other species. Identical
amino acids are shaded in grey for 80% similarity and black for 100% similarity. The ‘■’ indi-
cated the heme-binding site, ‘$’ indicated the meander region, magenta region (conserved
sequences ‘ETLR’) showed the conservative sequence of CYP6 family, ‘▼’ indicated the charac-
teristic structural unit of helix I, blue region (conserved sequences ‘EVDTFMFEGHDTT’)
showed the conservative sequence of CYP4 family and ‘●’ represented the N-terminal conser-
vative sequence of helix C. Zn: Zootermopsis nevadensis; Pa: Periplaneta americana.
ZnCYP4C1 (Acc. Number: KDR11277.1); ZnCYP6K1 (Acc. Number: KDR14071.1);
ZnCYP6J1 (Acc. Number: KDR14072.1).
(TIF)

S2 Fig. Amino acid sequence alignment of putative GSTD with other species. Identical
amino acids are shaded in grey for 80% similarity and black for 100% similarity. The ‘$’ indi-
cated the catalytic residue Ser. Residues involved in binding glutathione (G-site) were marked
with G and those forming the hydrophobic site (H-site) with H. The secondary-structure ele-
ments were underlined and labelled (α-helices starting with α and β-strands with β). Bg: Blat-
tella germanica; Cp: Cryptocercus punctulatus; Lm: Locusta migratoria; Pa: Periplaneta
americana. BgGSTD (Acc. Number: AEV23880.1); CpGSTD1 (Acc. Number: AFK49803.1);
LmGSTD (Acc. Number: ADR30117.1).
(TIF)

S3 Fig. Amino acid sequence alignment of putative alpha-amylase with other species. Iden-
tical amino acids are shaded in grey for 80% similarity and black for 100% similarity. The ‘■’
indicated the active site, ‘$’ indicated the catalytic site and ‘▲’ indicated the Ca-binding site.
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Bg: Blattella germanica; Rs: Reticulitermes speratus; Zn: Zootermopsis nevadensis; Pa: Peripla-
neta americana. Bgα-amylase (Acc. Number: ABC68516.1); Rsα-amylase (Acc. Number:
AGJ52072.1); Znα-amylase (Acc. Number: KDR10404.1).
(TIF)

S4 Fig. Amino acid sequence alignment of putative beta-glucosidase with other species.
Identical amino acids are shaded in grey for 80% similarity and black for 100% similarity. The
‘$’ indicated the amino acid residue of active site. Blue region showed the conservative amino
acid residue. Nt: Nasutitermes takasagoensis; Nk: Neotermes koshunensis; Ps: Panesthia angusti-
pennis spadica; Pa: Periplaneta americana. Ntβ-glucosidase (Acc. Number: BAI50023.1); Nkβ-
glucosidase (Acc. Number: BAB91145.1); Psβ-glucosidase (Acc. Number: BAU51446.1).
(TIF)

S5 Fig. Amino acid sequence alignment of putative aminopeptidase with other species.
Identical amino acids are shaded in grey for 80% similarity and black for 100% similarity. The
‘▲’indicated the Zinc-metalloprotease domain (HEXXH), ‘$’ indicated the Zn binding site, ‘■’
indicated the N-glycosylation sites and ‘●’indicated the O-glycosylation sites. Bi: Bombus impa-
tiens; Hs: Harpegnathos saltator; Zn: Zootermopsis nevadensis; Pa: Periplaneta americana. Bi
aminopeptidase (Acc. Number: XP_003487612.1); Hs aminopeptidase (Acc. Number:
EFN87052.1); Zn aminopeptidase (Acc. Number: KDR22502.1).
(TIF)

S1 Table. Primers used in qRT-PCR.
(DOC)

S2 Table. Length distribution of contigs and unigenes in the P. americanamidgut tran-
scriptome.
(DOCX)

S3 Table. Percentage of homologous hits in the P. americanamidgut transcriptome to
other insects. Species which have more than 1.0% matching hits are shown.
(DOCX)
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