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abstRact Chimeric antigen receptor (CAR) T cells hold promise for the treatment of acute 
myeloid leukemia (AML), but optimal targets remain to be defined. We demonstrate 

that CD93 CAR T cells engineered from a novel humanized CD93-specific binder potently kill AML 
in vitro and in vivo but spare hematopoietic stem and progenitor cells (HSPC). No toxicity is seen in 
murine models, but CD93 is expressed on human endothelial cells, and CD93 CAR T cells recognize 
and kill endothelial cell lines. We identify other AML CAR T-cell targets with overlapping expression 
on endothelial cells, especially in the context of proinflammatory cytokines. To address the challenge 
of endothelial-specific cross-reactivity, we provide proof of concept for NOT-gated CD93 CAR T cells 
that circumvent endothelial cell toxicity in a relevant model system. We also identify candidates for 
combinatorial targeting by profiling the transcriptome of AML and endothelial cells at baseline and 
after exposure to proinflammatory cytokines.

SiGNifiCANCE: CD93 CAR T cells eliminate AML and spare HSPCs but exert on-target, off-tumor tox-
icity to endothelial cells. We show coexpression of other AML targets on endothelial cells, introduce a 
novel NOT-gated strategy to mitigate endothelial toxicity, and demonstrate use of high-dimensional 
transcriptomic profiling for rational design of combinatorial immunotherapies.

See related commentary by Velasquez and Gottschalk, p. 559.
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iNtRODUctiON
Acute myeloid leukemia (AML) is the most prevalent acute 

leukemia in the United States, accounting for more than 11,000 
deaths each year, with a 5-year overall survival rate of less than 
30% (1). Molecular analysis has accelerated understanding of the 
genetic diversity of AML and resulted in the approval of numer-
ous molecularly targeted agents, including a Bcl-2 inhibitor  

(venetoclax), epigenetic modifiers of IDH1/2 (enasidenib, 
ivosidenib), FLT3 inhibitors (midostaurin, gilteritinib), and 
a Hedgehog inhibitor (glasdegib; ref. 2). Gemtuzumab ozo-
gamycin, a CD33-directed antibody–drug conjugate, is the only 
immunotherapy agent currently approved for use in AML (3, 4). 
Despite these emerging therapies, relapse rates, morbidity, and 
overall mortality in patients with AML remain high and novel 
therapies are needed to improve survival and decrease toxicity.

CD19 chimeric antigen receptor (CAR) T-cell therapy has 
greatly expanded therapeutic options for patients with chem-
orefractory B-cell acute lymphoblastic leukemia (B-ALL) and 
diffuse large B-cell lymphoma (DLBCL; refs. 5–12), and these 
results have prompted intense interest in developing CAR T 
cells for other hematologic malignancies, including AML. CAR 
T cells are cytotoxic lymphocytes engineered to express a recep-
tor that combines a tumor antigen recognition domain, normally 
in the form of a single-chain fragment variable (scFv), with endo-
domains that impart effector functions derived from the native 
T-cell receptor and costimulatory proteins. Antitumor efficacy 
is often accompanied by hematopoietic toxicity due to shared 
antigen expression within the hematopoietic system (13–18), 
although many have reasoned that hematopoietic toxicity is 
acceptable if AML CAR T-cell therapy is administered in the 
context of myeloablation as a bridge to hematopoietic cell 
transplant (HCT; refs. 19–21), or in conjunction with engineer-
ing strategies for CAR depletion or regulation (14, 19, 22). 
Preclinical studies in xenograft models have shown encourag-
ing anti-AML activity of CAR T cells directed against a number 
of different cell surface molecules (13, 14, 16–18, 21, 23–34), 
but only a few have been translated into early-phase clinical 
trials, most notably CD123 and CD33 (35). The few available 
published reports of the early clinical experience have shown 
muted effectiveness in patients compared with the preclini-
cal data (36–39). Moreover, serious adverse events have been 
reported. The first two patients on a CD123 CAR trial devel-
oped grade 4 capillary leak syndrome, resulting in one patient 
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death and termination of the study (40). Expression of CD123 
on endothelial cells may render them susceptible to on-target, 
off-tumor toxicity (41), a factor that could have contributed to 
these clinical outcomes. These reports underscore the impor-
tance of extending preclinical studies of normal tissue toxicity 
for new myeloid targets beyond the hematopoietic system.

CD93 is a cell surface lectin that is highly expressed at diag-
nosis and relapse in a sizable fraction of AML cases (42). In 
addition, CD93 has been implicated in leukemogenesis and 
maintenance of a cycling, nonquiescent population of leuke-
mia stem cells in MLL-rearranged (MLLr) AML (43). Here, we 
engineered a second-generation CAR incorporating a novel 
CD93-specific scFv, which demonstrated leukemic clearance in 
preclinical xenograft models and induced limited hematopoi-
etic toxicity. CD93 is largely absent from nonhematopoietic 
tissues. However, IHC and single-cell RNA sequencing (scRNA-seq)  
revealed expression in endothelial cells, and we observed tar-
geting of endothelial cell lines with the CD93 CAR. In the 
same scRNA-seq datasets, CD123 expression mirrored CD93 
on endothelial cell subsets, and endothelial cells exposed to 
inflammatory cytokines expressed both CD123 and CD38, 
indicating that a risk for endothelial cell toxicity may be signifi-
cant for AML targets beyond CD93. To address the problem 
of shared antigen expression between AML and endothelial 
cells, we employ a NOT-gate strategy and demonstrate mitiga-
tion of endothelial cell toxicity by the CD93 CAR. Finally, we 
implement bulk RNA sequencing (RNA-seq) to more broadly 
characterize the AML and endothelial surfaceome to provide 
an inventory of antigens with suitable expression profiles for 
single or combinatorial targeted AML immunotherapies.

ResUlts
CD93 is a Novel Cell Surface Target in AML

We sought to investigate whether CD93 is a suitable target 
for CAR-based immunotherapy of human AML. Using flow 
cytometry, we detected CD93 expression on the majority of 
primary AML samples, often uniformly and at high levels, 
including on both MLLr AML and non-MLLr AML (Fig. 1A; 
Supplementary Fig. S1). CD93 is not expressed on hematopoi-
etic stem cells (HSC) or any myeloid progenitor populations 
(Fig. 1B) but is expressed on mature myeloid cells, including 
neutrophils and monocytes. CD93 is absent on lymphocytes, 
red blood cells, and platelets (Fig. 1C). The absence of expres-
sion on hematopoietic progenitors distinguishes CD93 from 
many previously studied AML targets, including CD33, which 
is expressed on myeloid progenitors but not on HSCs (44–46), 
and CD123, which is expressed broadly on myeloid and lym-
phoid progenitors and on HSCs (13, 47, 48).

CD93 CAR T Cells Mediate Antigen-Specific 
Effector function and Cytotoxicity In Vitro 
against AML Targets

To redirect T-cell specificity against CD93-expressing AML 
cells, we generated retroviral vectors encoding CD93  CARs 
that incorporated a CD93-specific scFv derived from a human-
ized chimeric antibody (F11) developed in our lab (Supplemen-
tary Fig. S2). Second-generation CARs were constructed using 
codon-optimized sequences encoding the F11 scFv at the N- 
terminus with light and heavy chains connected through a (G3S)4 

linker, and fused to either a CD28 hinge-transmembrane, 
CD28 costimulatory endodomain and CD3ζ (CD93–28z),  
or to a CD8α hinge-transmembrane, 4-1BB costimulatory 
endodomain and CD3ζ (CD93–BBz; Fig. 2A). Primary T cells 
activated and transduced with CD93–28z or CD93–BBz CAR 
expanded 30- to 50-fold in culture with consistent CAR trans-
duction efficiency of >75% and with comparable mean fluores-
cence intensity (MFI; Supplementary Fig.  S3A–S3C). Similar 
to previous reports (49), T-cell exhaustion markers PD-1 and 
TIM-3 were higher in CD93–28z CAR T cells compared with 
CD93–BBz CAR T cells (Supplementary Fig. S3D).

To evaluate CD93 CAR T-cell function in vitro, we analyzed 
cytokine production and cytotoxicity after coculture with 
AML cell lines with varying levels of CD93 (Fig. 2B). Of note, 
the orientation of the light and heavy chain of the scFv did not  
impact CAR T-cell efficacy in vitro (Supplementary Fig. S4A–
S4D). CD93 CAR T cells produced minimal cytokines at 
baseline but secreted IFNγ and IL2 upon recognition of 
CD93-expressing AML cells, in contrast to mock-transduced 
T cells (Fig. 2C). Similar to previous reports emphasizing the 
importance of target antigen density (50–56), cytokine pro-
duction was directly proportional to the intensity of CD93 
staining on the surface of AML cells (Fig. 2D; Supplementary 
Fig.  S4E). CD93 CAR T cells also killed AML cells stably 
expressing GFP in an IncuCyte cytotoxicity assay (Fig. 2E).

CD93 CAR T Cells Exert Potent Antileukemic 
Effect In Vivo in Cell Lines and Patient-Derived 
Xenograft Murine Models

We next evaluated the in vivo efficacy of CD93 CAR T cells in 
two murine xenograft models of human AML. NOD/SCID/
IL2Rγ−/− (NSG) mice were sublethally irradiated and engrafted 
with luciferase-expressing THP-1 cells. Once engraftment was 
established by bioluminescent imaging (BLI), the mice were 
treated with a single dose of mock-transduced, CD93–28z, 
or CD93–BBz CAR T cells and then monitored by weekly 
BLI as a surrogate measurement of AML burden (Fig.  3A). 
Leukemic burden of mice treated with either CD93–28z or 
CD93–BBz CAR T cells decreased within 1 week of treatment 
compared with mice treated with mock T cells, a difference 
that persisted for the duration of the experiment (Fig.  3B; 
Supplementary Fig.  S5A and S5B). We observed increased 
leukemic clearance in CD93–28z CAR–treated mice, which 
correlated with greater concentration of CD4+ and CD8+  
T cells isolated from peripheral blood at day 14 after CAR 
T-cell treatment, supporting the importance of in vivo T-cell 
expansion for leukemic clearance (Fig. 3C).

To expand our studies to primary human leukemia sam-
ples, we tested CD93 CAR T cells in NSG mice sublethally 
irradiated and injected with primary AML cells (Fig.  3D), 
which expressed uniformly high levels of CD93 (Fig. 3E). The 
mice were monitored for leukemic engraftment by serial bone 
marrow aspiration (BMA) and treated with mock-transduced 
or CD93 CAR T cells once human leukemia cells comprised 
on average at least 10% of the cells isolated from the bone 
marrow (BM). Of note, engraftment levels at time of treat-
ment were variable and some mice had near complete BM 
invasion by human AML. Regardless of level of engraftment, 
all mice treated with CD93 CAR T cells experienced full 
remission measured by flow cytometry from the BM by  
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Figure 1.  CD93 is expressed on AML and mature myeloid cells. A, CD93 expression was evaluated by flow cytometry, in both MLLr or non-MLLr 
primary AML patient samples, or in HSCs from human healthy bone marrow, identified by Lin−CD34+CD38−CD90+CD45RA− staining. All cells were stained 
with CD93 (blue) or isotype (red). Left, representative histograms of AML samples. Right, quantification of relative CD93 expression of all AML samples 
assessed compared with HSCs, represented as fold mean fluorescence intensity (MFI) change compared with isotype control (n = 11 for MLLr, n = 14 for  
non-MLLr, n = 2 for HSCs). B, Bulk CD34+ selected cells that were either unstained or stained with CD93 and a panel of antibodies to delineate the listed  
progenitor populations (see Supplementary Fig. S6 for gating strategy). CMP, common myeloid progenitor; GMP, granulocyte–monocyte progenitor; 
LMPP, lymphoid-primed multipotent progenitor; MEP, megakaryocyte–erythrocyte progenitor; MPP, multipotent progenitor. C, CD93 expression on 
mature hematopoietic cells was evaluated by staining peripheral blood mononuclear cells (PBMC) with CD93 and lineage markers including CD19 (B cells), 
CD3 (T cells), CD235a (red blood cells, RBC), CD41a (platelets), CD15 (neutrophils), and CD14 (monocytes). Data are representative of 25 AML samples 
(A; n = 11 MLLr,  n = 14 non-MLLr), 2 healthy donor bone marrow samples (A and B), and 5 healthy donor PBMC samples (C).
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4 weeks and the majority of the mice had no leukemia 
detectable through 13 weeks after CAR treatment (Fig.  3F). 
All mice receiving mock-transduced T cells succumbed to 
disease (Fig. 3G). There was no significant difference among 
the groups in T-cell persistence at any time point, and all but 
one CD93 CAR–treated mouse had T-cell persistence through 
13 weeks (Fig. 3H). BMA at 1 week after CAR T-cell injection 
revealed massive cell death in the CD93 CAR–treated groups, 
precluding analysis of leukemic burden at early time points 
in these groups (Supplementary Fig.  S5C). The mice had 
minimal systemic toxicity during this time and recovered 
quickly. A complete blood count 2 weeks after CAR T-cell 
treatment demonstrated normal hematologic parameters in 

the CD93 CAR–treated groups compared with leukocytosis, 
thrombocytopenia, and anemia in the mock-treated group 
(Supplementary Fig. S5D). One mouse in the CD93–28z- and 
two in the CD93–BBz-treated groups developed detectable 
leukemia at later time points, and relapses were driven by 
CD93-positive cells (Supplementary Fig. S6).

CD93 CAR T Cells Do Not Disrupt Hematopoietic 
Progenitor Viability or function

Most AML CAR targets under development are expressed to 
some extent on normal hematopoietic cells, which is predicted 
to impact their respective toxicity profiles. Because CD93  
expression within the normal hematopoietic compartment is 
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Figure 2.  CD93 CAR T cells exert antileukemic effects against AML in vitro. A, Structure of CD93–28z and CD93–BBz CARs. From N- to C-terminus, CD93 
CARs were designed with VL and VH of the CD93 specific F11 scFv connected via a (G4S)3 linker, CD28 or CD8α TM, CD28 or 4-1BB costimulatory domain, 
and CD3ζ activation domain. TM, transmembrane. B, CD93 expression on AML cell lines was measured by flow cytometry after staining with biotinylated F11 
antibody, followed by streptavidin–APC. C, Mock-transduced, CD93–28z, or CD93–BBz CAR T cells were incubated at a 1:1 effector-to-target (E:T) ratio for 
24 hours, and cytokine production was measured in the supernatant by ELISA (unpaired t test, summary data of experiments from three donors). IFNγ secre-
tion: mock versus CD93–28z and CD93–BBz in NOMO-1, OCI-AML3, and THP-1, P < 0.0001. IL2 secretion: mock versus CD93–BBz in MOLM-13, P = 0.0338; 
mock versus CD93–28z in NOMO-1, P = 0.0027; mock versus CD93–BBz in NOMO-1, P = 0.0002; mock versus CD93–BBz in Kasumi-1, P = 0.0011; mock versus 
CD93–28z in OCI-AML3, P = 0.0015; mock versus CD93–BBz in OCI-AML3, P = 0.0063; mock versus CD93–28z in THP-1, P = 0.0029; mock versus CD93–BBz 
in THP-1, P < 0.0001; and CD93–28z versus CD93–BBz in THP-1, P = 0.0017. D, IL2 production of CD93 CAR T cells correlates directly to MFI of CD93 on vari-
ous AML cell lines, normalized to HEL-2, an AML cell line with low CD93 expression that does not induce cytokine production; *denotes statistical significance: 
P = 0.0289 for CD93–28z and P = 0.0650 for CD93–BBz (linear regression analysis). E, Mock-transduced, CD93–28z, or CD93–BBz CAR T cells were cocul-
tured with AML cells stably expressing GFP at a 1:1 E:T ratio, and GFP expression was measured in an IncuCyte assay for 72 hours; P < 0.0001 for mock versus 
CD93 CAR for each cell line (two-way ANOVA, summary data from experiments from n = 2 donors for Kasumi-1 and n = 3 donors for OCI-AML3 and THP-1).

limited to mature myeloid cells (Fig. 1C and D), we hypoth-
esized that CD93 CAR T cells would have minimal impact on 
hematopoietic stem and progenitor cell (HSPC) viability or 
function. Indeed, CD93 CAR T cells did not secrete cytokines 
following exposure to cord blood–derived CD34+ cells, which 
comprise a variety of HSPC populations (Fig. 4A). To further 
probe the impact of CD93 CAR T cells on HSPC prolifera-
tion and differentiation, cord blood–derived CD34+ cells were 
untreated or exposed to mock-transduced or CD93 CAR T 
cells and assayed for colony-forming ability. There was no 

difference among the erythroid (CFU-E) or granulocyte– 
macrophage (CFU-G/M/GM) groups (Fig. 4B). Flow cytometric 
analysis of HSPC subsets after exposure to CD93 CAR T cells 
confirmed that the proportion of progenitor cells within each 
subset, whether segregated by CD34+CD38+/CD34+CD38– 
cells (Fig. 4C) or more specifically by HSCs, common myeloid 
progenitors, and GM progenitors, was not altered after expo-
sure to CD93 CAR T cells (Fig. 4D; Supplementary Fig. S7). 
Together these data support that HSPCs are spared from 
CD93 CAR T-cell toxicity.
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Figure 3.  CD93 CAR T cells demonstrate antileukemic activity in vivo in murine xenograft models. A, Schematic of the THP-1 xenograft model. NSG  
mice were sublethally irradiated (200 cGy) on day 7 and then injected via tail vein on day 6 with THP-1 stably expressing GFP/luciferase. BLI was performed 
on day 0 to quantify engraftment to randomize the treatment groups (n = 5 per group), and then mice were injected via tail vein with mock-transduced, CD93–28z, 
or CD93–BBz CAR T cells. BLI was measured weekly to quantify AML burden. Peripheral blood was collected at day 14 to measure CAR T-cell expansion.  
B, Average BLI for THP-1–engrafted mice with leukemic progression in those treated with mock-transduced CAR T cells (black), and leukemic control in 
those treated with CD93–28z (blue) or CD93–BBz (purple) CAR T cells; P < 0.0001 at weeks 2 and 3 post-CAR (two-way ANOVA, data include experiments 
with n = 2 donors). C, Measurement of CD4+ and CD8+ T-cell expansion at 2 weeks post–CAR T-cell injection. CD4+ and CD8+ total T cells/μL were measured 
in the peripheral blood by flow cytometry after red blood cell lysis (unpaired t test). Comparing CD4+ CD93-28z versus CD93-BBz, P = 0.0070; comparing 
CD8+ CD93-28z versus CD93-BBz, P = 0.0202. D, Schematic of a patient-derived xenograft model. NSG mice were sublethally irradiated (200 cGy) 1 day 
prior to injection via tail vein of SU555 primary patient-derived AML. Leukemic engraftment was evaluated by BMA every 3 to 4 weeks until 20 weeks after 
engraftment when AML percentage within the BM was at least 10% on average among the mice in each group randomized to receive either mock-transduced 
(n = 17), CD93–28z (n = 15), or CD93–BBz (n = 20) CAR T cells. CAR T cells were injected via tail vein, BMA was done 1 week and every 3 to 4 weeks (q3–4 
weeks) thereafter, and leukemic clearance and T-cell expansion and persistence were monitored. E, CD93 expression of primary patient AML sample SU555 
(blue) compared with isotype (red). f, AML clearance was monitored by flow cytometry of BMA at 1 week and every 3 to 5 weeks after CAR T-cell injection 
(unpaired t test). G, Survival of mice until 100 days after injection (log-rank Mantel–Cox test). H, T-cell persistence measured from BMA as described in f. 
Experiments in f–H include summary data from n = 3 donors. PB, peripheral blood; XRT, radiation.
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Figure 4.  CD93 CAR T cells do not affect hematopoietic progenitor viability or regenerative capacity. A, Mock-transduced, CD93–28z, or CD93–BBz 
CAR T cells were incubated alone, with THP-1 cells as a positive control, or with two separate cord blood (CB) samples after CD34+ selection. Supernatant 
was collected at 18 hours, and cytokine production (IFNγ and IL2) was measured by ELISA (unpaired t test, data representative of experiments using n = 2  
donors). P < 0.0001 for all differences noted between mock and CD93-28z or CD93-BBz when cocultured with THP-1 cells; P = 0.0073 in mock versus 
CD93–28z (IFNγ) and P = 0.0133 in mock versus CD93–BBZ (IFNγ) when cocultured with cord blood #1. B, CD34+ cells were sorted after coculture with 
mock-transduced, CD93–28z, or CD93–BBz CAR T cells, and then suspended in methylcellulose and incubated for 14 days. CFU-G/M/GM and CFU/E colo-
nies from CAR-treated samples were quantified and compared with CD34+ cells not exposed to T cells. Graph represents normalization to mock averaged 
over two cord blood samples. C and D, After an 18-hour coculture of CAR T cells and cord blood–derived CD34+ cells, flow cytometry was used to quantify 
the proportion of CD34+ cell subsets, either separated by CD38+ (black)/CD38− (gray; C) or proportions of HSCs (dark blue), common myeloid progenitors 
(CMP; green), or granulocyte–monocyte progenitors (GMP; light blue; gating strategy detailed in Supplementary Fig. S6; D).

A

C D

B
1,000

1.5

CFU-G/M/GM

CFU-E

1.0

C
ol

on
ie

s 
no

rm
al

iz
ed

 to
 m

oc
k

0.5

0.0

ns **** *
**** ****

****
ns ****

** ns ns ns
ns

Mock

CD93–28z

CD93–BBz

ns ns

ns ns
ns ns ns ns

ns
ns ns

500

IF
N

γ 
(p

g/
m

L)

0

1,500

1,000

500IL
2 

(p
g/

m
L)

0

100
120 CMP

GMP

HSC

All others

100

80

60

40

20

0

CD34+CD38−

CD34+CD38+
80

60

Fr
ac

tio
n 

of
 L

in
−  

ce
lls

Fr
ac

tio
n 

of
 L

in
−  

ce
lls

40

20

0

M
oc

k

CD93
–2

8z

CD93
–B

Bz

T ce
lls

 o
nly

No T
 ce

lls

M
oc

k
CD93

–2
8z

CD93
–B

Bz

M
oc

k
CD93

–2
8z

CD93
–B

Bz

THP-1

CD34
+  (C

B#1
)

CD34
+  (C

B#2
)

CD93 is Expressed on Endothelial Cells with a 
Similar Expression Pattern to CD123

CD93 expression on normal tissue was evaluated by IHC 
of a tissue microarray. H-scores for all tissues analyzed were 
<100 (Supplementary Fig.  S8A), which is generally accepted 
as low or no expression (57). Despite low overall expression 
in normal tissues, strong staining was noted in endothelial 
cells throughout multiple organ systems (Fig.  5A). Analy-
sis of bulk transcriptional data can mask even substantial 
expression of a target like CD93 on endothelial cells, which 
comprise only a fraction of cells within any given organ. 
Endothelial expression and susceptibility to CAR T-cell tar-
geting have been considered for other AML targets, most 

notably CD123 (40, 41), so we assessed baseline endothelial  
expression of CD93 and CD123 by interrogating an scRNA-
seq atlas of healthy lung and paired peripheral blood (Fig. 5B; 
ref. 58). Uniform manifold approximation and projection 
(UMAP) clustering defined by gene expression profiles resulted 
in 17 distinct cell populations (Fig. 5C). Hematopoietic cells, 
defined broadly by PTPRC (CD45), can be found in many clus-
ters, whereas the monocyte marker CD14 and the T-lymphocyte  
marker CD3D have more restricted expression patterns 
(Fig. 5D). CLDN5, a pan-endothelial marker (59), is expressed 
highly in clusters 1, 5, and 13, whereas VWF, EDNRB, and 
CCL21 likely define stalk-like, tip-like, and high endothelial 
venule endothelial subsets, respectively (Fig. 5E; refs. 60, 61). 
CD93 and IL3RA (CD123) are each expressed in a subset of 
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Figure 5.  CD93 and CD123 are expressed on normal myeloid and endothelial cells. A, IHC using CD93 antibody on a tissue microarray with a panel of 
normal tissues (magnification equivalent to 20×; insets highlight endothelial cell staining). UMAP projection of single cells, colored either by patient sam-
ple (B) or Leiden gene expression cluster (C). D, UMAP of single cells, colored by expression of hematopoietic marker genes: PTPRC (CD45) is expressed 
primarily within clusters 0, 2, 4, 6, 9, 12, and 15; CD14 is expressed primarily within clusters 0, 1, 5, 6, and 8; and CD3D is expressed in cluster 2. E, UMAP 
projection of single cells, colored by expression of endothelial marker genes marking different endothelial subsets: CLDN5 is expressed in all endothelial 
clusters (1, 5, and 13); VWF is expressed in stalk-like endothelial cells (cluster 1); EDNRB is expressed in a cluster that contains tip-like endothelial cells 
(cluster 5); and CCL21 is expressed only in a cluster that represents endothelial venules (cluster 13). f, UMAP of single cells, colored by expression of 
CD93 and IL3RA (CD123) demonstrated expression in endothelial subclusters (most highly expressed in cluster 1). G, Violin plots displaying the expres-
sion level of tissue-specific markers representative of each cluster.
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myeloid CD14+ cells as expected but are also clearly expressed 
in endothelial clusters (Fig. 5F). CD93 and IL3RA expression 
is compared with the most distinct signature genes for each 
cell type in a violin plot (Fig.  5G). To ensure the expression 
patterns are not unique to lung tissue, a similar analysis was 
performed on scRNA-seq data from nonmalignant pancreatic 
tissue confirmed clear expression of CD93 and IL3RA within 
the endothelial compartment despite minimal expression in 
other clusters (Supplementary Fig. S8B–S8G).

On-Target, Off-Tumor Toxicity of CD93 CAR T Cells 
against Endothelial Cells is Mitigated with a  
NOT-Gated CAR T-cell Strategy In Vitro

Flow cytometry confirmed that CD93 expression on immor-
talized human umbilical vein endothelial cell (iHUVEC)  
and telomerase-immortalized human microvascular endothe-
lium cell lines (TIME) was nearly as high as on the AML cell 
line THP-1 (Fig.  6A). Furthermore, CD93–28z CAR T cells 
secreted cytokines upon exposure to both iHUVEC and TIME 
endothelial cell lines (Fig. 6B). Although the scFv contained in 
the CD93 CAR studied here does not cross-react with murine 
CD93 and thus endothelial toxicity cannot be assessed in 
murine models (Supplementary Fig. S9), single-cell transcrip-
tomic analysis of the Tabula Muris database demonstrates a 
similar expression pattern of CD93 on murine endothelial 
cells (Supplementary Fig. S10).

Previous groups have demonstrated that on-target, off-
tumor toxicity can be overcome with NOT-gated CAR T cells 
that express a second inhibitory CAR (iCAR) specific for an 
antigen present on healthy cells but absent on tumor cells. 
Given the propensity for myeloid and endothelial coexpres-
sion of target antigens, we hypothesized that a NOT-gate  
strategy targeting molecules expressed on endothelium, but 
not myeloid cells, could overcome this problem. To test 
this, we created an in vitro model of “on-target, off-tumor” 
endothelial cells to assess the specificity of iCAR-based NOT-
gated CAR T cells (Fig. 6C), wherein the iHUVEC endothelial 
cell line was engineered to stably express a truncated CD19 
(extracellular and transmembrane domain only; Fig.  6D). 
CD19-specific iCARs were designed to include signaling 
endodomains from immunoreceptor tyrosine-based inhibi-
tory motif (ITIM)–containing proteins, including PD-1 and 
TIGIT, or no intracellular signaling domain (Pdel) as a con-
trol (Fig.  6E). The NOT-gated CD93 CAR T-cell products 
exhibited robust expansion, high transduction efficiency, and 
CD4/8 ratios influenced by donor, not by the presence of the 
iCAR construct (Fig.  6F; Supplementary Fig.  S11A–S11C). 
Cells that coexpressed iCARs with ITIM-containing endo-
domains demonstrated decreased expression of exhaustion 
markers PD-1 and TIM3 at baseline compared with CD93–28z  
(Supplementary Fig. S11D). Upon coculture with iHUVEC-19 
“on-target, off-tumor” cells, NOT-gated CD93 CAR T cells 
secreted significantly less IFNγ and IL2 compared with 
CD93–28z/Pdel control. IFNγ production against the “on-
target, on-tumor” AML cell line THP-1 was preserved across 
all constructs. Similar to previous reports (62), the PD-1–
based iCAR provided antigen-specific inhibition of cytokine 
production. The novel TIGIT-based iCAR inhibited cytokine 
production equally as well in endothelial cells, but this was 
true upon recognition of both iHUVEC and iHUVEC-19 

cells, suggesting more baseline antigen-independent inhibi-
tory signaling compared with the PD-1–based iCAR (Fig. 6G).

Defining Endothelial- and AML-Predominant 
Expression at Baseline and in an inflammatory 
Microenvironment Can inform Rational 
Combinatorial CAR T-cell Strategy

Previous work has demonstrated cytokine inducibility of 
CD123 expression on endothelial cells that may increase sus-
ceptibility to CAR T-cell toxicity (41), but dynamic expression 
has not been described for other AML targets. Therefore, we 
performed a targeted expression analysis of CD93 and other 
select AML targets on endothelial cell lines in the absence 
and presence of the proinflammatory cytokines IFNγ and 
TNFα. Cell surface phenotypic analysis revealed that CD123 
and CD38 are not expressed highly at baseline on the TIME 
endothelial cell line, but increase substantially upon expo-
sure to IFNγ and TNFα (Fig. 7A). Cytokine-driven inducible 
expression is both time and dose dependent (Fig. 7A and B). 
In contrast, CD33 is not expressed on endothelial cells under 
any condition. Targeted RNA transcriptional analysis rein-
forced these expression patterns (Fig.  7C). Pathway analysis 
suggests that the changes seen in CD123 and CD38 expres-
sion are linked by enhancement of the JAK–STAT signaling 
pathway (Supplementary Fig. S12).

Figure 6 provides proof of concept that NOT-gated CAR T 
cells endowed with an iCAR specific for an endothelial cell–
specific antigen could overcome on-target, off-tumor toxicity 
of an AML CAR directed against a target also expressed on 
endothelial cells. However, the optimal endothelial-specific 
iCAR target has not been identified. To advance this objec-
tive, we implemented an unbiased transcriptional analysis of 
differential gene expression between endothelial and AML 
cells, both at baseline and in a proinflammatory microen-
vironment. To ensure consistency and to avoid a cell line–
specific phenomenon, we performed bulk RNA-seq on two 
endothelial cell lines and three AML cell lines that were either 
untreated or incubated with cytokines for 24 hours. Principal 
component analysis (PCA) revealed very little transcriptional 
variance between the two endothelial cell lines, which formed 
a grouping distinct from the AML cells. Each AML cell line 
under all treatment conditions clustered as a group divergent 
from the others, as would be predicted from their inherent 
genetic variability (Fig.  7D). When filtering by cell surface 
designation, genes can be grouped into 11 clusters that 
emphasize differences between endothelial cells and AML 
cells, in untreated or in cytokine-treated conditions (Fig. 7E). 
On the basis of initial filtering parameters, we identified 
232 candidate targets for an iCAR-based NOT-gate, which 
include the well-recognized endothelial cell surface molecules 
PECAM1 and TIE1 (Fig. 7F). More work will be necessary to 
validate these as candidate iCAR targets, including verifica-
tion of preferential endothelial cell surface protein expression 
compared with AML, confirming lack of expression across a 
variety of other normal tissues, and identifying available scFv 
sequences from which to generate iCARs. Ultimately, this 
strategy could result in an effective and specific NOT-gate 
platform that could allow for translation of CAR T cells with 
strong reactivity toward AML-expressed antigens, such as 
CD93 and CD123, while avoiding endothelial cross-reactivity.
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DiscUssiON

Outcomes remain dismal for patients with relapsed or 
refractory AML despite the emergence of many novel targeted 
therapies over the last decade. Enthusiasm for adding CAR 
T cells and other immunotherapies to the AML treatment 
arsenal is substantial, but progress has been hampered by the 
challenges of identifying tumor-specific antigens. Here, we 
identify CD93 as a novel target in AML that may have particu-
lar relevance in MLLr AML (43). We report potent antigen- 
specific, antileukemic activity of CD93 CAR T cells. After 
demonstrating antileukemic efficacy, we focused our efforts 
on identifying on-target, off-tumor toxicities. CD93 CAR 
T cells spare HSPCs, a property distinct from many other 
AML CARs (13–18) but may eliminate mature myeloid cells 
given CD93 expression on monocytes and neutrophils. The 
potential for prolonged neutropenia could have serious con-
sequences for patients, and may preclude use of CD93 CAR T 
cells without a CAR T elimination strategy or as a lead in to 
HCT. We did not find significant differences in most analyses 
comparing CD93–28z to CD93–BBz, but if CAR T cells for 
AML will be used as a bridge to HCT, a CD28 costimulatory 
domain will likely be desirable because CD28-based CAR T 
cells generally expand faster and do not persist as long as 
those with a 4-1BB costimulatory domain (63). This “fast-on, 
fast-off” strategy could permit stem cell engraftment and 
hematologic recovery without the need for a CAR ablation 
strategy. However, further study is needed to understand the 
balance in patients with AML between immediate CAR T-cell 
efficacy for leukemic clearance and long-term CAR T persis-
tence for durable leukemic control.

In physiologic and pathologic conditions, blood vessels 
and blood cells are inextricably linked from early in devel-
opment. Endothelial and hematopoietic cells share a com-
mon precursor, termed a “hemangioblast” (64–66). Moreover, 
HSCs appear to promote migration and maintenance of 
healthy endothelial cells (67), and endothelial cells secrete sig-
nals that increase survival and proliferation of both normal 
and malignant myeloid cells (68, 69). Emerging data support 
a developmental trajectory of endothelium to hemogenic 
endothelium to HSCs and other myeloid progenitors, with 
significant overlap in essentially a continuum of gene expres-
sion (70). Thus, it is not surprising that targets developed for 
AML will likely often be coexpressed on endothelium, which 
we have shown here for CD93. Our results also raise concerns 
about susceptibility of endothelial cells to CAR T cells target-
ing CD123 and CD38, particularly in the setting of effective 
CARs that promote a proinflammatory microenvironment 
that could increase cell surface expression.

With the exception of the serious adverse events described 
in the UCART123 trial (40), other clinical reports of CD123 
CARs have not raised serious safety issues, but this could be 
falsely reassuring in the absence of reliable potency (38, 39). 
A patient with relapsed B-ALL received CD38 CAR T cells 
that resulted in multisystem organ damage refractory to sup-
portive therapy and was highly concerning for on-target, off-
tumor effects (71). As more patients are treated with CD123 
and CD38 CARs and antileukemic activity improves, patients 
will need to be monitored for signs of capillary leak syndrome 
or other endothelial cell toxicity. These reports encourage 

caution and mandate detailed characterization of on-target, 
off-tumor toxicity early in CAR development.

Preclinical model systems including in vivo xenografts are 
insufficient for analysis of on-target, off-tumor toxicity, par-
ticularly when the scFv of the CAR does not cross-react with 
murine tissue, as is the case with the CD93 CAR. Publicly 
available databases that rely on bulk RNA-seq can be use-
ful for initial screening but may not identify a minority 
population of susceptible cells. High-dimensional scRNA-seq 
was recently used to identify a rare population of CD19-
expressing mural cells in the brain, which is hypothesized 
to contribute to neurotoxicity seen with CD19 CAR (72). 
Similarly, despite low expression on bulk parenchymal tissue, 
CD93 and CD123 can be clearly identified on endothelial 
populations. Development of CAR T cells against any novel 
tumor target requires thorough in silico screening of normal 
tissues that may have potential for on-target, off-tumor tox-
icities. This study demonstrates the power of integrating 
nuanced information provided by scRNA-seq databases as 
part of these early analyses. However, even thorough analysis 
of transcriptional data cannot substitute for empiric con-
firmation of cell surface expression intensity and stability, 
and demonstration of CAR T-cell safety in relevant model  
systems. Finally, as a general principle, murine models have 
not been highly predictive of immune toxicity observed in 
human studies, emphasizing the importance of carefully 
controlled early-phase clinical trials for any novel immuno-
therapeutic agent.

Combinatorial targeting with the goal of circumventing 
CAR T-cell on-target, off-tumor toxicity against vital normal 
tissues is an active area of investigation and has been most 
highly emphasized for the development of CARs target-
ing solid tumors. The work presented here identifies the 
importance of developing logic gates for AML as well (73). 
Autonomous, Boolean logic gate engineering approaches 
to date have largely focused on AND-gated CARs, which 
require two antigens to be present on target cells for effective 
cytotoxicity. Multiple AND-gated CARs have shown promise 
in preclinical models of AML (74, 75) and other tumors 
(76–79). NOT-gated CARs represent an alternative strategy 
that may prove effective when a particular tissue is the source 
of shared antigens, such as endothelial cells and myeloid 
cells, as discussed here. NOT-gates target antigens selectively 
expressed on the cross-reactive tissue to propagate an inhibi-
tory signal that interferes with the CAR T-cell activation sig-
nal (62). Although several groups have proposed NOT-gates 
as a solution to on-target, off-tumor toxicity of CAR T cells, 
thus far studies have been largely limited by lack of testing in 
tissue-specific model systems and by minimal optimization 
of these platforms (62, 80–83). We provide proof of principle 
in a relevant in vitro model system that iCAR-based NOT-
gated CAR T cells can circumvent CD93 CAR–mediated  
endothelial cell toxicity. While further characterization and 
optimization of this platform is necessary, a successful NOT-
gated strategy has the potential to expand the breadth of 
target antigens available for CAR T-cell development and 
clinical translation.

In addition to other well-defined parameters including 
tumor heterogeneity, leukemic stem cell expression, and 
potential for hematopoietic cell toxicity (84, 85), the RNA-seq  
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dataset we have generated could enable antigen selection for 
single and combinatorial logic-gated AML CARs with a par-
ticular focus on avoiding endothelial cell reactivity. For CAR 
T-cell therapy to become a more viable and widespread option 
in AML, development of CARs targeting cell surface proteins 
that have shared expression with some normal tissue seems 
unavoidable. Endothelial cell expression of AML targets is 
a particularly important consideration that requires more 
study and should be assessed for any new AML target.

MethODs
Primary Human Samples

AML samples were obtained according to the Administrative Panel 
on Human Subjects Research Institutional Review Board (IRB)–
approved protocols (Stanford IRB numbers 18329 and 6453) after 
written informed consent. Cord blood was purchased from the New 
York Blood Center.

Cell Lines
Packaging cell line 293GP, TIME cells, and human AML cell line 

HEL-2 were purchased from ATCC. MOLM-13, NOMO-1, and OCI-
AML3 were purchased from DSMZ. THP-1 cells stably transduced 
with GFP-luciferase were kindly provided by Dr. Terry Fry at NIH 
(Bethesda, MD). iHUVECs were a gift from Dr. David Sullivan at 
Northwestern University (Chicago, IL). iHUVEC-19 cells were gener-
ated by transducing iHUVECs with a lentivirus containing a truncated 
version of CD19, including the extracellular and transmembrane 
domain only. Transduced cells underwent flow cytometry–based sort-
ing on a BD FACSAria II to isolate a uniform population of CD19+ 
iHUVECs. All cell lines were verified by short tandem repeat analysis 
and confirmed to be Mycoplasma negative by PCR.

Generation of CAR Constructs
Generation of Activated CARs. F11-derived scFvs were codon 

optimized and custom synthesized by GeneArt (Invitrogen) in 
either light-heavy or heavy-light orientation and connected with a 
(G4S)3 linker sequence. The resulting product was subcloned into an 
MSGV1-based retroviral backbone plasmid encoding the transmem-
brane and intracellular domains of CD28–CD28 or CD8α–4-1BB and 
the intracellular domain of CD3ζ, as previously described (49).

Generation of iCAR. The Pdel iCAR was created by restric-
tion digest deletion of intracellular 4-1BB and CD3ζ intracellular 
signaling domains of the CD19-BBz CAR that has been described 
previously (49). PD-1 and TIGIT iCARs were created by subcloning 
codon-optimized, custom synthesized intracellular domains of PD-1 
and TIGIT into the same vector, thereby replacing the 4-1BB and 
CD3ζ intracellular signaling domains.

Generation of Retroviral Supernatant
Retroviral particles containing CD93–28z and CD93–BBz activating 

CARs (aCAR), or Pdel, PD-1, or TIGIT iCARs were produced by trans-
fecting 293GP packaging cells with the corresponding CAR plasmid 
and an RD114 envelope plasmid DNA using Lipofectamine 2000 and 
harvesting supernatant at 48 and 72 hours after transfection.

Humanized Anti-CD93 Antibody Generation
Monoclonal mouse anti-human CD93 antibodies were generated 

by immunization of mice using CD93-Fc fusion protein. Hybridomas 
were generated using standard protocols. Hybridomas were selected, 
and supernatants from the resulting clones were screened by ELISA 
and FACS. A mouse hybridoma clone, F11, was identified to produce 

a mAb with specificity against human CD93. Heavy and light chain 
variable regions of F11 were cloned from the hybridoma using uni-
versal antibody primers. Multiple clones of each V gene product were 
sequenced to monitor PCR-induced errors. The nucleotide sequences 
of VH and VL of F11 were determined. To select human antibody 
frameworks (FR) to be used as templates for compliment determining 
region (CDR) grafting, the mouse F11 VL and VH regions were com-
pared with those of human germline sequences. Human IGKV2D-29 
and IGHV1-2 subgroups were used as the bases for F11 humanization. 
Amino acid positions in the FR regions that differ between F11 and 
IGKV2D-29/IGHV1-2 sequences and that may have influence in anti-
gen binding were identified through molecular modeling.

CAR T-cell Transduction
Buffy coats were purchased from Stanford Blood Center under 

an IRB-exempt protocol, and processed using Lymphoprep density 
gradient medium and SepMate-50 tubes following manufacturer’s 
instructions. Primary human T cells were positively selected using 
the RosetteSep Human T cell Enrichment kit (STEMCELL Technolo-
gies), and cryopreserved at 1–2 × 107 cells/vial in CryoStor CS10 cry-
opreservation medium (STEMCELL Technologies). Cryopreserved 
cells were thawed and activated the same day with CD3/CD28 Dyna-
beads (Gibco) at a 3:1 bead:cell ratio in T-cell media (RPMI1640 sup-
plemented with 10% FBS, 10 mmol/L HEPES, 2 mmol/L GlutaMAX, 
100 U/mL penicillin, 100 μg/mL streptomycin, and 100 IU/mL IL2). 
Activated T cells were retrovirally transduced with CD93 CAR or 
cotransduced with CD93 CAR and CD19 iCAR on days 3 and 4 on 
Retronectin (Takara)-coated plates, and anti-CD3/CD28 beads were 
removed on day 5. Media and IL2 were changed every 2 to 3 days until 
day 10 or 11, when T cells were used for assays.

Cytokine Production
0.5–1 × 105 tumor, CD34+, or endothelial cells and CAR T cells at 

effector-to-target (E:T) ratios between 1:4 and 2:1 were incubated at 
37°C in complete RPMI (RPMI1640 supplemented with 10% FBS,  
10 mmol/L HEPES, 2 mmol/L GlutaMAX, 100 U/ml penicillin, and 
100 μg/mL streptomycin for 18–24 hours in triplicate for each condi-
tion). Culture supernatants were collected and analyzed for IFNγ and 
IL2 by ELISA (BioLegend) as per the manufacturer’s instructions.

IncuCyte Lysis Assay
1 × 105 GFP-positive tumor cells and CAR T cells at E:T ratios of 

1:8 to 1:1 were cocultured in 200 μL complete RPMI at 37°C for up to 
72 hours in triplicate for each condition. Plates were analyzed every 
3 hours using the IncuCyte ZOOM Live-Cell Analysis System (Essen 
Bioscience). Four images per well at 10× zoom were collected at each 
time point. Total integrated GFP intensity per well was measured. 
Values were normalized to the starting measurement and plotted 
over time.

Mice
Immunocompromised NSG mice were purchased from JAX and 

bred in-house. All mice were bred, housed, and treated under Stanford 
University Institutional Animal Care and Use Committee (APLAC)–
approved protocols. Six- to 8-week-old mice were injected via tail 
vein with 1 × 106 THP-1 cells stably expressing luciferase or SU555 
patient-derived AML cells. Prior to CAR T-cell injection, mice were 
assigned to groups to equalize pretreatment leukemic burden, either 
by luminescence values or percentage engraftment. CAR T cells were 
injected via tail vein at a time and dose provided in the figure legends. 
In the THP-1 model, leukemia progression was measured by biolu-
minescence using the IVIS imaging system and analyzed with Living 
Image software. In the patient-derived xenograft model, leukemia 
progression was measured by phenotypic analysis of BM aspirates, 
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performed every 3 to 5 weeks on alternating femurs. At least 5 mice 
per group were treated in each experiment, and each experiment was 
repeated two to three times as indicated in the figure legend.

Flow Cytometry
All samples were analyzed with an LSR Fortessa or FACSAria II  

(BD Biosciences), and data were analyzed with FlowJo software. 
Fc block was used preceding staining of all myeloid cells (Clone 
3070, BD Biosciences). CD93 CARs were detected with CD93-Fc 
chimera protein (R&D Systems), and CD19 iCARs were detected 
with anti-CD19 CAR idiotype (86) after conjugation to DyLight 
650 or Dylight 488, respectively, with an Antibody Labeling Kit 
(Thermo Fisher Scientific). T-cell phenotype was evaluated with the 
following antibodies: CD4-BUV395 (Clone SK3, BD Biosciences), 
CD8-BUV805 (Clone SK1, BD Biosciences), PD-1 (clone eBioJ105, 
eBioscience), Tim-3-BV510 (clone F38–2E2, BioLegend), LAG-3-PE 
(clone 3DS223H, eBioscience), and CD39-FITC (Clone A1, BioLeg-
end). CD93 was detected on tumor or endothelial cells using either 
the F11 antibody or CD93-APC (clone AA4.1, BioLegend). Other anti-
bodies used to phenotype AML cells and endothelial cells included 
CD45-PerCp/Cy5.5 (clone HI30, eBioscience), CD33-BV421 (clone 
WM53, BD Biosciences), CD123-BV711 (clone 7G3, BD Biosciences), 
and CD38-PE (clone HB7, BD Biosciences). Fixable viability stain 780 
(BD Biosciences) was used to exclude dead cells from further pheno-
typic analyses. Antibodies for phenotypic analysis of hematopoietic 
cells isolated from CD34+ cells included CD45RA-Qdot605 (BioLeg-
end), CD90-FITC (BD Biosciences), CD123-PE (BD Biosciences), 
CD38-PE-Cy7 (BD Biosciences), CD34-APC (BD Biosciences), and 
CD10-APC-Cy7 (BioLegend).

Blood Analysis
Peripheral blood samples from the mice were collected on day 14 

after CAR T-cell injection to measure CAR T-cell expansion; 50 μL  
blood was labeled with CD45, CD3, CD4, and CD8, followed by lysis 
with BD FACS Lysing Solution. Results were quantified using Count-
Bright Absolute Counting Beads (Thermo Fisher) on a BD Fortessa 
flow cytometer.

Methylcellulose Colony-Forming Assay
Cord blood was obtained from the New York Blood Center with 

written informed consent according to protocols approved by the 
Stem Cell Research Oversight Panel (SCRO-291). CD34+ cells were 
enriched from FICOLL-separated mononuclear cells with the CD34 
MicroBead kit for Humans (Miltenyi Biotec, 130–046–703) according 
to the manufacturer’s instructions. After incubation without CAR 
or with mock-transduced or CD93 CAR T cells for 24 hours, CD34+ 
cells were sorted on a FACS Aria II (BD Biosciences) and resuspended 
in 400 μL Iscove’s modified Dulbecco’s medium with 4 mL Metho-
Cult H4435 (STEMCELL Technologies) according to the manu-
facturer’s instructions and plated in triplicate in 6-well SmartDish 
(STEMCELL Technologies) plates at 1 × 103 cells per well. Plates were 
incubated at 37°C and 5% CO2 for 14 days. After 14 days, colonies 
were scored on an inverted microscope (brand, magnification) for 
the quantity of erythroid (BFU-E/CFU-E) or CFU-G/M/GM colonies.

IHC and Scoring
CD93 expression was assessed using the Ventana DISCOVERY Ultra 

autostainer (Ventana Medical Systems). Baked and deparaffinized 
formalin-fixed, paraffin-embedded tissue sections were incubated in 
Tris-based buffer (CC1, Ventana) at 95°C for 64 minutes for antigen 
retrieval, followed by incubation at room temperature for 1 hour with 
CD93 primary antibody (Clone AA4.1, 1:50, Thermo Fisher) prepared 
in DISCOVERY Ab Diluent (Ventana). Bound antibodies were visual-
ized with the UltraMap DAB Detection Kit (Ventana). Stained samples 
were digitized with Leica SCN400 scanner (Leica Microsystems) at 

magnification equivalent to 20×. The images were subsequently stored 
in the SlidePath Digital Imaging Hub (Leica Microsystems) at the 
Vancouver Prostate Centre. For IHC scoring, staining intensity was 
assigned via a four-point scale system (descriptively, 0 = no staining,  
1 = low but detectable degree of staining, 2 = clearly positive cases, and 
3 = strong expression) and percentage of positive cells (0%–100%) was 
also determined. IHC score was then calculated per sample as stain-
ing intensity multiplied by percentage of positive cells. The average 
H-score was calculated for each tissue type.

Analysis of scRNA-seq Data
Processed scRNA-seq data (cell by gene counts table) for human lung 

were downloaded from Synapse (accession number syn21041850; ref. 
58). These data were analyzed using Scanpy v.1.4.3. First, low-quality 
cells containing fewer than 250 genes, fewer than 500 counts, or more 
than 25% mitochondrial reads were removed. Counts were depth- 
normalized to a sum of 10,000 per cell, and then log-transformed with 
a pseudocount of 1. The top 2,000 variable genes were identified with 
sc.pp.highly_variable_genes, and effects due to the number of genes 
detected per cell were regressed out. Data were scaled with max_value =  
10, and PCA was performed with default settings. For sc.pp.neighbors, 
the parameters n_neighbors = 10, n_pcs = 50, random_state = 1 
were provided, and Leiden clustering was performed with resolu-
tion = 0.1, and random_state = 1. Gene expression was then visual-
ized on the UMAP as the log depth-normalized counts. The sc.tl.
rank_genes_group function was used to identify marker genes for 
each cluster with method = “logreg,” which allowed classification of 
the endothelial subtypes present in this dataset. For violin plots, gene 
expression was visualized as depth-normalized counts (not log-trans-
formed). Processed scRNA data for human pancreas were downloaded 
from the Genome Sequence Archive (project number PRJCA001063; 
ref. 87). The data were first subset to include only those samples 
generated from healthy (nontumor) samples, and each sample was 
processed using Scrublet to remove any potential doublets, with the 
settings min_counts = 2, min_cells = 3, min_gene_variability_pct1 = 
85, n_prin_comps = 30, threshold = 0.2. Data were then processed 
in Scanpy using the same workflow as above, with the exception of 
regressing out batch effects due to both the number of genes detected 
and the individual sample/patient, and using a resolution of 0.15 for 
Leiden clustering.

Bulk RNA-seq
Bulk RNA was isolated from three AML cell lines (Kasumi-1, 

NOMO-1, and THP-1) and two endothelial cell lines (iHUVEC and 
TIME) after 24 hours without treatment or after incubation with 
IFNγ and/or TNFα at 10 ng/mL. Total RNA was isolated from 2 ×  
106 cells using Qiagen RNEasy Isolation Kit. Bulk RNA-seq was 
performed by Novogene using the Illumina Novaseq6000 platform, 
150-bp paired-end reads, at 18 to 34 million reads per sample. Reads 
were quantified using Salmon (v1.2.0; ref. 88) using the human 
transcriptome (GRCh38.p13, Ensembl release 99) as the reference. 
Transcript annotation was performed with tximeta (v1.6.2; ref. 89) 
and differentially expressed genes were identified using DESeq2 
(v1.28.1; ref. 90). The variance stabilizing transformation was applied 
prior to performing PCA with DESeq2. K-means clustering and heat 
maps were performed with pheatmap (v1.0.12), and Venn diagrams 
were created with BioVenn.

Gene Set Enrichment Analysis and PSCAN Analysis
Gene set enrichment analysis (GSEA) was performed using GSEA 

software version 4.0.3 (Broad Institute). The “gene set” permutation 
type was used, and 1,000 permutations were performed. Gene col-
lections were imported from the Molecular Signatures Database. 
PSCAN analysis was performed on gene promoters spanning –450 to 
+50 base pairs flanking the transcriptional start site (91).
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Statistical Analysis
Data were analyzed using GraphPad Prism software. Graphs rep-

resent individual values or group mean values ± SEM for in vitro and 
in vivo experiments. P values were calculated with the statistical test 
described in the corresponding figure legend. P < 0.05 was considered 
statistically significant, and P values are denoted with asterisks as  
follows: P > 0.05, not significant (ns); *, P < 0.05; **, P < 0.01; ***,  
P < 0.001; ****, P < 0.0001.

Data Sharing Statement
The sequencing datasets generated in this publication have been 

deposited in NCBI Gene Expression Omnibus (GEO; refs. 92, 93) and 
are accessible through GEO with the accession number GSE159991.
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