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Aims Coronary flow reserve (CFR) assessment has proven clinical utility, but Doppler-based methods are sensitive to noise and 
operator bias, limiting their clinical applicability. The objective of the study is to expand the adoption of invasive Doppler 
CFR, through the development of artificial intelligence (AI) algorithms to automatically quantify coronary Doppler quality 
and track flow velocity.

Methods 
and results

A neural network was trained on images extracted from coronary Doppler flow recordings to score signal quality and derive 
values for coronary flow velocity and CFR. The outputs were independently validated against expert consensus. Artificial in-
telligence successfully quantified Doppler signal quality, with high agreement with expert consensus (Spearman’s rho: 0.94), 
and within individual experts. Artificial intelligence automatically tracked flow velocity with superior numerical agreement 
against experts, when compared with the current console algorithm [AI flow vs. expert flow bias −1.68 cm/s, 95% confidence 
interval (CI) −2.13 to −1.23 cm/s, P < 0.001 with limits of agreement (LOA) −4.03 to 0.68 cm/s; console flow vs. expert flow 
bias −2.63 cm/s, 95% CI −3.74 to −1.52, P < 0.001, 95% LOA −8.45 to −3.19 cm/s]. Artificial intelligence yielded more precise 
CFR values [median absolute difference (MAD) against expert CFR: 4.0% for AI and 7.4% for console]. Artificial intelligence 
tracked lower-quality Doppler signals with lower variability (MAD against expert CFR 8.3% for AI and 16.7% for console).

Conclusion An AI-based system, trained by experts and independently validated, could assign a quality score to Doppler traces and de-
rive coronary flow velocity and CFR. By making Doppler CFR more automated, precise, and operator-independent, AI could 
expand the clinical applicability of coronary microvascular assessment.
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Introduction
Coronary microvascular dysfunction is known to significantly affect pa-
tients’ quality of life,1 burden healthcare systems, and reduce life expect-
ancy.2–5 Therefore, a clinical assessment of microvascular function with 
coronary flow reserve (CFR) is recommended by international clinical 
guidelines as a means of guiding therapy and stratifying cardiovascular 
risk.6–8 Compared with other invasive approaches, like coronary thermo-
dilution, intracoronary Doppler allows a continuous assessment of flow 
velocity, thus allowing coronary flow measurements during vasodilator 
stress and other diagnostic paradigms including during exercise.9,10

Doppler has demonstrated better correlation with positron emission 

tomography-based CFR than thermodilution.11 Despite this, adoption 
of invasive microvascular function assessment with Doppler-derived 
CFR is limited in routine clinical practice. This low adoption is largely 
due to the limitations of current Doppler-based CFR diagnostics12,13

(Figure 1), which are (i) sensitive to Doppler’s intrinsic noisy signals and 
(ii) profoundly expert-operator-dependent, as flow detection and 
digitization requires constant optimization during measurements 
(Graphical Abstract; the upper trace shows tracking of noisy trace 
with optimization).

In this study, we present the development and validation of an arti-
ficial intelligence (AI)-based methodology, designed to expand adoption 
of microvascular assessment via improvements in the precision of 
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invasive CFR measurements. Firstly, we present a method to objectively 
quantify the quality of coronary Doppler data. Secondly, we develop a 
tool that consistently extracts reliable coronary flow and CFR from 
Doppler. We compare the performance of our AI methodology with 
the currently available flow tracking algorithm embedded in clinical con-
soles and validate it against the consensus of international experts in the 
field of invasive CFR measurement.

Methods
Doppler recordings
This study used recordings from four clinical studies of which two have al-
ready been published,9,14 in which CFR was measured using a pressure and 
Doppler flow sensor-tipped coronary guide wire (Combowire, Philips, 
Eindhoven, The Netherlands). Recordings were made using the 
Combomap console (Philips). All subjects gave written informed consent 
to take part including for their anonymized data to be used in future analysis. 
All studies received appropriate ethical approval (see Supplementary 
material online, Table S1). All experts whose discriminations were used 
to train and validate the neural network were practising cardiologists 
with international reputation in the field of invasive coronary physiology 
and had undertaken doctoral or post-doctoral level research in the field 
of coronary flow and coronary physiology.

Images were anonymously extracted from recordings taken from four 
previous invasive studies, and therefore, the overall protocol for timing 
and duration of acquisitions varied. Despite this, a central method of 

recording was followed. Subjects were laid on the catheter lab table. 
Arterial access was obtained with a 6 Fr sheath. A 6 Fr coronary-guiding 
catheter was advanced to the coronary ostium. Aortic pressure on the 
haemodynamic system and the Combomap terminal was calibrated at the 
zero point. The patient was given intravenous heparin and intracoronary 
isosorbide di-nitrate. The Combowire was advanced to the tip of the guid-
ing catheter and then the pressure transducers were normalized. The wire 
was advanced to the appropriate position within the coronary artery, and 
the signal was optimized by withdrawing the needle introducer and gently 
manipulating the wire position until an appropriate signal was obtained. 
The visual display and sound of the Doppler signal guided operators to ob-
tain good-quality data. Although good signal quality was the goal of the ac-
quiring operators on each individual study, both good- and poor-quality 
Doppler envelopes were inevitably recorded. We deliberately included a 
wide range of Doppler signal qualities into this study data set to expose 
the network to a diverse sample. Raw Doppler envelopes with a wide range 
of qualities were deliberately included (from black screens with no signal up 
to perfectly formed and clear envelopes) to expose the network to the var-
iety of signals encountered during CFR measurement in routine clinical 
practice.

Raw spectral Doppler images were extracted from .SDY files exported 
from the console (see Figure 2). Images from three studies from one centre 
were used to form the development data set and images from one study 
from another centre were used to form the external validation data set. 
From the development data set, 742 images (∼7 beats per image) were 
used to train the network in the quality task and 417 images (∼7 beats 
per image) were used to train the network in the tracking task. The external 
validation data set comprised 200 images (∼4 beats per image) to assess 
performance on the quality task and 30 images (30 beats) were used for 

Figure 1 Examples of Doppler recordings from the coronary arteries during microvascular assessment. The current console algorithm is used to 
trace the flow velocity from Doppler spectral signals. The digitized flow is used to derive flow reserve (coronary flow reserve) values and guide clinical 
decisions. In the upper left panel, the Doppler flow signal is weak and so the line tracks only noise. In the upper right panel, the flow signal is stronger and 
so the line tracks it well. In the lower left panel, the Doppler flow signal is strong and well formed, but the flow tracking line is measuring only noise due 
to the parameter set by the operator. In the right lower panel, the settings are optimized and the line is following the Doppler waveform more precisely.
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the tracking task. The development data set was further subdivided into 
tuning and internal validation data sets for the building and initial testing 
of the network and then monitoring of training progress.

Experts
Two groups of experts in coronary spectral Doppler interpretation were 
formed. The first group of 10 experts collaboratively labelled the develop-
ment data set. The second group of nine experts individually labelled the 
external validation data set.

Labelling
A purpose-built labelling platform was used by the experts to label the flow 
images for the two tasks.15 There is no established metric for the assessment 
of spectral Doppler signal quality. We therefore used a technique for convert-
ing subjective imaging judgement into a global score using an adapted version of 
the Glicko2 algorithm.16 Experts were presented with all images in the data set 
in different groupings, and the resulting scores were normalized into an index 
between 0 and 1 for each image. Over time, the distribution of scores con-
verged on a steady state with maximum correlation between individual ex-
perts and the pooled consensus of experts.

In the velocity-tracing task, experts were presented with individual 
Doppler images and asked to place markers, connected by Bezier curves, 
along the boundary of the Doppler envelope until the curves accurately fol-
lowed the peak of the signal corresponding to the instantaneous peak vel-
ocity (‘flow’; see Supplementary material online, Figure S1).

Neural networks
For the quality task, we used the publicly available ResNet 3417 with a single 
output neuron. Training data were augmented using random scaling, transla-
tion, and Gamma correction. For the velocity-tracing task, we used 
HighHRNet-W3218 optimized for pixel level segmentation. The expert tracing 
of the envelope of Doppler spectrum was converted into a heat map with a 
Gaussian distribution with a standard deviation of two pixels. Both networks 
were trained using batches of 16 images split across 4 NVIDIA Titan RTX 
graphical processing units (NVIDIA Corporation, DE, USA) using the Adam 
optimizer19 and the mean-squared error loss function. They were trained 

for 200 and 400 epochs, respectively. Initial learning rates were set and then 
modulated using the ‘OneCycle’ learning rate scheduler.20

Evaluation
For the quality task, the performance of the first neural network was assessed 
using an independent data set of 200 Doppler images. The network generated 
a raw score for each image and the same images were then scored by nine in-
dependent human experts. The AI generated score for each image was then 
compared with the score from each of the experts as well as the pooled ex-
pert score (‘expert consensus’). The primary outcome measure was the de-
gree of correlation and numerical agreement between the different 
methods across the range of scores in the validation data set when compared 
with the expert consensus. In the tracking task, the performance of the second 
neural network was assessed using an independent data set of 30 images of 
coronary Doppler taken from 15 patients in the form of paired resting and 
hyperaemic recordings. The network generated curves for each image, and 
the same images were then traced by nine independent human experts 
with internationally recognized expertise in coronary Doppler. Experts 
were instructed to label approximately two cardiac cycles per image to ensure 
that at least one cardiac cycle per image was labelled by all experts. When ex-
perts did not extend their curves sufficiently to be analysed, their tracings were 
excluded. Both AI- and expert-generated curves were extracted as instantan-
eous peak flow velocity values and then used to derive average resting and 
hyperaemic flow velocity [average peak velocity (APV)] and CFR values (the 
ratio of paired hyperaemic APV and resting APV values) for the purposes of 
validation. The median APV and CFR values for each image were taken as 
the expert consensus. The primary outcome measure was the error between 
the APV and CFR values from the different methods (AI, embedded console 
algorithm and individual experts) and the expert consensus.

Statistical analysis
Results are presented as mean and standard deviation unless otherwise speci-
fied. Spearman’s rank correlation coefficient was used to assess the correlation 
between experts and thus monitor the progress of training in the quality task 
and was also used to demonstrate final agreement between methods. A one- 
way analysis of variance was used to compare values between the three track-
ing methods. Median values were used to determine the expert consensus 

Figure 2 Summary of study design and methodology. AI, artificial intelligence; CFR, coronary flow reserve.
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from human scores. Correlations were reported using Spearman’s rho and 
agreement was assessed with a Bland and Altman analysis. Statistical analysis 
was done in ‘R Studio’ using the ‘tidyverse’ package.21

The ratio of APV during hyperaemia to that during resting conditions is 
the coronary flow velocity reserve (CFVR). For convenience and ease of un-
derstanding, and because vessel diameter changes little between rest and 
hyperaemia, we used the term CFR as an equivalent to CFVR throughout 
the manuscript.

Results
Automated artificial intelligence–based 
index of Doppler signal quality
Artificial intelligence–derived Doppler signal quality scores were com-
pared with those derived from the consensus of nine experts. The 
Spearman’s correlation coefficient between AI quality score and 

consensus expert quality score was 0.94 (P < 0.001), similar to the cor-
relations observed between each of the individual experts’ scores and 
their consensus scores, which ranged from 0.93 and 0.98 m, mean 0.97 
(Figure 3). Numerical agreement between AI score and expert consen-
sus score was high. Using the methods of Bland and Altman,22 the bias 
between AI score and expert consensus was minimal [−0.006, 95% 
confidence interval (CI) −0.017 to 0.006, P = 0.316], with good agree-
ment [95% limits of agreement (LOA) −0.16 to 0.15, Figure 3, bottom 
panel]. Examples of raw Doppler signals with a wide range of AI and ex-
pert indices of quality are shown in Figure 4.

Artificial intelligence–derived flow velocity 
tracking and coronary flow reserve 
calculation
Following Doppler quality quantification, our tool was set to automat-
ically trace Doppler envelopes and derive flow velocity data using AI 

Figure 3 Correlation between quality scores generated by artificial intelligence and individual human experts is shown in top panel. Each dot repre-
sents a single score for a single image from nine experts and artificial intelligence. A Bland–Altman plot (lower panel) shows there is no systematic bias 
between artificial intelligence and expert consensus and a high numerical agreement. AI, artificial intelligence.
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(‘AI flow’). Artificial intelligence flow was compared with the consensus 
of multiple experts who had manually traced the same envelopes (ex-
pert consensus flow) as well as with the original flow velocity tracking 
obtained from the clinical Combomap console (‘console flow’). Paired 
values of hyperaemic and resting velocity data were used to calculate 
flow reserves (‘AI CFR’, ‘expert consensus CFR’, and ‘console CFR’).

Mean flow velocities in the validation data set were similar (although 
statistically different) among all three methods (mean expert consensus 
flow 27.3 ± 15.6 cm/s, mean AI flow 25.6 ± 15.2 cm/s, and mean con-
sole flow 24.6 ± 15.1 cm/s, respectively, F = 18.1, P < 0.001). 
However, AI flow showed closer numerical agreement than console 
flow, against expert consensus flow (Figure 5), reflecting better tracking 
of the Doppler envelope (Figure 6). Using the method of Bland and 
Altman, there was minimal bias between AI flow and expert consensus 
flow (−1.68 cm/s, 95% CI −2.13 to −1.23 cm/s, P < 0.001) with good 
agreement (95% LOA −4.03 to 0.68 cm/s). The bias between console 
flow and expert consensus flow was higher (−2.63 cm/s, 95% CI −3.74 
to −1.52, P < 0.001), also with lower agreement (95% LOA −8.45 and 
−3.19 cm/s; Figure 5). The median absolute difference (MAD) between 
AI flow and expert consensus flow was 7.9%. Between console flow 
and expert consensus flow, MAD was 11.8%. For the difference 
between AI flow and console flow, P = 0.013.

Paired resting and hyperaemic values for the patients who made up 
the validation data set were combined to generate a CFR value 

(hyperaemic flow velocity divided by resting flow velocity). Using the 
method of Bland and Altman, there was minimal bias between AI 
CFR and expert consensus CFR (0.05, 95% CI −0.05 to 0.15, P =  
0.312) with good agreement (95% LOA −0.33 to 0.43; Figure 5).

When console CFR is compared with expert consensus CFR, there is 
greater bias (0.11, 95% CI −0.06 to 0.28, P = 0.19). The 95% LOA are 
−0.56 to 0.78. The MAD (error) was 4.0% between AI CFR and expert 
consensus CFR and 7.4% between console CFR and expert consensus 
CFR. For the difference between AI and console CFR, P = 0.229.

Flow tracking accuracy and underlying 
Doppler quality
We tested the interaction between Doppler signal quality and the pre-
cisions of AI and console flow tracking. We found that, when compared 
with expert consensus flow, median absolute error of AI flow remained 
largely the same across the Doppler quality spectrum, while console 
flow error (measurement variability) increased significantly in low- 
quality Doppler envelopes. While the measurement variability in-
creases for all methods in low-quality Doppler signals, including 
between-expert variability, AI flow error against expert consensus 
flow remains stable and predictable unlike that of console flow (median 
absolute error at the low, mid, and high tertiles of Doppler AI quality 
score were 8.3, 8.0, and 6.9% for AI flow and 16.7, 13.0, and 8.3% 

Figure 4 Examples of Doppler signals (extracted from coronary arteries during microvascular assessment) are shown in increasing order of quality 
from top left to bottom right. Quality scores generated by artificial intelligence and expert consensus are displayed (0 being the lowest possible quality 
and 1 the highest possible quality). A good agreement between scores can be visually appreciated.
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for console flow, respectively, P = 0.014; Figures 7 and 8). The AI was 
able to track even Doppler envelopes of poor quality, down to scores 
of 0.4 (40th percentile) as can be visually appreciated in Figure 7.

There was no significant difference in the expert consensus quality 
scores for baseline and hyperaemic images (0.64 ± 0.14 vs. 0.67 ±  
0.15, P = 0.21). The R2 for correlation between flow velocity and AI 
quality score was 0.0231.

Discussion
In this study, we developed and validated a methodology, based on AI, 
which was able to (i) quantify Doppler signal quality as accurately as 
international experts, (ii) track flow velocity from Doppler signals 
with greater precision than currently available clinical consoles, and as 
a result, (iii) derive CFR values with better numerical agreement with 
expert consensus. This method was operator independent and particu-
larly precise when tracking poorer quality Doppler signals, therefore 
presenting a solution to the limitations of Doppler-based systems, 
such as signal noise and console setting dependency. Implementation 
of this AI approach in commercially available systems may improve 
the precision of Doppler-based coronary metrics, allowing expansion 
of microvascular function interrogation in clinical practice by less expert 
physicians. The AI algorithm may also be applied to previously acquired 
Doppler flow data to improve the precision of flow measurements, an 
aspect that may prove valuable for research purposes.

Automated quantification of Doppler 
signal quality
One of the major limitations of the use of Doppler-derived CFR calcu-
lation in assessing coronary artery disease is the variability of Doppler 

signal quality observed (i) across patients and also, (ii) within the 
same measurement in a single patient. Measurement of flow velocities 
and CFR relies on the tracking of Doppler envelopes with software em-
bedded in clinical consoles, variability in underlying signal quality directly 
affects CFR output values. It takes great experience from operators to 
identify suitable Doppler envelopes and adjust console tracking settings 
to ensure velocities output are accurate (Figure 1 and Graphical 
Abstract). This ‘expert operator dependency’ of Doppler quality assess-
ment significantly restricts the adoption of coronary microvascular as-
sessment in clinical practice by the vast majority of physicians.

Using a novel machine-learning-based index of Doppler quality, which 
was developed and validated by international experts in invasive flow 
measurements, we have demonstrated independent and automated 
expert-level assessment of flow quality during CFR measurements in clin-
ical practice. As Part 1 of a two-step approach (with automated flow 
tracking being the second), this could allow for only higher quality 
Doppler signals to be used for CFR calculation, reducing noise and improv-
ing measurement precision. As can be seen in Figures 7 and 8, measure-
ment precision deteriorates with poor Doppler quality, reaching a 
threshold below which flow measurements should perhaps be avoided.

Operator-independent, high-precision 
Doppler flow tracking
Current invasive CFR calculation relies on capturing flow velocities, 
using a tracking algorithm embedded in clinical consoles, which relies 
on a clear signal separation between Doppler envelopes and the back-
ground. While this is achievable with acceptable precision when 
Doppler signals are clear, this approach struggles with underlying poor- 
quality, noisy Doppler signals. Current tracking is also entirely depend-
ent on operator-adjusted settings, which means that even for the same 

Figure 5 Numerical relationships between artificial intelligence–derived, console-derived, and expert consensus flow and flow reserve values. Bland– 
Altman plots show that, relative to expert consensus flow and coronary flow reserve, artificial intelligence showed better agreement and less bias than 
the console algorithm. AI, artificial intelligence.

The AI flow study                                                                                                                                                                                        297



underlying Doppler, flow velocities can be adjusted to output different 
values (Figure 1). Because CFR is a ratio of two flow velocity values, er-
rors and noise can be magnified, reducing its reliability as a clinical tool.

Our AI tracking tool was designed to improve upon both such lim-
itations. After many years of training, human experts become able to 

visualize Doppler envelopes partially obscured by noise even when 
Doppler quality is poor. While standard computer algorithms cannot 
easily replicate such higher order cognition of discerning signal from 
noise in a grey-scale image, neural networks can be trained to capture 
such expertise. And our results demonstrate this principle. Artificial 

Figure 6 The same raw Doppler recording is shown as seen in the console with tracking by the console algorithm and artificial intelligence. AI, arti-
ficial intelligence; CFR, coronary flow reserve.
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intelligence–based flow tracking is more precise than console tracking 
particularly in poor Doppler traces, reducing error by half in the lowest 
tertile of AI quality scores (16.7 vs. 8.3%, P = 0.014; Figure 7). As a result, 
numerical agreement between AI CFR and expert consensus CFR was 
higher than what can be achieved by operators using console algorithm 
(Figure 5). Furthermore, our AI tracking of flow velocities is entirely 
automated, without the need for operator adjustments during mea-
surements (Figures 1 and 6, and Graphical Abstract).

Clinical implications
We envisage that this method, once applied to clinical CFR consoles, 
will greatly facilitate Doppler CFR measurements and lead to increased 
adoption of coronary microvascular assessment in routine clinical prac-
tice, a process that should directly benefit patients with angina and non- 
obstructive coronary disease, who often remain undiagnosed and with-
out appropriately tailored treatment. Considering the low adoption of 
the current method among general physicians who are not experts in 
coronary physiology, a tool that improves test reliability could lead to 
a significant expansion of coronary microvascular testing in clinical prac-
tice and expand its use to diagnostic scenarios in which continuous flow 
measurement is needed,10 or post processing of signals is important to 
assess the status of the microcirculation.

Future larger studies using prospectively collected Doppler data will 
need to demonstrate the clinical usefulness of our AI approaches to 
CFR measurements during routine clinical coronary microvascular 
assessment.

Applications to research and to other 
Doppler-based methods
Previous studies had used computer algorithms to automate and opti-
mize Doppler signal processing in a mouse model and in transthoracic 

Doppler sonography of the human coronary artery.23–25 These studies 
tended to focus on the use of computer algorithm–based automation 
rather than machine learning. Although these methods are potentially 
useful, they do not benefit from the advantages that neural networks 
offer in terms of approximating human expert discrimination in both 
image quality and envelope tracking.

Our technique can be retrospectively applied to previously collected 
Doppler data (saved as .SDY files from clinical consoles). This could 
help coronary physiology researchers to improve flow velocity tracking 
precision of previously collected data, particularly if data collection is 
known to have been challenging, with resulting poor-quality signals. 
Also, because of reduced beat-to-beat noise, we believe our approach 
would be particularly useful in more complex types of analysis, such as 
wave intensity analysis and derivation of pressure and flow loops. We 
will make this tool immediately available offline for researchers who 
wish to use our approach on previously collected Doppler data. We 
would encourage them to contact us so that we can discuss collabora-
tions. Our aim is for the methods outlined here to be used on clinically 
available consoles, a step that will need further work on software and 
hardware integration.

Figure 7 The mean percentage error (with spline regression of the 
95% confidence interval) between each of the tracking methods (con-
sole, artificial intelligence, and individual experts) is shown across the 
spectrum of Doppler signal qualities (judged using artificial intelligence 
scores). AI, artificial intelligence.

Figure 8 Examples of flow tracking methods acting over Doppler 
envelops of different qualities. Higher individual variability among ex-
perts and increased noise from console-derived flow can be visually 
appreciated for lower quality Doppler signals. Artificial intelligence– 
derived flow is less sensitive to Doppler flow quality. AI, artificial 
intelligence.
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A new generation of Doppler wires and software is expected in the 
next few years. We expect such an upgrade to improve upon some of 
the limitations of current devices, although we also envisage that some 
challenges will continue to exist as coronary flow is intrinsically a bio-
logically complex entity to measure. We believe that, although our cur-
rent AI developments were based on existing Doppler technology, the 
principles of imaging quality quantification and envelope tracking are 
largely translatable to future Doppler displays and, if required, retrain-
ing of the network would be easily achievable with an appropriate data 
set.

Finally, although our neural network tool was trained using coronary 
Doppler images collected invasively, our results demonstrate a poten-
tial for AI-derived Doppler tracking to be applied in other fields such as 
echocardiography or other vascular studies.

Limitations
The AI approaches presented in this study do not improve raw 
Doppler signal quality per se, but instead offer a method to improve 
digitization and quality control of Doppler signals even when acquisition 
is challenging, augmenting CFR calculation precision. Although this 
study included a sizeable data set of images recorded by multiple opera-
tors in multiple centres, it is likely that the performance of the neural 
network would increase if a larger data set were used with continuous 
training. However, the excellent agreement with expert consensus that 
was achieved suggests that the diversity of input is sufficient to demon-
strate the principle of improved precision with AI. In its current form, 
the system does not automatically detect the windows for resting and 
hyperaemic flow that would allow us to consider it a truly automated 
tool. This is a task which would be suited to AI and we plan to include 
this in future iterations of the development. It also does not allow for 
making adjustments to the tracking threshold, which might be a feature 
attractive to more expert users. This is an iteration which could be de-
veloped in the future if there is clinical or academic interest. This tool 
has not been tested prospectively in a real-time setting, and this should 
be the focus of future work during microvascular assessment in clinical 
practice. Finally, our proposition does not improve raw Doppler signal 
quality, but instead offers a tool which improves CFR data extracted 
from what current Doppler technology can offer. We are currently 
working on methods to improve Doppler signal quality and aim to 
use our AI approach to validate such developments.

Conclusions
An AI-based coronary Doppler flow tracking tool increases CFR meas-
urement precision and shows high agreement with international ex-
perts. Artificial intelligence CFR outperforms algorithm-based CFR, 
particularly when Doppler signals are poor. If implemented on meas-
urement consoles, AI CFR has the potential to simplify coronary micro-
vascular assessment and expand its utilization in clinical practice.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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