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ABSTR ACT: Helicobacter pylori is a spiral-shaped Gram-negative bacterium that colonizes the human stomach and can establish a long-term infection 
of the gastric mucosa, a condition that affects the relative risk of developing various clinical disorders of the upper gastrointestinal tract, such as chronic 
gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma. H. pylori presents a high-level of genetic 
diversity, which can be an important factor in its adaptation to the host stomach and also for the clinical outcome of infection. There are important H. pylori 
virulence factors that, along with host characteristics and the external environment, have been associated with the different occurrences of diseases. This 
review is aimed to analyzing and summarizing the main of them and possible associations with the clinical outcome.
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Introduction
Helicobacter pylori is a flagellate Gram-negative spiral-shaped 
bacterium found on the luminal surface of the gastric epithe-
lium. H. pylori organisms are 2.5–5.0 mm long and 0.5–1.0 mm 
wide, with four to six polar-sheated flagella, which are essen-
tial for bacterial motility.1

Infection is generally acquired during childhood and 
persists life-long in the absence of antibiotic treatment. Alt
hough the first isolation of the microorganism was in 1983 by 
Marshall and Warren,2  it has been demonstrated that 
H. pylori has a long period of co-evolution with humans, 
going back at least since human migration out of Africa 
about  60,000  years  ago.3,4  This co-evolution is reflected on 
DNA sequence signatures observed in H. pylori strains of 
different geographic origins and has enabled the mapping 
of human migration out of Africa. This prolonged and inti-
mate relationship is likely to have shaped the large and diverse 
repertoire of strategies that H. pylori employs to establish 
robust colonization and persist in the gastric niche.5,6

The routes of transmission of H. pylori still remain 
unclear. Person-to-person transmission and intrafamilial 

spread seem to be the main route, based on the intrafamil-
ial clustering observed in some studies.7,8 Children are often 
infected by a strain, which is a genetic fingerprint identical to 
that of their parents, and they maintain this genotype even 
after moving to a different environment.9

The finding of strain-specific genes from the comparison 
of sequenced H. pylori strains demonstrates the high diversity 
of H. pylori genome,10 and this high level of genetic diversity 
can be an important factor in its adaptation to the host stom-
ach and also for the clinical outcome of infection, an aspect 
that remains unclear. However, it is thought to involve an 
interplay among the virulence of infecting strains, host genet-
ics, and environmental factors,11  and experience with other 
bacterial pathogens suggests that H. pylori-specific factors 
may influence the microorganism’s pathogenicity.

Since pathogen isolation, H. pylori infection has been 
associated with the development of various clinical disorders of 
the upper gastrointestinal tract, such as chronic gastritis, pep-
tic ulcer disease, mucosa-associated lymphoid tissue (MALT) 
lymphoma, and gastric adenocarcinoma.12 In 1994, H. pylori 
was classified as a group I carcinogen by The International 
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H. pylori have been reported to determine clinical outcomes, 
and these are generally classified into three categories. The 
first one contains strain-specific genes, which are present 
in only some H. pylori strains. Among them, the best stud-
ied is the cytotoxin-associated gene pathogenicity island 
(cagPAI), which encodes a bacterial type IV secretion appa-
ratus.41  The second group consists of phase-variable genes 
whose gene status can be changed during growth or under 
different conditions to adapt H. pylori physiology to the envi-
ronment and ensure its survival.42 Based on the comparison 
of the three first sequenced genomes of H. pylori, six genes 
encoding outer-membrane proteins (OMPs) (oipA, sabA, sabB, 
babA, babC, and hopZ) are thought to undergo phase varia-
tion, which is high-frequency reversible on/off switching of 
gene expression.43–46 The functional status is regulated by a 
slipped-strand mispairing mechanism being mediated by the 
number of CT dinucleotide repeats in the  5' region of the 
genes.40 Although variability exists in the presence of cagPAI 
among H. pylori strains, genes encoding OMPs are present 
in all H. pylori strains.47–51 The last group of genes comprises 
variable structures and genotypes depending on the strain, 
such as the vacA gene. In addition, the structure of many 
genes differs between Western strains and East Asian strains, 
and the structural differences in some genes are reported to 
influence virulence.40,52

This review aimed to report the main genes considered 
as virulence factors of H. pylori and emphasize their functions 
and mechanisms, also reporting their possible relationship 
with the clinical outcomes of diseases associated with H. pylori 
infection.

CagPAI
CagPAI is a  40  kb region of chromosomal DNA encoding 
approximately  31  genes that forms a type IV secretion sys-
tem and can be divided into two regions, cag I and cag II, 
according to a novel insertion sequence.41 This secretion sys-
tem forms a pilus that delivers CagA, an oncoprotein, into 
the cytosol of gastric epithelial cells through a rigid needle 
structure covered by CagY, a VirB10-homologous protein, and 
CagT, a VirB7-homologous protein, at the base.53–55

Upon delivery into host cells by the cag secretion sys-
tem, the product of the terminal gene in the island, CagA, 
undergoes Src-dependent tyrosine phosphorylation and acti-
vates an eukaryotic phosphatase (SHP-2), leading to dephos-
phorylation of host cell proteins and cellular morphological 
changes.56,57  CagA has also been shown to dysregulate 
b-catenin signaling58,59  and apical–junctional complexes,60  
events that have been linked to increased cell motility and 
oncogenic transformation in a variety of models.61,62 In addi-
tion, some studies have reported that cagPAI appears to be 
involved in the induction of gastric interleukin-8  (IL-8) 
production, a potent neutrophil-activating chemokine.63

Consequently, the presence of cagA gene has been associ-
ated with higher grades of inflammation, which may lead to 

Agency for Research on Cancer and was regarded as a primary 
factor for gastric cancer (GC) development.13 In addition, dur-
ing the last years, H. pylori infection has also been associated 
with some extra-digestive diseases, such as iron-deficiency 
anemia,14  idiopathic thrombocytopenic purpura (ITP),15,16  
cardiovascular diseases,17,18  hepatobiliary diseases,19,20  and 
diabetes mellitus,21,22 among others.

As regard to the host, the genetic factors have a signifi-
cant impact on the clinical outcome and anatomical distribu-
tion of H. pylori infection, and polymorphisms in several genes 
are considered to increase the risk for the development of GC. 
For instance, individuals carrying the proinflammatory poly-
morphism of the interleukin-1-beta (IL-1b) and IL-1 receptor 
antagonist genes have a twofold to threefold increased risk of 
developing GC compared with subjects who have genotypes with 
less proinflammatory activity.23 Similarly, polymorphisms in the 
genes that regulate the tumor necrosis factor (TNF)-α and the 
IL-16 are also associated with an increased risk of GC.24,25 In 
addition, functional polymorphisms of receptors of the innate 
immune response have been reported to increase risk of GC.26

Concerning to environmental factors, diet particularly 
plays an important role in the pathogenesis of GC. Numer-
ous case–control epidemiological studies have shown that 
high intake of salted, pickled, or smoked foods, dried fish and 
meat, and refined carbohydrates significantly increases the 
risk of developing GC, whereas fiber, fresh vegetables, and 
fruits were found to be inversely associated with GC risk.27–32  
Nevertheless, GC comprises two main entities, the intestinal 
and the diffuse type, which differ considerably from an epide-
miological, clinical, and molecular point of view.33 Based on 
epidemiological evidence, the intestinal type, preceded by pre-
cancerous lesions, seems more closely influenced by environ-
mental factors while the latter recognizes mainly a “genetic” 
substrate. It has been suggested that the dietary risk factors 
are common to both types of GC, but the protective factors 
seem to play a more important role in preventing the intesti-
nal type. Consequently, because of the “synergistic” interplay 
between diet and H. pylori infection, H. pylori should always 
be properly considered.34

Some studies have reported that smoking is an important 
risk factor for GC development35,36 and about 60 different com-
ponents in cigarette smoke are considered to be carcinogenic. 
Results of a large study in Europe estimated that  17.6% of 
GC is related to smoking.37 A systematic review analyzed the 
relationship between cigarette smoking and GC and provided 
evidence that smoking was significantly associated with an 
increased relative risk for both gastric cardia and non-cardia 
cancers.38  One important study clearly demonstrated that 
smoking patients with CagA-positive H. pylori infection have 
a strongly increased risk of GC, demonstrating that the risk 
for this disease development increases dramatically in con-
junction with H. pylori infection.39

Specifically regarding H. pylori genetic characteristics, 
according to Yamaoka,40  many putative virulence genes of 
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the majority of H. pylori strains, such as Colombia and Peru. 
In a study comparing the number of EPIYA-C segment in 
Columbia and the United States, it was found that 57% of the 
isolates from Columbia had two EPIYA-C segments, whereas 
only 4% of the isolates from the USA had two EPIYA-C seg-
ments. Consequently, the number of EPIYA-C segments may 
explain, to some extent, the geographic difference in the inci-
dence of GC in Western countries.74

In addition, an important relationship between strains 
vacA s1m1  and CagA positive has also been reported.75,76  
Although located in different genomic regions, the cagA gene 
is strongly associated with the cytotoxic activity of VacA,77 and 
strains expressing the combination of these alleles and cagA 
are considered the most virulent,78,79 causing more severe epi-
thelial damage,80,81 which can be associated with the develop-
ment of the most severe gastric diseases.

Additionally, the role of H. pylori infection and/or CagA-
positive strains has been studied in several extra-gastric 
diseases. Researchers described an inverse relationship of 
CagA-positive strains with fatal cardiovascular events.82  It 
was related to a positive association between H. pylori serop-
revalence and CagA-positive strains in patients with autoim-
mune thyroid diseases.83 A Japanese study demonstrated that 
molecular mimicry induced by CagA may be involved in the 
pathogenesis of H. pylori-associated chronic ITP.84  Similar 
findings were confirmed by Kodama et al,85 who verified that 
H. pylori eradication therapy improved the platelet count in 
H. pylori-positive patients with ITP. Another study investi-
gated the prevalence of cagA and cagE, vacA, iceA, and babA2, 
in hepatobiliary diseases (cholangiocarcinoma/cholelithiasis) 
and controls. H. pylori cagA and cagE positive strains were 
more frequently detected in patients with cholangiocarcinoma 
than those with cholelithiasis or the controls.86

Vacuolating Cytotoxin Gene (vacA)
VacA is a cytotoxin secreted from bacteria as a large 140-kDa 
polypeptide and latter trimmed at both ends to finally deliver 
it in an active form to host cells, where it exerts its activity.87

The gene encoding VacA is present in all H. pylori 
strains and displays allelic diversity in three main regions, the 
s  (signal), the i (intermediate), and the m (middle) regions, 
and consequently, the cytotoxic activity of the toxin varies 
between strains.88,89  Different combinations of two major 
alleles of each region (s1, s2, i1, i2, m1, m2) may exist, which 
results in VacA toxins with distinct capability of inducing 
vacuolation in epithelial cells.6,90  While vacA s1/m1  strains 
are consistently vacuolating and vacA s2/m2  strains are 
nonvacuolating, only some vacA s1/m2  strains are able to 
induce cell vacuoles.91 Concerning the i region, s1/m2 strains 
that have an i1 allele are vacuolating, whereas s1/m2 strains 
that have an i2 allele are nonvacuolating.92

VacA induces multiple cellular activities and the best 
studied among them is the alteration in the endosomal matu-
ration, which consequently leads to epithelial cell vacuolation. 

the development of the most severe gastrointestinal diseases, 
such as peptic ulcer disease64 and GC.65–69 In Western coun-
tries, it has been reported that individuals infected with 
cagA-positive strains of H. pylori are at a higher risk of peptic 
ulcer disease or GC than those infected with cagA-negative 
strains.40,70 However, in East Asia, most strains of H. pylori 
have the cagA gene irrespective of the disease.71

Furthermore, cagA is a polymorphic gene that presents 
different numbers of repeated sequences located in its 3' region. 
Each repeated region of CagA protein contains Glu-Pro-Ile-
Tyr-Ala (EPIYA) motifs, including a tyrosine phosphoryla-
tion site.72 According to the sequences flanking the EPIYA 
motifs, four distinct EPIYA segments, EPIYA-A, EPIYA-B, 
EPIYA-C, and EPIYA-D, each of which contains a single 
EPIYA motif, have been identified in the EPIYA-repeat 
region. The EPIYA-repeat region of CagA from Western 
H. pylori isolates is in arrangement of EPIYA-A, EPIYA-B, 
and EPIYA-C segments (A–B–C-type CagA). The EPIYA-C 
segment variably multiplies (mostly one to three times) 
in tandem among different Western CagA species. CagA 
from East Asian H. pylori isolates also possesses EPIYA-A 
and EPIYA-B segments, but not the repeatable EPIYA-C 
segment. Instead, it has a distinct EPIYA-containing seg-
ment (it is the EPIYA-D segment), which is unique to East 
Asian CagA. Accordingly, the EPIYA-repeat region of East 
Asian CagA is in an arrangement of EPIYA-A, EPIYA-B, 
and EPIYA-D segments (A–B–D-type CagA).57,73

Analysis using a series of EPIYA mutants of CagA 
revealed that SHP-2  specifically binds to the tyrosine-
phosphorylated EPIYA-C or EPIYA-D segment. The 
sequence flanking the tyrosine phosphorylation site of 
EPIYA-D segment perfectly matches the consensus high-
affinity binding sequence for the SH2  domains of SHP-2, 
whereas that flanking the tyrosine phosphorylation site of the 
EPIYA-C segment differs from the consensus sequence by a 
single amino acid at the pY+5 position. As a result, East Asian 
CagA, which contains the EPIYA-D segment, exhibits stron-
ger SHP-2 binding than does Western CagA, which contains 
the EPIYA-C segment. Within Western CagA species, those 
having a greater number of EPIYA-C segments exhibit stron-
ger activity to interact with SHP-2 and are more closely asso-
ciated with precancerous lesions and GC.57,73

As regard to the function of the repeated regions, initial 
demonstrations suggest that H. pylori strains that have a larger 
number of EPIYA segments in their regions are less resistant 
to gastric acid.71 This finding seems to indicate that H. pylori 
strains containing many EPIYA segments can survive only in 
the presence of advanced atrophic gastritis, in which gastric 
acid secretion is low.74

For instance, according to Yamaoka,74  the incidence of 
GC is clearly higher in East Asian countries than in any other 
countries when age-standardized rates are considered. How-
ever, the incidence of the disease is also high in some regions 
where Western-type CagA strains are reported to account for 
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and complemented mutants, showing that the absence of dupA 
gene was associated with increased susceptibility to low pH.100

Two important studies continue to support the role of 
dupA in DU; however, one of them104 did not investigate the 
association between dupA and GC patients, and the other 
one101  did not establish an association between this disease 
and dupA positivity. Furthermore, the latter found that the 
occurrence of GC was significantly lower in patients with 
dupA-positive H. pylori strains, providing further support for 
dupA as a negative marker for GC, consistent with Lu et al.100

Conversely, some studies suggest that there is a possible 
association between dupA gene and GC development. Among 
them, Argent et al102 studied subjects from Belgium, China, 
South Africa, and the United States of America, identify-
ing dupA as a risk factor for GC and not as a protective fac-
tor against it, and in fact, they did not find any association 
between dupA and DU disease. Schmidt et al103  reported a 
significantly higher prevalence of dupA gene in ethnic Chinese 
patients diagnosed with DU (62.5%) and GC (54.6%), as 
compared with those diagnosed with functional dyspepsia. 
Roesler et al69  also suggest a possible association between 
dupA gene, vacA s1m1 and cagA/cagT positive strains, and GC 
development, both in early and advanced stages. In this study, 
it was found, in a global consideration, an expressive number 
of positive dupA H. pylori strains (31.46%) in patients with gas-
tric adenocarcinoma. In the Swedish population, also studied 
by Schmidt et al,103 there was no significant difference in the 
prevalence of dupA in isolates from patients diagnosed with 
DU, GC, and functional dyspepsia, which was similar to find-
ings reported in two other Brazilian studies.105,106 This gene 
was also associated with the high risk of GC development in 
East Asian region in a research that identified the cagA gene 
in all the studied strains and the dupA gene in 31.0% of these 
strains, suggesting that the association of these genes, in addi-
tion to virulent vacA genotypes, may underlie the high risk of 
GC in this region.107

Finally, a study developed by Douraghi et al108 reported 
no association between dupA status and gastroduodenal dis-
eases. Similarly, a systematic review and meta-analysis con-
firmed the importance of dupA gene for DU, especially in 
Asian countries, but there was no association between the 
presence of this gene, and gastric ulcer and GC.109 Gressmann 
et al110 considered that there must be a diversity in gene con-
tent that can contribute to bacterial adaptation to genetically 
different ethnic groups that make up the human population.

Induced by Contact with Epithelium Gene (iceA)
Researchers showed that iceA has two main allelic vari-
ants, iceA1  and iceA2.70,111  The iceA1  is upregulated by the 
contact of H. pylori with gastric epithelial cells and exhib-
its sequence homology with a gene from Neisseria lactam-
ica, nlaIIIR, which encodes a CTAG-specific restriction 
endonuclease.111,112  However, iceA2  has no homology with 
known genes and its function remains unclear,113  although 

VacA is also capable of inducing membrane-channel formation, 
cytochrome c release from mitochondria and binding to cell-
membrane receptors activating a proinflammatory response.88

Strains with s1 allele secrete an active toxin and are also 
highly associated with ulcers and GC;90 however, s1/s2 com-
bination or s2 genotypes are found in patients with GC.93 The 
m1  subtype demonstrates a stronger vacuolating activity 
than m2, and it has been associated with an increased risk 
of developing gastric epithelial injury and GC.94  After the 
description of the vacA i region, it was also shown that the 
determinant of cytotoxicity, the i1  allele, is associated with 
gastric adenocarcinoma.92,95

In Western countries, including Latin America, the 
Middle East, and Africa, there have been many reports that 
individuals infected with s1 or m1 H. pylori strains have an 
increased risk of peptic ulcer or GC compared with indi-
viduals infected with s2 or m2 strains.90,96 In addition, alm
ost all cagA-positive strains are classified as an s1  strain, 
whereas almost all cagA-negative strains are classified as an 
s2/m2 strain.90 With respect to the m region, there is a varia-
tion within East Asia; for instance, although m1 strains are 
common in parts of Northeast Asia, such as Japan and South 
Korea, m2 strains are predominant in parts of Southeast Asia, 
such as Taiwan and Vietnam.97,98  Finally, concerning the 
i region, studies with patients from East and Southeast have 
reported that there is no association between this region and 
disease development.99

Duodenal Ulcer (DU) Promoting Gene (dupA)
H. pylori DU promoting gene (dupA), located in the plastic-
ity region of H. pylori genome, has been initially described 
as a risk marker for DU development and a protective factor 
against GC.100 It was the first putative specific marker whose 
association was described using strains obtained from both 
Asian (Japan and Korea) and Western (Colombia) regions, 
and it is thought to be a virB4  homologue.100,101  The dupA 
gene encompasses two continuous sequences, jhp0917  and 
jhp0918, as described in strain J99. The jhp0917 gene encodes 
a protein of 475 amino acids but lacks a region homologous 
to the C-terminus of virB4, whereas jhp0918 gene encodes a 
product of 140 amino acids that is homologous to the missing 
virB4 region.9

Originally, it was reported that the presence of jhp0917–
jhp0918 (dupA gene) was a marker for the development of DU 
disease, but some studies demonstrated that this gene can also 
be associated with GC development.102,103  The function of 
dupA gene is not fully understood. It is possible that it acts 
in  combination with other vir homologues in the plastic-
ity region to form a type IV secretion system similar to the 
cagPAI.9  In addition, it has been associated with increased 
IL-8 production from the antral gastric mucosa in vivo as well 
as from gastric epithelial cells in vitro. The gene presence is 
thought to be also involved in DNA uptake/DNA transfer and 
protein transfer, and in vitro experiments using dupA-deleted 
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H. pylori genome contains more than  30  omp genes, 
which have been divided into hop (Helicobacter OMPs) and 
hor (hop-related groups) which are joined together in OMP 
family  1. The Hop subgroup is encoded by  21  genes48  and 
included the two best studied H. pylori adhesins: Lewis b (Leb) 
blood group antigen-binding adhesion (BabA)49  and sialyl 
Lewis X antigen-binding adhesion (SabA).50 These adhesions 
recognize specific carbohydrate moieties of the gastric epithe-
lium, which promotes infection and inflammatory processes 
in the gastroduodenal tract.

Additionally, there are other proteins, such as AlpA 
(HopC), AlpB (HopB), and HopZ, which have been impli-
cated in cell adhesion and mediate the tropism of H. pylori to 
the gastric tissue.50,120–122 Although some functions of these 
OMPs have still been indefinite, researchers have focused 
on the study of their diagnosis, protective immunity, and 
pathogenicity.119

Blood group antigen-binding adhesion (BabA). BabA 
is the best-characterized adhesin and binds to ABO histo-
blood group antigens and corresponding Leb antigens, which 
are expressed on gastric human epithelial cells.48  Although 
three bab alleles have been discovered (babB, babA1, babA2), 
only babA2 gene product is needed for Leb binding activity.122

Some researchers have demonstrated that there is an 
association between babA2-positive genotypes and occurrence 
of peptic ulcer disease,48,123  although it remains controver-
sial.12,124 The study performed by Zambon et al125 showed that 
babA2 and cagA, and vacA s1 and m1 coexpressed by the same 
H. pylori strain work synergistically in worsening inflam-
mation and may be a potential risk of intestinal metaplasia. 
A recent study with Iranian patients reported that babA2 prev-
alence was significantly higher in GC patients (95%) when 
compared with DU patients (18.1%) and non-ulcer dyspepsia 
subjects (26.1%).126

Interestingly, another survey related that H. pylori infec-
tion introduced DNA double-strand breaks (DSB) in primary 
and transformed murine and human epithelial and mesen-
chymal cells.126 The babA mutant was notably less capable of 
inducing DSB, suggesting that bacterial adhesion via babA 
is required to induce DSB. Considering that DSB induction 
may contribute to the genetic instability and frequent chro-
mosomal alterations that are found in GC, the possible role of 
babA expression in GC needs further investigation.

Sialic acid-binding adhesion (SabA). H. pylori infection 
induces expression of inflammation-associated “sialylated” 
carbohydrate structures that are upregulated as part of 
complex gangliosides in inflamed gastric tissue. Therefore, 
adherence of bacteria to gastric mucosa is dependent on SabA 
and cognate sialylated/fucosylated glycans on the host cell 
surface. The ability to bind to the glycosylated epithelial cells 
is considered to be essential for H. pylori to cause persistent 
infection and disease.120,127

Researchers have demonstrated that H. pylori also binds 
to red blood cells in gastric mucosal blood vessels in both 

some researchers have related this allele to asymptomatic gas-
tritis and non-ulcer dyspepsia.111

Several reports have associated the iceA status with clini-
cal outcome. According to van Doorn et al,70 there was a sig-
nificant association between the presence of iceA1 allele and 
peptic ulcer disease. Conversely, the authors reinforced that 
the iceA allelic type was independent of the cagA and vacA 
status. Similar findings were described by Shiota et al113 who 
concluded that iceA may be a discriminating factor for peptic 
ulcer disease independent of cagA status. In a further study, 
iceA1 genotype was linked with enhanced mucosal interleukin 
(IL-8) expression and acute antral inflammation. Further-
more, it was demonstrated that adherence to gastric epithelial 
cells in vitro stimulates iceA1 transcription iceA1.111

In a Malaysian study, the prevalence of iceA1  and 
iceA2  was very low, and no significant differences were 
noted between these virulence factors and any pathology 
either individually or in combination.114 However, in a meta-
analysis including 50 studies with a total of 5357 patients to 
confirm the relationship between the iceA allelic type and 
clinical outcomes, it was shown that the overall prevalence 
of iceA1 was significantly higher in Asian countries than in 
Western countries (64.6  vs  42.1%), while iceA2  was more 
prevalent in Western countries than in Asian countries 
(45.1  vs  25.8%). Sensitivity analysis revealed that only the 
iceA1  status was significantly associated with peptic ulcer. 
The authors reinforced that these findings were significant in 
Western countries.113

Urease
In order to counteract the acidic environment of the stomach, 
H. pylori produces an important enzyme, urease, which hydro-
lyses urea into NH3 and CO2. It has been demonstrated that 
this enzyme plays an important role in the H. pylori coloni-
zation, being observed that urease-defective bacteria mutants 
are not able to colonize the gastric environment.115  Urease 
causes damage to the epithelium through the production of 
ammonia that, in conjunction with neutrophil metabolites, 
forms carcinogenic agents that might participate in the devel-
opment of gastric malignances.116,117 Ammonia is capable of 
causing different cell alterations, including swelling of acidic 
intracellular compartments, alterations of vesicular membrane 
transport, repression of protein synthesis and ATP produc-
tion, and cell-cycle arrest.115 Urease might also help to recruit 
neutrophils and monocytes in the mucosa and to produce pro-
inflammatory cytokines.118

OMPs
Studies regarding H. pylori virulence factors have primarily 
focused on urease, vacuolating cytotoxin, and cytotoxin-
associated antigen.119  However, this bacterium has a large 
repertoire of OMPs encoded by a family of paralogous 
genes.43 This large group is probably of remarkable importance 
for optimal adaptation of H. pylori to its host.120
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resulted in reduced bacterial adherence to gastric epithelia 
in vitro, reinforcing the role of OipA in the gastric mucosa 
colonization.121

Conclusions
In this review, we have summarized reports and studies of 
genes and virulence factors of H. pylori that are suggested to 
be involved in the development of several gastrointestinal dis-
eases. Although there is much knowledge concerning the viru-
lence factors of H. pylori, there are lots of questions that remain 
unclear, especially regarding the specificity of each virulence 
factor and the clinical outcomes. More studies regarding this 
relationship will certainly highlight the pathophysiology of 
H. pylori and gastrointestinal disease development.
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