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Abstract

Akt kinases translate various external cues into intracellular signals that control cell survival, 

proliferation, metabolism and differentiation. This review discusses the requirement for Akt and its 

targets in determining the fate and function of T cells. We discuss the importance of Akt at various 

stages of T cell development including β-selection during which Akt fulfills the energy 

requirements of highly proliferative DN3 cells. Akt also plays an integral role in CD8 T cell 

biology where its regulation of Foxo transcription factors and mTORC1 metabolic activity 

controls effector versus memory CD8 T cell differentiation. Finally, Akt promotes the 

differentiation of naïve CD4 T cells into Th1, Th17 and Tfh cells but inhibits the development of 

Treg cells. We also highlight how modulating Akt in T cells is a promising avenue for enhancing 

cell-based cancer immunotherapy.
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INTRODUCTION

Akt kinases, also known as PKB kinases are members of the AGC superfamily of serine/

threonine protein kinases and have three isoforms (Akt1, Akt2 and Akt3). All isoforms have 

high structural similarity, possessing an N-terminal pleckstrin homology (PH) domain, a 

kinase domain and a C-terminal hydrophobic motif (HM) [1]. Akt1 is ubiquitously 

expressed [2] while Akt2 is highly expressed in insulin responsive organs such as the liver 

and skeletal muscles [3], and Akt3 is mainly expressed in the testis and the brain [4]. 

Although Akt isoforms are largely functionally redundant, distinct isoform-specific 

functions can be observed in certain circumstances (reviewed in [5]).
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In T cells, TCR and CD28 co-stimulation triggers activation of class I phosphatidylinositol 

3-kinases (PI3Ks) leading to the phosphorylation of the 3-hydroxyl group of the inositol ring 

in the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to generate 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) [6]. PIP3 acts as a plasma membrane 

docking site for the PH domains of Akt [7] and its upstream activator PDK1 [8]. Akt and 

PDK1 co-localization results in PDK1-mediated phosphorylation of Akt at Threonine 

(T)308 in its activation T loop [9,10]. For maximum activation, Akt1 requires additional 

phosphorylation at Serine (S)473 in its hydrophobic motif by mammalian/mechanistic target 

of rapamycin complex (mTORC)2 [11]. Once activated, Akt phosphorylates multiple 

downstream targets to regulate cell survival, proliferation, metabolism, and the fate and 

function of T cells (Figures 1 and 2). Known targets of Akt signaling in T cells include the 

kinases Gsk3-β and mTORC1, and the transcription factors CREB, Foxo and NF-ĸB 

(reviewed in [12,13]). However, more recently it has been reported that Akt has differential 

targets and in turn promotes distinct CD4 T cell fates when phosphorylated only at T308 or 

at both T308 and S473. Akt activity is countered by the phosphoinositide phosphatase 

PTEN, which removes the 3-phosphate group of PIP3 [14], and the protein phosphatases 

PP2A and PHLPP1/2, which dephosphorylate Akt at T308 and S473, respectively [15,16].

In this review, we highlight how the signals discussed above (Figure 1) position Akt as a 

critical regulator of T cell development, differentiation, metabolism, and effector function 

(Figure 2). In addition, we discuss how the multifaceted roles of Akt in T cells make this 

kinase an attractive target for improving cancer immunotherapy.

CONTROL OF EARLY T CELL DEVELOPMENT IN THE THYMUS BY AKT

T cells engage several signaling pathways as they progress through developmental stages in 

the thymus. Thymocytes in the earliest stages are termed double negative (DN) cells because 

they lack expression of both CD4 and CD8 co-receptors. DN cells are further subdivided by 

differential expression of CD44 and CD25 receptors. Multipotent early thymic DN1 cells 

(CD44+CD25−) commit to the T cell fate following Notch signaling and differentiate into 

DN2 cells (CD44+CD25+) [17]. DN2 cells mature into DN3 cells (CD44−CD25+). DN3 

cells that successfully rearrange and express a unique TCR β chain paired with surrogate 

pre-Tα chain signal through the pre-T cell receptors (preTCR) to progress through the first 

checkpoint in thymic development referred to as β-selection [18]. Akt activity is crucial at 

this checkpoint and is required for the survival, proliferation, metabolism, and differentiation 

of DN3 thymocytes into DN4 cells (CD44−CD25−) [19,20]. DN4 cells mature into DP cells 

(CD4+CD8+) which in turn can mature into SP cells (CD4+ or CD8+) following positive and 

negative selection [21].

All three isoforms of Akt are expressed in thymocytes, but Akt1 and Akt2 are more 

abundant [22,23]. Loss of any one isoform does not drastically affect thymic development 

indicating that Akt isoforms have redundant roles in the thymus [22,24]. However, Akt1 

deficient mice, which are smaller in body size, do have smaller thymii and thymocytes that 

are more susceptible to apoptosis [24,25]. Double deficiency in Akt1 and Akt2 leads to a 

developmental arrest at the DN3 stage where normally cells undergo β-selection, resulting in 

significantly lower proportions of DN4 and DP cells which become highly susceptible to 
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apoptosis due to insufficient glucose uptake [23]. Ectopic expression of Bcl-xL, which is 

associated with Akt dependent survival [26], however, is not sufficient to rescue thymic 

cellularity in the absence of Akt1 and Akt2 [19]. These studies indicate that Akt promotes 

thymocyte cell survival beyond its control of pro- and anti-apoptotic proteins including Bcl-

xL and Bim in thymocytes [26,27].

Akt activity in DN3 thymocytes is not only regulated by preTCR but also by CXCR4 [28,29] 

and Notch [30–32]. In addition to directing thymocyte localization, the chemokine receptor 

CXCR4 physically associates with preTCR and acts as a co-activator of preTCR signaling 

[33]. Antagonism of CXCR4 signaling decreases Akt phosphorylation and results in a 

developmental block at the DN3 stage [28,29,33]. DN3 cell size, survival, Glut1 expression 

and glycolysis are also decreased when removed from Notch ligands but can be rescued by 

ectopic expression of constitutively active Akt [31], suggesting that endogenous Notch 

signaling activates Akt to support DN3 cell proliferation and metabolism post β-selection. 

However, in contrast to the traditional PI3K/Akt pathway activated by preTCR and CXCR4, 

Notch activates Akt indirectly by inducing HES1, which acts to transcriptionally repress 

expression of PTEN [34]. Together, preTCR, CXCR4 and Notch act cooperatively to control 

PI3K and Akt kinases during early thymocyte development to promote cell survival by 

fulfilling the energy requirement of proliferating DN3 cells post β-selection through 

upregulation of Glut1 receptors.

The effect of Akt on post β-selection thymocytes can be difficult to discern due to 

developmental defects in DN3 cells. Nevertheless, loss of Akt1 and Akt2 not only led to a 

block at the DN3 stage but also decreased proliferation of DN4 cells [22], indicating that 

(pre)TCR-induced Akt activation is required even after β-selection. The ability of 

constitutively active Akt1 to rescue DN3 cell development to the DP stage in Rag2-deficient 

cells that are incapable of generating functional TCR chains indicates that Akt also has a 

prominent role in promoting differentiation of early DN to DP thymocytes [22]. The 

inability of active Akt1 to promote further maturation to the SP stage [22], however, 

suggests that Akt is either not required or is insufficient for this developmental process. This 

notion is supported by observations made when PI3K/Akt activation is antagonized by 

PTEN over-expression beginning at the DP stage [35]. While DP, SP and peripheral T cell 

numbers were significantly reduced due to a transitional block before the DP stage, PTEN 

over-expression did not affect DP cell survival [35]. The inability to detect Akt 

phosphorylation in normal DP cells along with their high expression of PTEN further 

suggests that Akt activity is dispensable in DP thymocyte survival [35]. Progression from 

DP to SP thymocytes requires thymocytes to undergo positive selection, a process that 

evaluates the ability of newly generated TCRs to appropriately interact with self-peptide 

MHC complexes, and avoid negative selection of potentially auto-reactive TCRs. While little 

is known about the role of endogenous Akt activity during selection of DP thymocytes, 

constitutive expression of active Akt1 enhances positive selection of CD4 T cell through 

increased MAPK and Lck activity [36]. Further analyses to determine whether Akt 

contributes in part to DP to SP thymocyte maturation would require conditional ablation of 

Akt isoforms in DP thymocytes since use of PI3K or PTEN genetic models are complicated 

by the important contributions of Tec kinases, which are also activated by PI3K and 

antagonized by PTEN activity (reviewed in [37]).
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REGULATION OF EFFECTOR AND MEMORY CD8 T CELL 

DIFFERENTIATION BY AKT

After successful development in the thymus, naïve CD8 T cells primed by mature antigen 

presenting cells undergo activation and clonal expansion and give rise to short-lived effector 

cells (SLECs) and memory precursor effector cells (MPECs) in the periphery [38]. SLECs 

provide immediate protection against pathogens but are prone to apoptosis following antigen 

clearance. MPECs serve as the primary progenitors of long-lived memory cells that produce 

enhanced secondary responses upon antigen re-encounter. The development of SLECs and 

MPECs is controlled by integrating signals received through the TCR and various co-

receptors and cytokine receptors. Many of these receptors differentially activate Akt kinases 

to influence the fate decisions made by cytotoxic CD8 T lymphocytes (CTLs) [39].

In contrast to early thymocytes in which Akt promotes global proliferation, survival, or 

glucose uptake, the major role of Akt in peripheral CD8 T cells is promoting terminal 

differentiation of activated T cells into SLECs at the expense of memory T cells [40]. These 

effects are largely due to Akt regulation of two key families of transcription factors: T-box 

transcription factors and forkhead transcription factors. How Akt regulates these 

transcription factors in CD8 T cells is described in more detail below.

The T-box transcription factors T-bet and Eomesodermin (Eomes) were initially reported to 

be interchangeable in CD8 T cells [41]. However, genetic replacement of T-bet with Eomes 

demonstrated that T-bet is uniquely required for SLEC development [42]. Expression of 

constitutively active Akt in CD8 T cells increases the ratio of T-bet to Eomes and favors 

CD8 effector function and terminal differentiation [43]. Akt increases T-bet activity in part 

by inhibiting the TSC complex to allow Rheb-dependent mTORC1 activation [44]. mTOR 

kinase increases the T-bet to Eomes ratio and in turn promotes the effector over memory cell 

fate in activated CD8 T cells [45]. mTOR kinase mainly acts through the mTORC1 complex 

to regulate CD8 T cell differentiation and loss of mTORC1 activity results in higher 

proportion of memory precursor CD8 T cells [46]. mTORC1 also independently favors CD8 

effector activity by activating ribosomal protein S6 kinase (S6K) and inhibiting eukaryotic 

translation initiation factor 4E–binding protein (4E-BP) to promote anabolic metabolism to 

generate lipids, proteins and nucleic acids [47]. Upon activation, CD8 T cells undergo 

asymmetric division including differential inheritance of mTORC1 activity where the 

daughter cell proximal to the APC has higher mTORC1 activity and is more glycolytic while 

the distal daughter cell has lower mTORC1 activity, is less glycolytic, and gives rise to 

memory CD8 T cells [48].

Akt also skews CD8 responses towards effector T cell differentiation and function by 

inhibiting the forkhead transcription factors Foxo1 and Foxo3. Phosphorylation of Foxo 

proteins by Akt triggers Foxo association with 14-3-3 adaptor proteins resulting in their 

cytoplasmic retention (reviewed in [49]). Foxo1 positively regulates genes required for 

memory CD8 T cell differentiation, survival, lymphatic trafficking and homeostasis such as 

TCF1, IL-7R, CCR7, KLF2 and CD62L [50–53] and represses genes important for effector 

cell differentiation and activity such as Tbet [54] and GzmB [53]. Consequently, Akt activity 

diminishes the expression of target genes important for memory T cell function and 
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increases genes important for effector T cells. Overexpression of IL-7R is sufficient to 

rescue MPEC differentiation in CD8 T cells expressing constitutively active Akt [43]. In 

contrast, expression of an Akt-insensitive Foxo3 is sufficient to abrogate increased IFNg 

expression in antigen stimulated CD8 T cells that have high Akt activity [40]. Together, 

these observations demonstrate that Akt-dependent inhibition of Foxo prevents memory T 

cell differentiation, in part, by preventing IL-7R expression while it simultaneously 

promotes expression of CD8 T cell effector proteins.

Foxo1 also promotes CD8 memory T cell differentiation and persistence by regulating the 

expression of TCF1 (Tcf7) [53,55]. TCF1 expression levels vary among memory T cell 

subsets with high TCF1 observed in long-lived central memory T cells [56]. Foxo1 

deficiency results in reduced expression of TCF1 [52], which is required for the optimal 

generation of central memory T cells [57]. In contrast, effector memory T cells, which traffic 

through peripheral tissues and quickly differentiate into effector cells upon re-activation, 

express low to intermediate levels of TCF1 [56]. Enforced Foxo1 expression in CD8 

memory cells stabilizes TCF1 expression by preventing PRC2-dependent H2K27me3 

silencing marks at the Tcf7 locus [58]. Memory T cell reactivation and expansion during 

recall responses is also Foxo1-dependent [52,53,55], indicating that Foxo1 activity not only 

directs the differentiation of memory CD8 T cells, but its continued activity maintains 

memory T cell identity, longevity and re-activation potential [59–61]. Thus, Akt-inhibition 

of Foxo1 activity has the potential to impact CD8 memory T cell formation and function at 

multiple stages of the T cell response. Accordingly, complete loss of Akt activity due to 

Akt1 and Akt2 deficiency increases central memory T cell differentiation as well as the 

proliferative capacity of CD8 T cells even following repeat stimulations [62]. However, 

disrupting PI3K-dependent Akt phosphorylation at Thr308 through expression of a mutant 

PDK1 hinders the survival of effector T cells as they transition from effector to effector 

memory T cells [63], indicating that modest levels of Akt activity are required for effector 

memory T cell differentiation. In contrast, constitutive Akt activity drastically lowers the 

proportion of MPECs and memory cells, but subsequent pharmacological inhibition of Akt 

can selectively rescue effector memory cells in vivo [43]. Collectively, these studies reveal 

the importance of Akt in regulating multiple distinct phases of CD8 effector and memory 

responses through the control of Tbet, Eomes and Foxo transcription factors whose gene 

targets promote cell survival, expression of cytokines and cytolytic enzymes and effector or 

memory T cell differentiation.

REGULATION OF DIFFERENTIATION OF TH1, TH2, TH17 AND TFH CELLS 

BY AKT

CD4 T helper 1 (Th1), Th2 and Th17 cells regulate defense against intracellular pathogens, 

parasites and extracellular pathogens, respectively [64] while T follicular helper cells (Tfh) 

are specialized in helping B cells undergo immunoglobulin affinity maturation, class switch 

recombination and differentiation into memory B cells within germinal centers (GC) [65]. 

The differentiation of naïve CD4 T cells into these T helper subsets is controlled by 

environmental cues. Specific cytokines trigger distinct signaling pathways to activate 

lineage-specific transcription factors including Tbet, Gata3, RORγt and Bcl6 to promote 
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Th1, Th2, Th17 and Tfh differentiation, respectively, and is influenced by TCR-induced 

PI3K and Akt pathways [66–68]. Akt activity promotes Th1, Th17 and Tfh lineages through 

indirect regulation of Tbet, RORγt and Bcl6 expression but has limited effects on Th2 

differentiation.

The ability of Akt to influence CD4 differentiation was first reported in Akt overexpression 

studies, which showed that Akt promoted IFNg expression in Th1 cells but did not increase 

Th2 cell specific genes [69]. Akt promotes expression of T-bet via mTORC1 [70]. mTORC1 

activity leads to phosphorylation of T-bet at 4 residues that, when partially disrupted, 

decreases T-bet dependent permissive epigenetic regulation of the IFNg locus and lowers 

IFNg production [71]. While mTORC1 is a downstream effector of Akt, mTORC2 lies 

upstream and is responsible for phosphorylating Akt at Serine 473 for full catalytic activity 

[11]. Genetic ablation of Rictor disrupts mTORC2 and Akt activation, resulting in a defect 

in both Th1 and Th2 cell differentiation [72]. However, expression of constitutively active 

Akt only rescues Th1 differentiation [72] suggesting that Rictor/mTORC2-dependent Akt 

activation is critical for Th1 differentiation. Direct comparison of models that disrupt Rictor 

(mTORC2) or Rheb (mTORC1) demonstrated that mTORC1 is proximally required for 

inducing Tbet and RORγt for Th1 and Th17 cell differentiation, respectively [70]. In 

contrast, disruption of mTORC2 behaves like an mTOR deficient model and demonstrates 

the importance of mTORC2 in separately promoting Th2 differentiation and in fully 

activating Akt for Th1 and Th17 differentiation [70,72,73].

Akt regulates Th17 cell differentiation in multiple ways. Akt-induced mTORC1 activation 

induces transcription factors important for Th17 differentiation and function, HIF1a and 

RORγt, and inhibits expression of Gfi1, a transcriptional suppressor of Th17 gene targets 

[74]. mTORC1 promotes HIF1a expression [75], which in turn induces RORγt expression 

[76]. mTORC1 dependent S6K1 kinase activity is required to inhibit Gfi1 expression while 

mTORC1 dependent S6K2 kinase binds to RORγ to facilitate nuclear translocation [77]. 

Together, HIF1a and RORγ promote transcription of Th17 cell specific genes including 

IL-17 [76] and various glycolytic proteins to help establish Th17 cell identity [75]. Th17 and 

T regulatory (Treg) cells share common pathways important for their differentiation; 

however, key signals that favor one fate inhibit the other. Akt is a proximal signal that favors 

differentiation of Th17 cells at the expense of Treg cells. Casein Kinase 2 (CK2) is a positive 

regulator of Akt signaling that is important for Th17 differentiation [78,79]. Treatment with 

CX4945 a pharmacological CK2 inhibitor decreases Akt phosphorylation at both T308 and 

S473 and favors Treg over Th17 cell differentiation [80,81]. T cells deficient in the CK2 

catalytic subunit CK2α have reduced Akt-dependent Foxo1 phosphorylation and 

consequently higher expression Foxp3 [82]. Moreover, Foxo1 knockdown rescues IL-17A 

expression and inhibits Foxp3 expression in CK2α-deficient T cells [82]. Thus, CK2 acts to 

increase Akt phosphorylation of Foxo1 to sway CD4 differentiation towards Th17 cells and 

away from Tregs.

Tfh differentiation and activity is regulated by graded Akt activity. In comparison to Th1 

cells, Tfh cells exhibit decreased Akt T308 and S473 phosphorylation and downstream 

mTORC1 activity [83]. Further increasing Akt or mTORC1 activity either through IL-2 

stimulation or expression of constitutively active Akt favors Th1 differentiation at the 
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expense of Tfh cells in the LCMV viral infection model [83]. Yet, Raptor- (mTORC1), 

Rictor- (mTORC2) or mTOR-deficient mice exhibit to varying degrees reduced basal and 

antigen-induced Tfh cells, GC B cell populations and antibody responses, indicating a Tfh 

requirement for both Akt-dependent mTORC1 and Akt-activating mTORC2 activity [84]. 

mTORC1 and mTORC2 participate at distinct stages during Tfh differentiation with 

mTORC1 promoting CD4 T cell proliferation and glycolysis and mTORC2 acting in part 

through phosphorylation of Akt at S473 [84,85]. Akt activity promotes Tfh development 

through inhibition of Foxo1, which negatively regulates Bcl6 expression [86]. Ectopic 

expression of an Akt-insensitive Foxo1 reduces Tfh cell differentiation [86,87], thereby 

demonstrating that while too much Akt activity diverts CD4 T cells towards Th1 cells the 

appropriate Akt activity is required for Bcl6 induction during Tfh cell differentiation.

INHIBITION OF TREG DEVELOPMENT BY AKT

T regulatory cells are a specialized subset of CD4 T cells that express the transcription factor 

Foxp3 and function to maintain peripheral self-tolerance [88]. Tregs can be subdivided 

based on their developmental origin; natural Tregs (nTregs) develop in the thymus while 

induced Tregs (iTregs), differentiate from naïve CD4 T cells in peripheral lymph nodes [89]. 

The development and function of both nTregs and iTregs are negatively impacted by 

PI3K/Akt signaling.

As previously described, Akt inhibits nuclear localization of Foxo and transcription of its 

targets including Foxp3, a necessary transcription factor for Treg identity and function [90]. 

Foxo-dependent Foxp3 transcription is required during both thymic nTreg development and 

TCR and TGFβ-induced iTreg differentiation [91,92]. The importance of Tregs was first 

appreciated in studies linking Foxp3 mutations with the multi-organ autoimmune 

inflammatory disease observed in scurfy mice and IPEX patients [93–95]. Mice with Treg-

specific Foxo1 deficiency phenocopy scurfy mice, highlighting the pivotal role of Foxo1 in 

Treg function [96]. Surprisingly, Foxo1-deficient Tregs are increased in proportion 

compared to conventional WT CD4 T cells and retain their ability to suppress T cell 

proliferation in vitro [96]. However, Foxo1-deficient Tregs are defective in preventing 

experimental colitis mediated by the transfer of conventional T cells into Rag-deficient mice 

[96]. This defect can be attributed to aberrant IFNg expression in Foxo1-deficient Tregs 

since secondary deletion of IFNg rescues Treg-dependent colitis prevention [96]. In contrast, 

deficiency in both Foxo1 and Foxo3 results in a profound Treg defect including reduced 

Treg proportions and numbers and an inability to suppress conventional T cells in vitro [91]. 

This indicates that Foxo transcription factors have partially redundant functions but are 

collectively required for Treg development and function.

Ectopic expression of constitutively active Akt reduces Foxp3 expression, nTreg 

development and iTreg differentiation [97]. In contrast, treatment of activated CD4 T cells 

with Akt or PI3K inhibitors results in higher proportions and levels of Foxp3 expression 

[98]. Moreover, treatment with PI3K/mTOR inhibitors induces a Treg-like transcriptional 

profile marked by upregulation of Ctla4, Foxp3 and down regulation of Il2 and Ifng [98]. An 

Akt insensitive variant of Foxo3a promotes Foxp3 expression in stimulated CD4 T cells in 

the presence of TGF-β and increases the percentage of Foxp3+ cells [92,99]. In vivo, PTEN 
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expression in Tregs is responsible for physiologically countering PI3K/Akt to maintain Treg 

stability and suppressive activity [100,101]. Additional studies identified an important 

upstream requirement for Roquin proteins in maintaining Treg identity through inhibition of 

the Akt/Foxo axis by regulating PTEN expression and preventing Foxo degradation by Itch 

[101]. Together, these studies highlight the importance of Akt-mediated regulation of Foxo 

proteins in the development and function of nTregs and iTregs.

Akt isoforms may have distinct roles in Treg development and function. Akt1 appears to be 

the predominant isoform that limits Treg function in the setting of autoimmunity. Genetic 

ablation of Akt1 improves suppression of T cell-mediated CNS disease in an experimental 

autoimmune encephalomyelitis (EAE) model of multiple sclerosis [102]. In contrast, Akt2 

deficiency results in defective Treg suppressive activity and EAE exacerbation [102], 

indicating that Akt1 and Akt2 isoforms may act in opposition in this context. Unlike mouse 

Tregs, human Tregs can gain effector activity such as production of the Th1 cytokine IFNg 

[103]. The generation of Th1-Treg cells requires Akt1-dependent Foxo regulation [104]. 

Akt1 deficiency allows Th1-Tregs to regain suppressive capacity; however, Akt3 deficiency 

has the opposite effect [104]. This suggests that while Akt1 checks Treg suppressive activity 

in both mouse and human, Treg activity is enhanced by Akt2 in mouse and Akt3 in human. 

One contradictory study, however, identified Akt2 and not Akt1 as the isoform that limits 

Foxo-dependent Foxp3 induction during iTreg differentiation [105]. Whether or not Akt 

isoforms are differentially engaged during nTreg and iTreg development or whether distinct 

Akt isoforms result in a different magnitude or kinetics of downstream signaling remains 

unresolved.

However, it has recently been suggested that low levels of Akt activity are important for Treg 

development. Weak TCR signaling that results in phosphorylation of Akt at T308 and to a 

much lower extent at S473 can promote commitment to the Treg lineage over conventional 

CD4 subsets [106–108]. Ex vivo stimulated human Tregs show Akt phosphorylation 

predominantly at T308 [109]. Increasing Akt activity through expression of constitutively 

activate Akt in human Treg cells causes them to lose their suppressive capacity and instead 

produce effector cytokines TNFα and IFNg [109]. Proteomic analyses of Akt substrates 

using mass spectrometry revealed differential target phosphorylation in response to weak vs 

strong TCR signaling [108]. Following weak TCR signaling, Akt phosphorylates 

heterogeneous nuclear ribonucleoproteins hnRNP L and hnRNP A1 [108]. Knockdown of 

both of these ribonucleoproteins diminishes Treg proportions [108]. Akt also differentially 

regulates metabolites to control Treg fate [110]. In response to weak TCR signaling, Akt 

selectively phosphorylates and inhibits Citrate synthase (CS), a component of the TCA cycle 

to promote higher proportions of Foxp3+ Tregs [110]. Further analysis revealed that 

inhibition of CS allows its substrate acetyl-CoA to be used for H3K27 acetylation at the 

Foxp3 promoter in CD4 T cells [110]. Thus, Akt activity induced by weak TCR signaling 

can favor differential targets through select phosphorylation of Akt T308 while additional 

phosphorylation at S473 in response to strong TCR signaling promotes alternative CD4 T 

cell fates. Further increasing our understanding of the receptors that control the kinetics and 

magnitude of Akt activity in naïve T cells and how their engagement results in 

phosphorylation of distinct subsets of Akt substrates to control T cell differentiation will be 

important to reveal additional mechanistic insight on the regulation of T cell responses.
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PERSPECTIVE

Altogether, it has become apparent that the requirements for Akt activity in T cells depends 

on its maturation stage, its lineage and its environmental context (Figure 2). The dominant 

effects of Akt kinase activity on T cells make Akt an attractive target to manipulate in T cell-

based immunotherapies. In particular, the importance of generating antitumor CD8 memory 

T cells has recently been recognized as an important goal for adoptive cell transfer therapy 

to provide durable protection against tumor recurrence. The ability of Akt to limit memory 

CD8 T cell formation suggests that pharmacological treatment of CD8 T cells prior to 

therapy may increase memory T cell differentiation. Preclinical studies using a melanoma 

mouse model support this strategy, demonstrating that CTLs treated with an Akt inhibitor 

provided better tumor control and survival [111]. Similarly, pharmacological inhibition of 

Akt reprogrammed tumor-infiltrating lymphocytes (TILs) isolated from cancer patients to 

adopt a memory transcriptional and metabolic profile, which improved their longevity when 

adoptively transferred into NOD scid gamma (NSG) mice [111]. Moreover, CAR T cells 

generated in the presence of Akt inhibition provided better tumor control and survival when 

adoptively transferred into mice [112,113]. Similarly, CD8 T cells treated with a variety of 

Akt inhibitors had a similar transcriptional profile to stem cell memory T cells, high 

expansion capacity and higher polyfunctionality upon antigen recall [114]. Preventing Akt 

regulation of Foxo1 may allow TCF1 expression and intratumoral accumulation of stem-like 

CD8 T cells that are responsive to PD-1 blockade. Thus, combining Akt inhibition with 

PD-1/PDL-1 blockade may further enhance antitumor responses [115–117]. Several Akt 

inhibitors are already in clinical trials to inhibit cancer cell survival and proliferation 

(reviewed in [118]), but here we propose that Akt inhibition combined with cell-based 

therapies will equip the immune system for better tumor control. However, the complexity of 

upstream signals that activate Akt coupled with our limited understanding of Akt’s 

numerous targets highlight the importance for further investigation into the temporal and 

spatial control of Akt in different T cell subsets to guide the design of personalized 

therapies.
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ABBREVIATIONS

CCR7 C-C chemokine receptor 7

CS Citrate synthase

CD62L L-Selectin

CK2 Casein Kinase 2

CTLs Cytotoxic CD8 T lymphocytes

DN double negative (CD4−CD8−)
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DP double positive (CD4+CD8+)

Eomes Eomesodermin

GC germinal center

IFNg Interferon gamma

IL-7R Interleukin-7 receptor

iTregs induced Tregs

KLF2 Kruppel-like factor 2

MPECs memory precursor effector cells

mTORC mammalian/mechanistic target of rapamycin complex

nTregs natural Tregs

PDK1 Phosphoinositide-dependent protein kinase-1

PH pleckstrin homology

PI3K Class I phosphatidylinositol 3-kinases

PIP2 phosphatidylinositol 4,5-bisphosphate

PIP3 phosphatidylinositol 3,4,5-trisphosphate

preTCR pre-T cell receptor

PTEN Phosphatase and tensin homolog

SLECs short-lived effector cells

SP single positive (CD4+ or CD8+)

TCF1 T cell factor 1

TCR T cell receptor

Tfh T follicular helper

Th T helper

Treg T regulatory
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Figure 1. 
Akt regulation and downstream signaling. TCR, CD28 co-stimulation and various cytokines 

activate PI3K which in turn phosphorylates membrane PIP2 to generate PIP3. PIP3 acts as 

the docking site for both Akt and its upstream kinase PDK1 leading to Akt T308 

phosphorylation. Full Akt activation occurs following mTORC2 phosphorylation of Akt at 

S473. Active Akt phosphorylates multiple substrates including the mTORC1 inhibitor TSC2 

and PRAS40, resulting in mTORC1-dependent activation of anabolic metabolism. Akt 

phosphorylation of Foxo transcription factors promotes their association with 14-3-3 

adapters leading to Foxo cytoplasmic retention. In the absence of Akt signaling Foxo 

regulates the expression of genes important for memory CD8 T cell differentiation (Tcf7, 
Il7r, Ccr7, Klf2, Sell and Eomes) and Treg development (Foxp3). Negative regulators of Akt 

include PTEN, which dephosphorylates PIP3 back to PIP2 and protein phosphatases PP2A 

and PHLPP1/2, which dephosphorylate Akt at T308 and S473, respectively.
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Figure 2. 
Akt regulation of T cell development, differentiation and function. (A) Akt promotes glucose 

metabolism through upregulation of Glut1 to fulfil energy requirements of proliferating DN3 

cells post β-selection. (B) Akt also promotes DN4 to DP transition in the thymus. (C,D) Akt 

inhibits Foxo1/3 dependent expression of Foxp3 to prevent nTreg and iTreg development. 

(E) Akt dependent mTORC1 activation increases T-bet expression which in turn promotes 

the transcription of Th1 effector molecules. (F) Akt dependent mTORC1 activation 

positively regulates Rorγ and HIF1α and represses Gfi-1 to promote the transcription of 

Th17 related genes. (G) Akt inhibits Foxo1 to promote Bcl6 expression, and Akt/mTORC1 

activity is also required for Tfh development. (H) Akt dependent mTORC1 activation and 

Foxo nuclear exclusion promote effector vs memory CD8 T cell differentiation.

Abdullah et al. Page 19

Immunometabolism. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	CONTROL OF EARLY T CELL DEVELOPMENT IN THE THYMUS BY AKT
	REGULATION OF EFFECTOR AND MEMORY CD8 T CELL DIFFERENTIATION BY AKT
	REGULATION OF DIFFERENTIATION OF TH1, TH2, TH17 AND TFH CELLS BY AKT
	INHIBITION OF TREG DEVELOPMENT BY AKT
	PERSPECTIVE
	References
	Figure 1.
	Figure 2.

