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Abstract: Mitochondria are heterogeneous and highly dynamic organelles, playing critical roles
in adenosine triphosphate (ATP) synthesis, metabolic modulation, reactive oxygen species (ROS)
generation, and cell differentiation and death. Mitochondrial dysfunction has been recognized as a
contributor in many diseases. The kidney is an organ enriched in mitochondria and with high energy
demand in the human body. Recent studies have been focusing on how mitochondrial dysfunction
contributes to the pathogenesis of different forms of kidney diseases, including acute kidney injury
(AKI) and chronic kidney disease (CKD). AKI has been linked to an increased risk of developing
CKD. AKI and CKD have a broad clinical syndrome and a substantial impact on morbidity and
mortality, encompassing various etiologies and representing important challenges for global public
health. Renal mitochondrial disorders are a common feature of diverse forms of AKI and CKD,
which result from defects in mitochondrial structure, dynamics, and biogenesis as well as crosstalk
of mitochondria with other organelles. Persistent dysregulation of mitochondrial homeostasis in
AKI and CKD affects diverse cellular pathways, leading to an increase in renal microvascular loss,
oxidative stress, apoptosis, and eventually renal failure. It is important to understand the cellular
and molecular events that govern mitochondria functions and pathophysiology in AKI and CKD,
which should facilitate the development of novel therapeutic strategies. This review provides an
overview of the molecular insights of the mitochondria and the specific pathogenic mechanisms of
mitochondrial dysfunction in the progression of AKI, CKD, and AKI to CKD transition. We also
discuss the possible beneficial effects of mitochondrial-targeted therapeutic agents for the treatment
of mitochondrial dysfunction-mediated AKI and CKD, which may translate into therapeutic options
to ameliorate renal injury and delay the progression of these kidney diseases.

Keywords: mitochondria; AKI; CKD; AKI to CKD transition

1. Introduction

Acute kidney injury (AKI), formerly called acute kidney failure, is defined as kidneys
suddenly stopping working properly, ranging from minor loss of kidney function to
complete kidney failure and can occur within a few hours or a few days [1]. AKI can also
affect other organs such as the brain, heart, and lungs and is associated with significant
morbidity [2]. The cause of AKI apart from decreased blood flow, include direct damage
to the kidneys and blockage of the urinary tract [3]. Chronic kidney disease (CKD) is
defined as the presence of kidney damage persisting over a long period of time, such
as three months or more. CKD can cause wastes to build up in your body and can also
cause other health problems. The causes of CKD vary globally, and could include diabetes,
hypertension, primary glomerulonephritis, chronic tubulointerstitial nephritis, hereditary
or cystic diseases, heart diseases, and stroke [4,5]. Even though AKI and CKD were
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previously thought to be two separate syndromes, they are now recognized to be closely
associated or interconnected syndromes, in that AKI is one of the major factors to accelerate
the progression of CKD [6], and CKD predisposes or sensitizes patients to AKI [7]. Studies
suggest that incomplete or maladaptive repair after AKI leads to tubulointerstitial fibrosis
and ultimately to CKD [8,9]. The transition between AKI and CKD represent a global public
health challenge [10]. Currently, the treatment of AKI and CKD is predicated on targeting
the underlying cause rather than validated specific therapies. Thus, understanding the
molecular mechanisms underlying AKI and CKD is crucial for drug development and the
generation of novel therapeutic strategies for these kidney diseases.

The kidney is one of the most energy-demanding organs in human and has the second
highest mitochondrial content and oxygen consumption after the heart. Mitochondria are
a network of plastic organelles that can produce adenosine triphosphate (ATP), thereby
supplying the energy source for basal cell functions in the kidneys [11,12]. Mitochondria
play an essential role in metabolic modulation, generation of reactive oxygen species, main-
tenance of intracellular calcium homeostasis, thermogenesis, and regulation of proliferation
and intrinsic apoptotic pathways [13,14]. The mitochondria populations can be different
in size, mass, metabolic activity, and membrane potential within a cell. Different nephron
segments have different mitochondria densities and distributions due to various energy
demands. Renal proximal tubular cells require high-energy for reabsorption and secretion
against chemical gradients. Proximal tubular cells generate ATP mainly via mitochon-
drial oxidative phosphorylation, whereas podocytes and endothelial and mesangial cells
exhibit more flexibility in their glycolytic capacity to generate energy [15,16]. Accumulat-
ing evidence suggests that various acute and chronic injuries may lead to mitochondrial
respiratory chain-derived oxidative stress, ultrastructural defects, abnormal activation
of the mitochondrial pathway of apoptosis, unstable mitochondrial DNA (mtDNA), and
defective clearance of damaged mitochondria. Dysfunction of mitochondria could ulti-
mately increase the risk of tubular interstitial disease, cystic kidney disease, podocytopathy,
and nephrotic syndromes [11]. Thus, it is important for us to understand mitochondrial
biology and pathophysiology in AKI and CKD. A better understanding of the cellular and
molecular events that govern mitochondria functions in kidney diseases should facilitate
the development of improved therapeutic strategies. This review provides an overview of
the molecular insights of the roles of mitochondria in the progression of AKI, CKD, and
the transition from AKI to CKD.

2. An Overview of AKI and CKD as Well as AKI to CKD Transition

The term AKI was first used by William MacNider in 1918 in a situation of acute
mercury poisoning and has recently been used to replace the term acute renal failure
(ARF) [17]. AKI is a broad clinical syndrome that rarely has a sole and distinct pathophysi-
ology, with an incidence of about 2000 per million population. Patients with AKI normally
have a mixed etiology, including specific kidney diseases (e.g., acute interstitial nephritis,
acute glomerular and vasculitic renal diseases); non-specific conditions (e.g., ischemia,
toxic injury); as well as extrarenal pathology (e.g., prerenal azotemia and acute postrenal
obstructive nephropathy) [1,18]. The diagnostic approach of AKI at present is based on an
acute drop of glomerular filtration rate (GFR) within a short time, which is also reflected
with an acute rise in serum creatinine levels and/or a decline in urine output [17,19].

AKI can be classified by three main categories: pre-renal, intrinsic, and post-renal
AKI [3,20]. The pre-renal and post-renal AKI are the consequence of extra-renal disease
mediated decrease of GFR, whereas ‘intrinsic’ AKI represents true kidney disease. AKI
is characterized by renal hemodynamics, renal tubular damage, renal congestion, and
inflammation [21]. The pathogenesis of AKI involves in the injury and death of renal
tubular cells in the proximal tubule [21,22]. In AKI, the primary site of damage is the
plasma membrane, whereas other cellular components, including nucleus, cytoskeleton,
endoplasmic reticulum (ER), and mitochondria, are also key targets [22]. A wide array
of patient-specific and context-specific factors can increase the risk of AKI, which can be
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classified as non-modifiable and potentially modifiable factors, including extremes of age,
proteinuria, comorbid diseases, anemia, critical illness, sepsis, and fluid overload [23].

CKD is characterized by a gradual loss of kidney function over time and has been
defined as eGFR < 60 mL/min/ 1.73 m2, irrespective of the presence or absence of kidney
damage, and this includes stage 3 CKD (eGFR = 30–59 mL/min/1.73 m2), stage 4 CKD
(eGFR = 15–29 mL/ min/1.73 m2), and stage 5 CKD (eGFR < 15 mL/min/1.73 m2 or
persons on chronic dialysis), which is also known as end-stage renal disease (ESRD). The
definition of ESRD is the final, permanent stage of chronic kidney disease, where kidney
function has declined to the point that the kidneys can no longer function on their own [24].
In addition to being a high risk for progression to ESRD, CKD is also an independent risk
factor for cardiovascular disease and all-cause mortality. The pathological of CKD features
including renal structural and physiological characteristics, as well as the principles of
renal tissue injury and repair. Chronic and sustained insults from chronic and progres-
sive nephropathies lead to kidney damage, which is then perpetuated by the process of
hyperfiltration and hypertrophy of the remaining nephrons. Initial hyperfiltration acti-
vates renin–aldosterone system and causes an increase in arterial filling pressure to the
nephrons, resulting in a change in the glomerular architecture and structure as well as
in podocytes to further damage the filtration system. Angiotensin II and protein uptake
at the tubules causes inflammation and fibrosis of the glomerulus and tubules, leading
to a further decrease in renal function. The progression of CKD can be accelerated as
a consequence of four mechanisms, including systemic and intraglomerular hyperten-
sion, glomerular hypertrophy, intrarenal precipitation of calcium phosphate, and altered
prostanoid metabolism [25].

In the last decade, evidence from both clinical and experimental studies suggested
a causal link between AKI and CKD, termed as AKI to CKD transition, which is due
to incomplete or maladaptive repair after AKI. As AKI has been widely identified as an
important risk factor for the occurrence and development of CKD, the potential mechanisms
that underlie the progression of AKI and its transition to CKD have also been proposed.
They include hypoxia and endothelial dysfunction, nephron loss, alterations of renal
resident cell phenotypes and their functions, cell cycle arrest, persistent inflammation,
mitochondrial fragmentation, epigenetic modifications, and fibrosis via myofibroblasts
recruitment and matrix deposition. In addition, organelle stress signaling caused by
ER and mitochondrial stress via induction of tubular cell senescence and subsequent
tubular inflammation also contributes to AKI to CKD transition [26–28]. The kidney injury
molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) have been
identified as possible biomarkers of AKI to CKD transition [29]. Since prevention of AKI
to CKD transition is essential for maintaining kidney function, it is therefore crucial to
elucidate the molecular mechanisms underlying this transition, which would facilitate the
identification of novel drug targets and the development of novel therapeutic strategies for
the treatment.

3. An Overview of Mitochondrial Structure, Biogenesis, and Dynamics
3.1. Mitochondrial Structure

Mitochondria are intracellular organelles that contain an inner and outer membrane,
with an intermembrane space between them (Figure 1). The outer membrane (OM) of mito-
chondria connects mitochondria to other cellular organelles, including the endoplasmatic
reticulum (ER), the lysosome and the plasma membrane [30]. The OM contains porins,
which control the transport of proteins into mitochondria and allows movement of ions
in and out of the mitochondria. Enzymes involved in the elongation of fatty acids and
the oxidation of adrenaline can also be found on the outer mitochondria membrane. The
inner mitochondria membrane (IMM) contains a complex folded structure that increases
the total surface area of the IMM and separates two compartments, the intermembrane
space, and the matrix. The inner boundary membrane is formed by segments of the IMM,
which approximate the OM in close apposition. The cristae structure is a fold in the in-
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ner membrane of a mitochondrion, which invaginates into the matrix and harbors the
respiratory chain. The tight ridges of the cristae provide enclosed regions that contribute
to oxidative phosphorylation to produce ATP, which is an energy source in the cell and
transport proteins that regulate the movement of metabolites in and out of the matrix. The
space within the inner membrane of the mitochondrion is known as the matrix, where
enzymes involved in the Krebs (TCA) and fatty acid cycles, alongside DNA, RNA, ribo-
somes, and calcium granules, can be found. Mitochondria often undergo transformation
in both physiological and pathological conditions. For example, gigantic mitochondria
were observed in the cytoplasm of epithelial cells of the proximal tubules in renal biopsies
obtained from patients with various renal disorders under electron microscopy [31].

Figure 1. Structure of mitochondria. Mitochondria have an inner and outer membrane with an intermembrane space
between them. The outer membrane contains transporters, enzymes for lipid metabolism and proteins (known as porins)
that regulate the movement of ions into and out of the mitochondrion. The space within the inner membrane of the
mitochondrion is known as the matrix, which contains the DNA, ribosomes, and calcium granules. The inner membrane
also contains transporters, a variety of enzymes that regulate the movement of metabolites into and out of the matrix,
electron transport chain for energy production via oxidative phosphorylation, and ATP synthase, which generates ATP in
the matrix. mtDNA: mitochondria DNA.

3.2. Mitochondrial Dynamics

Mitochondria are highly dynamic organelles that can modulate their morphology
to create a tubular network coordinated by fission and fusion events [32]. The balance
between these two opposite processes are mainly regulated by large GTPases belonging to
the Dynamin family, which regulate mitochondrial number, distribution, and size within
the cytoplasm and is referred to as ‘mitochondrial dynamics’, in response to metabolic
and signaling cues in the cell environment. Mitochondrial fission is a multi-step process
allowing the division of one mitochondrion in two daughter mitochondria mainly me-
diated by dynamin-related protein 1 (Drp1), a large dynamin-related GTPase. During
mitochondrial fission, Drp1 is recruited to the OMM and then GTP hydrolysis enhances
this membrane constriction leading to the recruitment of Dynamin 2 to terminate mem-
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brane scission. Conversely, mitochondrial fusion is driven by a two-step process caused by
several guanosine triphosphate hydrolases (GTPase), including mitofusin 1 (Mfn1) and
mitofusin 2 (Mfn2), which contribute to the outer mitochondrial membrane fusion, and
optic atrophy 1 (Opa1), which contributes to the inner membrane fusion. Moreover, some
membrane lipid components, such as phosphatidic acid and cardiolipin, and several fac-
tors that can undergo post-translational modifications, such as Drp1 phosphorylation [33]
and SUMOylation/deSUMOylation [34,35], are also involved in the regulation of these
processes. The deregulation of these two opposite processes and pathogenic mutations of
genes encoding the core fission and fusion machinery components have been linked to
AKI and CKD and will be described in detail later.

3.3. Mitochondrial Biogenesis

In adaptation to the ever-changing energetic demands triggered by developmental
signals and environmental stressors, cells launch the mitochondrial biogenesis process,
which takes place mainly in healthy cells. Mitochondrial biogenesis is a complex and mul-
tistep process achieved largely through the co-ordination between the mitochondrial and
the nuclear genomes that leads to a greater mitochondrial metabolic capacity by increasing
synthesis of metabolic enzymes. The mitochondrial DNA (mtDNA) is a double-stranded
circular molecule of approximately 16 kb, which encodes 37 genes, including 13 structural
subunits of the mitochondrial respiratory chain (electron transport chain complexes I, III, IV,
and V) [36]. Mitochondrial biogenesis can be influenced by many environmental stresses
like exercise, caloric restriction, and oxidative stress [36]. mtDNA transcription is activated
by the family of PPARgamma-coactivator-1 (PGC-1) proteins, including PGC-1α, PGC-1β,
and PGC-1. PGC-1α is considered as the master regulator of mitochondrial biogenesis.
The induction of mitochondrial biogenesis is associated with the activation of transcrip-
tion factors and several signaling pathways during tissue injury and repair, including the
AMP-activated protein kinase/PGC-1α (AMPK/PGC-1α) pathway used by C1q/tumour
necrosis factor-related protein-3 (CTRP3) to promote biogenesis, and the Gβγ (a compo-
nent of heterotrimeric G proteins)-Akt-eNOS-sGC (soluble guanylatecyclase) pathway
stimulated by the β2 adrenergic receptor agonists, such as formoterol [37]. PGC-1α was
first identified as a protein interacting with peroxisome proliferator–activated receptor-γ
and was highly responsive to cues from environmental factors, which play a critical role in
mitochondrial gene expression in a tissue-specific manner [38].

4. The Roles of Mitochondrial in AKI, CKD, and AKI to CKD Transition

Mitochondria are very sensitive to changes in environmental factors, which may cause
mitochondrial dysfunction [39]. Mitochondrial dysfunction may result in a decrease of
ATP generation, an increase of reactive oxygen species level and an induction of apoptosis,
all of which contribute to the development and progression of AKI and CKD as well as
AKI to CKD transition. Therefore, it is important to understand the roles of mitochondrial
biology and pathophysiology in AKI and CKD, which should facilitate novel discoveries
for effective therapies of these diseases.

4.1. The Roles of Mitochondrial Structure, Dynamics, and Biogenesis in AKI

Mitochondria has been recognized as a critical player in AKI with dual roles as the
primary source of energy for each cell and as a key regulator of cell death. First, the
changes of mitochondria structure have been observed in AKI. Ischemia as a leading cause
of AKI diminishes the amounts of mitochondria and induces mitochondria structural
changes, typically swelling and showing the disappearance of the inter mitochondrial
membrane cristae, due to ATP depletion and membrane potential reduction [40] (Figure 2).
In addition, the opening of mitochondrial permeability transition pores (mPTP) due to
mitochondrial swelling and dysfunction is a key event that contributes to AKI progression
through releasing pro-apoptotic mediators, including cytochrome c, which can induce
renal cell apoptosis [41]. mPTP is a nonspecific channel for signal transduction or material



Int. J. Mol. Sci. 2021, 22, 11253 6 of 22

transfer between mitochondrial matrix and cytoplasm. In ADR-induced nephropathy rats,
treatment with mPTP inhibitor cyclosporine A (CSA) significantly inhibited cytochrome c
release and cell apoptosis as well as improved mitochondrial function [42].

Figure 2. Schematic illustration of pathophysiological processes of mitochondrial dysfunction, including alterations of
mitochondrial structure, dynamics, biogenesis, organelle crosstalk, and oxidative stress, in the AKI, CKD, and AKI to CKD
transition. AKI: acute kidney injury; CKD: chronic kidney disease; ATP: adenosine triphosphate; ∆Ψm: mitochondrial
membrane potential; Mfn1: mitofusin 1; Opa1: optic atrophy 1; Drp1: dynamin related protein 1; mtDNA: mitochondria
DNA; AMPK: AMP-activated protein kinase; PGC-1α: PPARgamma-coactivator-1α; Sirt3: sirtuin 3; NRF1: nuclear
respiratory factor 1; NRF2: nuclear respiratory factor 2; MRPL12: mitochondrial ribosomal protein L12; cGAS; cyclic
guanosine monophosphate–adenosine monophosphate (GMP–AMP) synthase; STING: stimulator of interferon genes; ER:
endoplasmic reticulum; UPR: unfolded protein response; PPARα: peroxisome proliferator–activated receptor-α; IRE1:
inositol-requiring enzyme 1; PERK: PRKR-like ER kinase; ATF6α activating transcription factor 6α; XPB1: the X-box
binding protein 1; eIF2α: eukaryotic initiation factor 2α; ATF4: activating transcription factor 4; ONOO-: peroxynitrite;
O2-:superoxide; SOD: superoxide dismutase; GSH: glutathione; ROS: reactive oxygen species.

Second, the disruption of the balance between fission and fusion events has been
associated with AKI progression. The protein Drp1 that could regulate mitochondrial
fission was rapidly activated while the proteins, Mfn and Opa1, which could regulate
mitochondrial fusion, were decreased following AKI, resulting in mitochondrial fragmen-
tation [43,44] (Figure 2). Cellular stress leads to the oligomerization of Bax and Bak, two
proteins of the pro-apoptotic Bcl-2 family, which are susceptible to insert into fragmented
mitochondria and consequently outer membrane permeabilization [45]. The permeabiliza-
tion of mitochondrial outer membrane (MOMP) by pro-apoptotic Bcl-2 family proteins
results in the release of apoptogenic factors, such as cytochrome c, which further bind
apoptotic peptidase activating factor 1 (Apaf-1) to recruit and activate caspase 9 to trigger
the intrinsic apoptotic pathway [46–48] (Figure 2). Knockout of Bax or Bak prevented
mitochondrial fragmentation along with suppressed cytochrome c release in AKI [49].
Inhibition of mitochondrial fragmentation pharmacologically or by genetically preventing
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inflammation and cell death shows a significant renoprotective effect in AKI model induced
by ischemic reperfusion or nephrotoxic [44,49–51].

Third, the dysregulation of mitochondrial biogenesis has also been observed in AKI. In
kidneys, PGC-1α is predominantly expressed in proximal tubules and drives mitochondrial
biogenesis by its transcriptional co-activators, such as nuclear respiratory factor 1 (NRF1)
and nuclear respiratory factor 2 (NRF2). The target genes of NRF1/2 regulate oxidative
phosphorylation, fatty acid oxidation (FAO), and the biogenesis of nicotinamide adenine
dinucleotide (NAD+), a central metabolic coenzyme/cosubstrate involved in cellular
energy, which refer to oxidative metabolism to renal protection [52–55] (Figure 2). PGC-1α
coordinately upregulates the enzymes that synthesize NAD de novo from amino acids,
whereas PGC-1α deficiency or AKI attenuates the de novo pathway. The effect of PGC-1α
and its association with mitochondrial biogenesis in AKI was supported by the results
generated from in Pgc1α-/- mice following ischemia-reperfusion injury [54]. In cisplatin-
induced AKI, treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-
ribofuranoside (AICAR) and the antioxidant agent acetyl-l-carnitine (ALCAR), which
activates sirtuin3 (SIRT3) increased PGC-1α activity and improves renal function [56].
Global or tubule-specific PGC-1α knockout mice had normal basal renal function but
suffered persistent injury due to prolonged sepsis [57]. In sepsis-associated AKI, endotoxic
insults selectively suppress the expression of PGC-1α and then affected PGC-1a mediating
the recruitment of NRF1 and NRF2 on genes that regulate oxidative phosphorylation [57,58]
(Figure 2). Mitochondrial FAO in proximal tubular cells is a major source of ATP generation.
The impairment of mitochondrial FAO has been linked to ATP depletion-induced AKI, and
its long-term sequelae leads to CKD [59]. In cisplatin-induced AKI, downregulation of PGC-
1α decreased the transcription of FAO genes, including carnitine O-palmitoyltransferase
and medium chain–specific acyl-CoA dehydrogenase, leading to decreased mitochondrial
FAO (Figure 2). Together, these pieces of evidence indicate that kidney repair or recovery
from AKI is associated with mitochondrial structure, dynamics, and biogenesis.

4.2. The Roles of Mitochondrial Dynamics and Biogenesis in CKD

Defective mitochondrial dynamics plays an important role in CKD [60]. In experimen-
tal models of diabetic kidney disease (DKD) and in kidney biopsy subjects from patients
with DKD, tubular cells and podocytes showed an increase in mitochondrial fragmen-
tation [61,62]. In DKD mice, Drp1 was phosphorylated at serine 600 (p-Drp1S600) and
mutation of this serine to alanine exhibited improved biochemical and histological features
of diabetic nephropathy. Drp1S600 mutation reduced mitochondrial fission and diminished
mitochondrial reactive oxygen species (mtROS), further highlighting the stimulus-specific
consequences of Drp1 Serine 600 phosphorylation in mitochondrial fission and progression
of DKD [63]. Consistent with these findings, pharmacological inhibition, or knockout of
Drp1 ameliorated DKD progression as seen with reduced albuminuria, mesangial matrix
expansion, and improved podocyte foot process [64,65]. In unilateral ureter obstruction
(UUO) mice, Drp1 was phosphorylated at serine 616 (p-Drp1S616) and pharmacological in-
hibition of mitochondrial fission reduced fibroblasts accumulation, and interstitial fibrosis
along with decreased mitochondrial fragmentation and mitochondrial ROS, suggesting
that inhibition of the phospho-Drp1S616-mediated mitochondrial fission attenuated fibrob-
last activation and proliferation in renal fibrosis [66]. Altogether, these findings suggest
that mitochondrial fragmentation, owing to a loss of mitochondrial dynamics, plays a
critical role in the development of CKD and may serve as a therapeutic target for retarding
CKD progression.

Defective mitochondrial biogenesis also plays an important role in CKD. The ex-
pression of PGC-1α was decreased not only in experimental CKD models, but also in
kidneys from CKD patients [67–71]. Moreover, PGC-1α and PGC-1α-dependent mito-
chondrial gene expression positively correlated with the glomerular filtration rate and
negatively correlated with fibrosis [71]. In DKD, deletion of PGC-1α in podocytes signif-
icantly reduced mtDNA, which demonstrates the impact of PGC-1α on mitochondrial
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biogenesis in podocytes. [72] (Figure 2). Transgenic expression of PGC-1α or activation
of PGC1-α in both experimental diabetic nephropathy and cultured podocytes decreased
diabetes-induced podocytopenia and glomerular oxidative stress along with prevented
mitochondrial dysfunction and cell death [68,73]. PGC-1α was also downregulated in
different murine models of renal fibrosis, including Notch transgenic mice and folic acid
treatment mice. Tubule-specific overexpression of PGC-1α in these mice result in reducing
fibrosis and restoring mitochondrial content [71,74]. In addition to PGC-1α, other addi-
tional factors have also been proposed to contribute to altered mitochondrial bioenergetics
in CKD, including deletions and mutations of mtDNA and the changes of lipid composition
of mitochondrial membranes [74]. The transcription of human mtDNA in vitro requires
the single-subunit mitochondrial RNA polymerase (POLRMT) and human mitochondrial
transcription factor B2, h-mtTFB2 [75,76]. Mitochondrial ribosomal protein L12 (MRPL12)
binds and activates POLRMT to positively control the mitochondrial oxidative phospho-
rylation and mtDNA copy number [77]. In diabetic kidneys, the expression of MRPL12
was decreased, which was correlated with alterations of mitochondrial function via NRF2
signaling pathway [78] (Figure 2). In addition, a recent study in CKD indicates that reduced
activity of mitochondrial matrix dehydrogenases in the skeletal muscle leads to mitochon-
drial oxidative phosphorylation dysfunction, which correlates with glomerular filtration
rate [79]. Further analysis revealed the accumulation of uremic toxins in the muscle that
was strongly associated with the degree of mitochondrial impairment. In sum, altered
mitochondrial biogenesis has an important effect on the development and progression
of CKD.

4.3. The Roles of Mitochondrial Dysfunction and Its Crosstalk with ER in the Transition of AKI
to CKD

Damaged mitochondria release harmful molecules, such as ROS, DNA, and cardi-
olipin, which can activate NOD-like receptors (NLR) and elevate the levels of proinflam-
matory cytokines and chemokines, such as IL-18 and IL-1β, to induce persistent renal
injury [80] (Figure 2). The innate immune system has been implicated in both AKI and
CKD and persistent inflammation after AKI prevents tissue repair and tubular apopto-
sis. On one hand, inflammation plays a critical role in the initiation and progression of
renal fibrosis, when mitochondrial damage persists long after ischemia to sustain chronic
inflammasome activation, leading to persistent endothelial injury, podocyte damage, mi-
crovascular rarefaction, and ultimately, progressive glomerular and interstitial fibrosis. On
the other hand, upon kidney injury, oxidant stress, abundant cytokines, or hypoxia, deteri-
orate the mitochondrial membrane potential by excreting ROS and releasing pro-apoptotic
factors, such as cytochrome c and apoptosis-inducing factor (AIF), which promote cas-
pase dependent and independent apoptosis. In this perspective, persistent mitochondrial
dysfunction result in persistent tubular damage, which may affect renal recovery from
AKI and further progression to CKD. In a study with AKI to CKD transition experimental
model, the investigators performed a long (nine months) follow-up, exploring the role of
mitochondria in rats [80]. They confirmed that AKI is not merely an acute phenomenon
but results in long-lasting morphologic and functional consequences. AKI induced per-
itubular and glomerular capillary loss, podocyte damage, and increased profibrotic and
proinflammatory cytokines from one to nine months, leading to progressive glomerular
and interstitial fibrosis. Transmission electron microscopy revealed major alterations of
mitochondria including loss of cristae and matrix density in endothelial cells, podocytes,
and tubular cells up to nine months after the injury. Similar data was also presented in
the Lan et al. study [40], which showed that persistence in mitochondrial morphologic
alterations and significant reductions in mitochondrial number and metabolic dysfunctions
at 14 days after IRI plays a key role in the development of renal tubular atrophy and the
transition to CKD after AKI. Studies have also focused on the role and mechanisms of
impaired protein kinase B (PKB/AKT1) signaling, which works together with mitochon-
drial proteins, in the regulation of ATP production and oxidative phosphorylation in renal
tubular epithelial cells. Mitochondrial AKT1 inhibition led to activation of caspases and
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tubular cell death, and renal fibrosis after ischemia-reperfusion injury [81]. Altogether,
these studies suggest long-term mitochondrial damage may affect the pathophysiology
and recovery from AKI and result in the gradual progression to CKD.

In addition, studies show that mitochondrial dysfunction disrupts the crosstalk be-
tween mitochondria and ER, leading to tubular inflammation and fibrosis as well as the
AKI to CKD transition. ER is a major organelle that controls protein synthesis, folding,
and degradation via the unfolded protein response (UPR) pathway. The UPR promotes
cellular survival by restoring ER and mitochondrial homeostasis through distinct signal-
ing networks, but if unsuccessful, the UPR induces cell death [82]. UPR pathways is
regulated by three distinctive transmembrane sensors: activating transcription factor 6
(ATF6), PRKR-like ER kinase (PERK), and inositol-requiring enzyme 1 (IRE1), which can
be activated under ER stress [83] (Figure 2). Various types of kidney damage are associated
with dysfunction of the ER and the activation of the UPR. In cisplatin-induced AKI model,
cisplatin-induced mitochondrial damage and mtDNA leakage into the cytosol in renal
tubular cells, and damaged mtDNA subsequently increased the activation of cyclic guano-
sine monophosphate–adenosine monophosphate (GMP–AMP) synthase (cGAS)-stimulator
of interferon genes (STING) pathway, resulting in the activation of UPR response and
then renal inflammation and AKI progression [84]. The activation of ATF6α caused by
pathogenic conditions significantly reduces mitochondrial fatty acid β-oxidation activ-
ity through suppressing the expression of peroxisome proliferator–activated receptor-α
(PPARα) and thereby induced tubular inflammation and fibrosis after acute kidney injury
induced by lipotoxicity [70]. Furthermore, activated ATF6 can be translocated to the Golgi
apparatus for cleavage to form an active fragment (ATF6 p50). The activation of IRE1 and
PERK induces the splicing of the X-box binding protein 1 (XBP1) mRNA and phospho-
rylates eIF2α, which promotes the translation of activating transcription factor 4 (ATF4)
and suppresses the translation of other mRNAs to reduce unfolded proteins, respectively.
ATF6 p50, spliced XBP1, and ATF4 could induce the transcription of various UPR target
genes that regulate inflammation and apoptosis (Figure 2) [85]. These findings suggest
that alterations in ER–mitochondria crosstalk may contribute to the progression of AKI to
CKD transition.

5. Mitochondrial Oxidative Stress in AKI and CKD

Oxidative stress is considered a common feature of AKI and CKD. There is now an in-
creasing body of evidence to suggest that the generation of reactive oxidative species (ROS)
is significantly increased not only in experimental injured kidneys, but also in patients with
failing kidneys. The generation of mitochondrial ROS mainly takes place at the electron
transport chain located on the IMM during the process of oxidative phosphorylation. Leak-
age of electrons at electron transport chain complex I (NADH dehydrogenase (ubiquinone))
and complex III (ubiquinol-cytochrome c reductase) leads to partial reduction of oxygen to
form superoxide dismutase (O2

−), which is the major ROS production in mitochondria [86].
O2
− can undergo radical reaction with nitric oxide (NO) to form peroxy nitrite (ONOO−)

within mitochondrial. To maintain a balanced amount of ROS in the cell, the superoxide
dismutase (SOD) family catalyzes the dismutation of O2- to hydrogen peroxide (H2O2) [86].
The H2O2 is degraded following the intervention of specific enzyme glutathione (GSH).
Mitochondrial ROS can induce mPTP, consequently rendering the IMM proteins, such as
cytochrome c, to the cytosol to eventually trigger cell inflammation and apoptosis (Figure 2).
The main etiologies of AKI are ischemia and hypoxia. Hypoperfusion caused by decreased
blood flow results in limitation of the cellular nutrient and oxygen uptake, leading to
acute tubular necrosis. Ischemia and reperfusion represent major triggers of ROS, with
mitochondria being the primary source of ROS, in renal function and tissue integrity. In
sepsis-induced AKI, extensive immune response results in the upregulation of inducible
NO synthase and leads to production of excessive NO, which is responsible for endothelial
injury, localized hypoxia, and the formation of ROS (Figure 2). Other etiologies of AKI,
such as nephrotoxic AKI induced by cisplatin, were also associated with ROS-dependent
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renal cell death [87,88]. The major site of cisplatin-induced nephrotoxicity is in the proximal
tubule cells. The accumulation of cisplatin in the kidney causes mitochondrial structural
damage, decreases the levels of antioxidants, such as GSH, and decreases the activity
SOD [89] (Figure 2). Moreover, mitochondrial dysfunction inhibits the activity of com-
plexes I to IV of the respiratory chain, resulting in ROS formation and the reduction of ATP
generation [89]. Consistent with these findings, studies suggest that the administration
of SS-31 peptide (D-Arg-Dmt-Lys-Phe-NH2), a mitochondria peptide, can alleviate key
features of AKI, which are related to anti-mitochondrial ROS [88,90].

Mitochondrial oxidative stress in CKD kidneys are also higher compared to healthy
kidneys. In a cohort study, Oberg et al. found that 60 patients with stage 3–5 CKD had
higher oxidative stress than the healthy subject cohort by comparing the oxidative stress
markers (plasma protein carbonyl group content, plasma free F2-isoprostane content,
plasma protein reduced thiol content). Moreover, an increase in oxidative stress was noted
in diabetic and hypercholesterolemic patients [91]. The increasing oxidative stress in CKD
has been associated with dysfunctional mitochondria [13,60,92]. By comparing CKD pa-
tients with healthy people, it has been found that CKD/HD patients may have an impaired
mitochondrial respiratory system and this condition may be the consequence and the cause
of an enhanced oxidative stress by using a high-throughput genomic approach based on a
whole transcriptomic analysis associated with classical molecular methodologies [93]. In
addition, an experimental model of diabetes, which express a redox-sensitive Green Fluo-
rescent Protein biosensor (roGFP), exhibited a marked increase in mitochondrial reactive
oxygen species in the kidneys [92]. Treatment with mitochondria-targeted antioxidants like
mitoTEMPO can alleviate podocyte injury and loss in diabetic nephropathy [94]. Further-
more, oxidative status in CKD may adversely affect AKI. For example, in an orthopedic
trauma-induced model, obese rats with higher oxidative stress developed more severe
AKI [95].

6. Mitochondrial Targeting for AKI and CKD Therapy

Given the abundant evidence for a critical role of mitochondrial dysfunction in various
acute and chronic kidney injuries, mitochondria, thus, have been recognized as a promising
target to improve treatment of patients with kidney diseases. Currently, numerous novel
mitochondria-targeted compounds are being exploited in AKI and CKD. Based on the roles
and mechanisms, these agents have been classified as compounds for cardiolipin protec-
tion, inhibitors of mitochondrial fragmentation, compounds for promoting mitochondrial
biogenesis, and inhibitors of mPTP and mitochondria oxidants (Figure 3 and Table 1).

Table 1. The therapeutic compounds that target mitochondrial dysfunction.

Therapeutics Mechanism(s) of Action Experimental Model Clinical Trial References

Cardiolipin protection

SS-31

Binds to cardiolipin, prevents
peroxidase activity and improves

mitochondrial respiration and ATP
production;

Inhibits cytochrome c release;
Normalizes mitochondrial potential

(∆Ψm)

IRI-AKI, UUO, and
DKD

Mitochondrial myopathy
(NCT02367014)

Age-related skeletal muscle
mitochondrial dysfunction

(NCT02245620)

[80,96–98]

SS-20
Reduces mitochondrial matrix swelling

and preserves cristae membranes;
Increases ATP and reduces ROS

IRI-AKI [99]

Fission inhibitor

Mdivi-1
Selectively inhibits Drp1;

Induces mitochondria fusion and
increases ATP production

IRI-AKI, ADPKD, and
UUO [100–102]
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Table 1. Cont.

Therapeutics Mechanism(s) of Action Experimental Model Clinical Trial References

Biogenesis activator

SRT1720
Sirt-1 activator;

Restores renal expression of PGC-1α,
mitochondrial mass, ATP levels

IRI-AKI and UUO [103,104]

Resveratrol

Sirt-1 activator;
Restores mitochondrial respiratory

capacity and decreases the production
of mtROS and lipid peroxidation

Hemorrhagic shock
induces AKI and

db/db mice
[20,71,105–107]

AICAR
AMPK activator;

Attenuates nitrosative stress and
monocyte/macrophage infiltration

IRI-AKI and UUO [13,108,109]

Formoterol

Agonist of β2-adrenoreceptor, increase
PGC-1α synthesis and induces

mitochondrial biogenesis by increasing
mtDNA copy numbers, oxygen

consumption rate

IRI-AKI and db/db mice [110–112]

Fenofibrate/
Bezafibrate

Peroxisomal proliferator-activated
receptor (PPAR)-α agonist, lipid

lowering, increases mitochondrial
biogenesis

CKD and DKD
Diabetic complications (CVD

and DKD)
(FIELD, ISRCTN 64783481)

[113]

mPTP inhibitor

CSA
Interacts with cyclophilin D;

Suppresses mPTP opening and
mitochondria swelling

IRI-AKI

Acute myocardial infarction
(NCT01595958) Severe
traumatic brain injury

(NCT01825044)

[114]

TDZD-8 Selectively inhibits GSK-3β;
Diminishes MPT

Drug-induced AKI and
IRI-AKI [115–117]

Antioxidants

CoQ10
Normalizes ATP production,

attenuates mtROS and decreases
mitochondrial ∆Ψm

db/db mice
Mitochondrial disorders

(NCT00432744) Parkinson
disease (NCT00740714)

[118]

MitoQ
ROS scavenger;

Antioxidant concentrates at matrix in a
∆Ψm-dependent manner

IRI-AKI
Ins2(+/)−(AkitaJ) mice

Parkinson’s disease
(NCT00329056) Fatty acid

disease (NCT01167088)
Hepatitis C (NCT00433108)

CKD
(NCT02364648)

[66,119]

SkQR1 Antioxidant and decreased
mitochondrial ∆Ψm

IRI-AKI
and

gentamycin-induced
renal failure

[120,121].

Curcumin
Antioxidant;

Alteration of mitochondrial dynamics
and bioenergetics.

5/6NX mice
and db/db mice

Leber hereditary optic
neuropathy (NCT00528151) [122–124]

ATP: adenosine triphosphate; ∆Ψm: mitochondrial membrane potential; IRI-AKI: ischemic reperfusion induced acute kidney injury; UUO:
unilateral ureter obstruction; DKD: diabetic kidney diseases; ROS: reactive oxygen species; Mdivi-1: Mitochondrial division inhibitor-1;
ADPKD: autosomal dominant polycystic kidney disease; Drp1: dynamin related protein 1; Sirt1: Sirtuin 1; PGC-1α: PPARgamma-
coactivator-1α; AMPK: AMP-activated protein kinase; mtROS: mitochondria reactive oxidative species; mtDNA: mitochondria DNA;
CKD: chronic kidney disease; mPTP: mitochondrial permeability transition pore; CSA: Cyclosporine-A; TDZD-8: 4-benzyl-2-methyl-1,2,4-
thiadiazolidine-3,5-dione; GSK-3β:, glycogen synthase kinase 3β; CoQ10: Coenzyme Q10 MitoQ: mitochondrial coenzyme Q; SkQR1:
10-(6′-plastoquinonyl) decylrhodamine 19; 5/6NX: five-sixth nephrectomy.
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Figure 3. Schematic illustration of the potential compounds that target the dysfunction of mitochondrial structure, fragmen-
tation and biogenesis as well as mPTP opening and mitochondrial antioxidant capacity in AKI and CKD. AKI: acute kidney
injury; CKD: chronic kidney disease; ROS: reactive oxygen species. mPTP: mitochondrial permeability transition pore; CSA:
Cyclosporine-A; TDZD-8: 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione; CoQ10: Coenzyme Q10 MitoQ: mitochondrial
coenzyme Q; SkQR1: 10-(6′-plastoquinonyl) decylrhodamine 19.

6.1. Cardiolipin Protection Agents

Cardiolipin (CL), one of the major phospholipids localized and synthesized in the
inner mitochondrial membrane was first isolated from beef heart in the early 1940s [125].
CL interacts with and is required for optimal activity of several IMM proteins, including the
enzyme complexes of the electron transport chain and ATP production [126]. Its deficiency
results in mitochondrial dysfunction, including the changes of mitochondrial membrane
morphology, stability and dynamics, mitochondrial biogenesis, and protein import, as
well as a decrease in respiratory performance and an increase in ROS generation [126,127].
Ischemia could induce mitochondria degenerative changes with matrix swelling and loss
of the IMM cristae in all renal cells due to ATP depletion and dysregulation of osmotic
influx of water [128]. Given that mitochondrial structure and function are closely linked, a
promising target to preserve mitochondrial structure might contribute to maintain normal
mitochondrial function and improve mitochondrial function following ischemia. The
development of compounds to protect cardiolipin and to optimize efficiency of the electron
transport chain and thereby restore cellular bioenergetics has been an innovative discovery.
Szeto-Schiller (SS) peptides are among novel mitoprotective drugs. SS-31 (also known
as elamipretide) as a synthetic tetrapeptide (D-Arg-2′6′-dimethylTyr-Lys-Phe-NH2) can
selectively bind to CL through electrostatic and hydrophobic interactions on the inner
mitochondrial membrane to protect cristae curvature, stabilize mitochondrial structure,
facilitate the transport of electrons, and minimize ROS production, which has been reported
to attenuates cardiac damage in experimental models of heart failure [129,130]. SS-31 has
been tested in experimental AKI and CKD. In ischemic reperfusion-induced AKI model,
administration of SS-31 before the injury protected endothelial and epithelial mitochondria,
preserved peritubular and glomerular capillaries, and prevented inflammation [131]. In
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another study, treatment with SS-31 one month after ischemia and maintaining for six weeks
showed the protection of mitochondrial integrity, restoration of peritubular and glomerular
capillaries, preservation of podocyte architecture, and suppression of inflammation and the
progression of glomerulosclerosis and tubular interstitial fibrosis [80], suggesting that SS-31
showed a renoprotective by restoring mitochondrial structure and function, inhibiting
proinflammatory and profibrotic response in AKI to CKD transition. In CKD models,
treatment with SS-31 overcame lipotoxicity, glomerulosclerosis, and tubular lesions and
injury in kidneys induced by a high-fat diet and urinary tract obstruction (UUO) [96–98].
Treatment with SS-31 improves renal function either by accelerating the recovery of ATP
or scavenging ROS and suppressing mitochondrial permeability transition. In addition to
SS-31, another SS family drug, SS-20, has also been tested in AKI and CKD. Treatment with
SS-20 could increase the efficiency of the electron transport chain and improve the coupling
of oxidative phosphorylation, which are also considered to be mechanisms that reduce IR
injury. SS-20 could reduce mitochondrial matrix swelling and preserved cristae membranes,
which enhanced mitochondrial ATP synthesis under ischemic conditions. Treatment with
SS-20 could also significantly reduce renal interstitial fibrosis after ischemia [99].

6.2. Modulating Mitochondrial Dynamics

Mitochondrial fission is governed by Drp1, the inhibition of which, attenuates re-
nal tubular injury and subsequent progression of AKI induced by ischemia reperfusion
and cisplatin [44,100]. Proximal tubule–specific deletion of Drp1 not only prevented the
renal ischemia-reperfusion–induced inflammation and programmed cell death, but also
attenuated progressive kidney injury and fibrosis [51]. Therefore, targeting Drp1 might be
beneficial in the treatment of diseases considering mitochondrial fission alteration. Mito-
chondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1 via blocking
its assembly and GTPase domain activity [132], blocked mitochondrial fragmentation. Dur-
ing cell injury, the balance between mitochondrial fusion and fission shifts to mitochondrial
fission, which results in mitochondrial fragmentation [133]. Mdivi-1 treatment has been
tested in different AKI models. In rhabdomyolysis (RM)-induced AKI, Mdivi-1 treatment
ameliorates renal function by maintaining the mitochondrial function and reducing the
apoptosis of tubular cells [100]. In sepsis-induced AKI, Mdivi-1 treatment had renopro-
tective effect due to protection of mitochondrial function characterized by increasing ATP
production and decreasing mitochondrial fragmentation, and the reduction of NOD-like
receptor pyrin domain-3 (NLRP3) inflammasome-mediated pyroptosis of renal tubular
epithelial cells [134]. Mdivi-1 also has been tested in CKD models; however, Mdivi-1
treatment seems to exhibit divergent functions in different studies. In Ksp-Cre;Pkd1flox/-

mice, administration of Mdivi-1 significantly reduced kidney/body weight, cyst forma-
tion, and improved renal function by interfering with Drp1 and rescuing mitochondrial
fragmentation [101]. In UUO model, treatment with Mdivi-1 decreased mitochondrial
PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PARK2),
and LC3II levels; increased mtROS production; and worsened renal fibrosis following
UUO [102], which suggested that Drp1-regulated PARK2-dependent mitophagy plays a
protective role in kidney following injury. Therefore, it is hard to evaluate whether Midvi-1
treatment is a benefit or not and more evidence for the application of Mdivi-1 is needed
in CKD.

6.3. Altering Mitochondrial Biogenesis

Mitochondria biogenesis refers to a process of generating new mitochondrial mass
and replicating mtDNA, in which, activation is necessary for the increased metabolism and
energy demands during the recovery from acute organ injury. The AMPK/SIRT/PGC-1α
axis plays crucial roles in mitochondrial biogenesis. As mentioned above, PGC-1α have
been identified as a critical regulator that coordinately regulates mitochondrial biogene-
sis, reduces oxidative stress, and anti-inflammatory [54]. The expression and activity of
PGC-1α can be regulated by Sirtuin1 (SIRT1), a NAD-dependent deacetylase. In IRI-AKI,
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treatment with SIRT1 activator, SRT1720 restores the expression of PGC-1α in kidneys, lead-
ing to enhanced mitochondria biogenesis characterized by the increase of mitochondrial
mass and ATP levels, and improved renal function [103]. Other activators of mitochondria
biogenesis include resveratrol, AICAR, and formoterol. Treatment with resveratrol [105],
a natural plant phytoalexin, protects mice against aldosterone-induced podocyte injury
by upregulating PGC-1α and restores mitochondrial respiratory capacity and decreases
the production of mitochondria ROS and lipid peroxidation in AKI [68,135]. Pretreatment
with AICAR, an AMPK activator, attenuated I/R injury-induced nitrosative stress and
monocyte/macrophage infiltration, and ameliorated the development of acute tubular
necrosis [108]. Formoterol is a potent agonist of β2-adrenoreceptor, which can induce
mitochondrial biogenesis by increasing mtDNA copy numbers, oxygen consumption rate,
and PGC-1α expression in both the renal proximal tubular cells and cardiomyocytes [110].
Treatment with formoterol rescued injury and tubular necrosis, decreased nitrosative stress,
and ameliorated renal function in IRI-AKI [111]. All these drugs have also been tested
in CKD models. For example, either SRT1720 or AICAR treatment exerted protective
effects against tubulointerstitial fibrosis by decreasing oxidative stress [104,109]. In dia-
betic nephropathy, treatment with resveratrol prevents lipotoxicity-related apoptosis and
oxidative stress [105–107]. Formoterol treatment was also shown to be renoprotective
in diabetic nephropathy, which reduced proteinuria and kidney profibrotic proteins by
restoring mitochondrial fusion/fission protein level [112]. In addition, another group of
drugs known as “fibrates”, including bezafibrate and fenofibrate, which could increase
mitochondrial fatty acid oxidation and mitochondrial biogenesis, have also been shown
to have renoprotective effects in diabetic experimental models [113]. Thus, mitochondria
biogenesis activators can be promising therapeutic targets.

6.4. Altering Mitochondrial Biogenesis

Mitochondria biogenesis refers to a process of generating new mitochondrial mass
and replicating mtDNA, of which, activation is necessary for the increased metabolism and
energy demands during the recovery from acute organ injury. The AMPK/SIRT/PGC-1α
axis plays crucial roles in mitochondrial biogenesis. As mentioned above, PGC-1α have
been identified as a critical regulator that coordinately regulates mitochondrial biogenesis,
reduces oxidative stress, and is anti-inflammatory [54]. The expression and activity of
PGC-1α can be regulated by Sirtuin1 (SIRT1), a NAD-dependent deacetylase. In IRI-AKI,
treatment with SIRT1 activator SRT1720 restores the expression of PGC-1α in kidneys, lead-
ing to enhanced mitochondria biogenesis characterized by the increase of mitochondrial
mass and ATP levels, and improved renal function [103]. Other activators of mitochondria
biogenesis include resveratrol, AICAR, and formoterol. Treatment with resveratrol [105],
a natural plant phytoalexin, protects mice against aldosterone-induced podocyte injury
by upregulating PGC-1α and restores mitochondrial respiratory capacity and decreases
the production of mitochondria ROS and lipid peroxidation in AKI [68,135]. Pretreatment
with AICAR, an AMPK activator, attenuated I/R injury-induced nitrosative stress and
monocyte/macrophage infiltration, and ameliorated the development of acute tubular
necrosis [108]. Formoterol is a potent agonist of β2-adrenoreceptor, which can induce
mitochondrial biogenesis by increasing mtDNA copy numbers, oxygen consumption rate,
and PGC-1α expression in both the renal proximal tubular cells and cardiomyocytes [110].
Treatment with formoterol rescued injury and tubular necrosis, decreased nitrosative stress,
and ameliorated renal function in IRI-AKI [111]. All these drugs have also been tested
in CKD models. For example, either SRT1720 or AICAR treatment exerted protective
effects against tubulointerstitial fibrosis by decreasing oxidative stress [104,109]. In dia-
betic nephropathy, treatment with resveratrol prevents lipotoxicity-related apoptosis and
oxidative stress [105–107]. Formoterol treatment was also shown to be renoprotective
in diabetic nephropathy, which reduced proteinuria and kidney profibrotic proteins by
restoring mitochondrial fusion/fission protein level [112]. In addition, another group of
drugs known as “fibrates”, including bezafibrate and fenofibrate, which could increase
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mitochondrial fatty acid oxidation and mitochondrial biogenesis, have also been shown
to have renoprotective effects in diabetic experimental models [113]. Thus, mitochondria
biogenesis activators can be promising therapeutic targets.

6.5. mPTP Inhibitors

Opening of high conductance mPTP initiates onset of the mitochondrial permeability
transition (MPT) and leads to cellular necrosis and apoptosis after oxidative stress, Ca2+ tox-
icity, and ischemia/reperfusion [136]. mPTP putatively consists of the voltage-dependent
anion channel, the adenine nucleotide translocator (ANT), and cyclophilin D. The in-
hibitors of mPTP have been shown to ameliorate renal IRI and drug-induced AKI [42,114].
Cyclosporine-A (CSA), a potent inhibitor of the mPTP, blocking the interaction of cy-
clophilin D with the ANT, results in blocking the conformational change of ANT [137],
which is currently under clinical trial for its effect on reperfusion injury on acute myocardial
infarction (NCT01595958) and severe traumatic brain injury (NCT01825044). Low dose of
CSA suppressed mPTP opening and mitochondria swelling, reduced podocyte damage [42],
attenuated the oxidative stress, and worked against subsequent ischemia/reperfusion in-
jury [114]. However, high-dose CSA treatment results in nephrotoxicity and apoptosis
by shifting mitochondrial dynamics toward fission [138] and specific metabolic changes,
including the decrease of the activity of the mitochondrial Krebs cycle, oxidative phosphory-
lation [139], electron transferring, and the shutting down of oxidative aerobic pathway [140].
These studies suggested a dosage limitation usage of CSA in patients with renal disease.
Notably, in db/db mice, treatment with cyclophilin D inhibitor alisporivir did not improve
renal function nor pathology in kidneys indicating that cyclophilin D has a complex role
in DKD and direct targeting of this component of the mPTP will likely not improve renal
outcomes [141]. Thus, the value of mPTP inhibitors application in CKD needs further
investigation to be evaluated. Other agents like 4-benzyl-2-methyl-1,2,4-thiadiazolidine-
3,5-dione (TDZD-8), a selective inhibitor of glycogen synthase kinase 3β (GSK-3β), which
is a ubiquitous serine–threonine protein kinase that phosphorylates cyclophilin D and pro-
motes mPTP opening, also prevent acute kidney dysfunction in AKI [115–117]. Moreover,
TDZD-8 could suppress renal fibrosis developed as a result of acute kidney injury, which
represents a therapeutic approach for AKI to CKD transition [117].

6.6. Mitochondrial-Targeted Antioxidants

The mitochondrion is a main source of intracellular ROS, in that ~90% of ROS are
generated in mitochondria [16]. The burst of mtROS has been shown to disturb multi-
ple pathways involved in calcium homeostasis, mitochondrial permeability, cytochrome
C release, activation of proinflammatory signals, such as Toll-like receptors (TLRs) and
the NLRP3 inflammasome, and to directly induce renal cell death [11,142–144]. Consid-
ering the increased mtROS generation in AKI and CKD, drugs that specifically target
mtROS may confer greater protection against renal injury than other untargeted cellular
antioxidants. Coenzyme Q10 (CoQ10; ubiquinone) is a component of the mitochondrial
respiratory chain with well-described antioxidant properties. The renoprotective roles of
CoQ10 have been demonstrated in type 2 diabetes through preservation of mitochondrial
function, such as normalizing ATP production, attenuating renal mitochondrial hydrogen
peroxide production, and decreasing mitochondrial membrane potential [118]. CoQ10 is
currently under phase III clinical trials for mitochondrial disorders (NCT00432744) and
Parkinson’s disease (NCT00740714). mitoTEMPO, a triphenylalkylphosphonium cation
(TPP+)-conjugated mitochondria-targeted antioxidant, which improves mitochondrial
function by inhibiting mtROS, restoring renal mtDNA level and mitochondrial mass, and
increasing the generation of ATP, can alleviate key features of IRI-induced AKI and diabetic
nephropathy [94,145–147]. Treatment with mitoTEMPO also recovered other indicators
of mitochondrial function such as PGC-1α and ATP5a-1 levels and the mitochondrial
length/width ratio in ischemic reperfusion induced AKI [145]. Mitochondrial coenzyme Q
(MitoQ), another compound of piperidine nitroxide conjugated to a TPP+ and a deriva-
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tive of CoQ10, has been reported to attenuate renal dysfunction in several types of AKI
and CKD by sequestering ROS. In IRI-AKI, administering MitoQ to mice intravenously
15 min prior to ischemia protected the kidney from damage and reduced the severity
of IR injury to the kidney by decreasing oxidative damage [148]. In CKD model, Mi-
toQ treatment decreased urinary albumin, interstitial fibrosis, and glomerular damage
by decreasing mitochondrial ROS in the Ins2(+/)−(AkitaJ) mouse model (Akita mice)
of Type 1 diabetes [119]. Moreover, MitoQ was shown to be safe in clinical trials with
Parkinson’s disease (NCT00329056), fatty acid disease (NCT01167088), and hepatitis C
(NCT00433108), and is currently under clinical trial (NCT02364648) for CKD. In addition to
TPP+-conjugated drugs, other Mitochondria-targeted antioxidants, such as the SkQ group
including plastoquinonyl-decyl-triphenylphosphonium (SkQ1) and 10-(6’-plastoquinonyl)
decylrhodamine 19 (SkQR1), also present a protective effect in kidney injury [120,121].
Curcumin is thought to act as an antioxidant, which could affect various pathways relevant
to the development of CKD [122,123]. In CKD model including five-sixth nephrectomy
(5/6NX) and db/db mice, treatment with curcumin improved renal function through
alternating mitochondria biogenesis and mitochondrial dynamics [124,149]. Curcumin
is under phase III clinical trials for the treatment of Leber hereditary optic neuropathy
(NCT00528151). Taken together, these studies suggest that mitochondrially targeted antiox-
idants represent a novel approach to prevent or attenuate kidney injury.

7. Conclusions and Future Directions

Mitochondrial dysfunction in renal cells plays a critical role in the pathophysiology
of AKI and CKD as well as AKI to CKD transition. Various aspects of mitochondrial
biology, including mitochondrial structure, dynamics, and biogenesis are involved in the
progression of AKI and CKD. In addition, mitochondrial oxidative stress, and its crosstalk
with other organelles, such as ER, also contribute to AKI, CKD, and AKI to CKD transition.
Recent understanding of mitochondrial biology and function under the conditions of
kidney diseases have revealed the mechanisms and prospective role of mitochondria-based
drugs, named as mitochondria-targeting therapeutic agents, for the treatment of these
kidney diseases, which may have translational potential in the future.

We should point out that even though the current evidence is encouraging, the under-
standing of various aspects of mitochondrial biology and function is still quite immature.
For example, it remains unclear how mtDNA abnormalities are relevant to kidney injury
in AKI and CKD. In addition, the clinical manifestations of mitochondrial dysfunction in
kidney diseases vary in terms of symptoms, severity, and age of onset. Moreover, though
studies have shown that mitochondrial dysfunction contributes to AKI and CKD, and
preclinical studies suggest that mitochondria targeting therapies have the potential for
prevention and management of these renal diseases, there are no translational studies
showing the clinical relevance and applications of these mechanisms in humans. Thus,
it is necessary to better understand mitochondrial biology and function with a focus on
the mechanisms of upstream regulators and downstream effectors of mitochondrial dys-
function in renal cells and kidney diseases. We expect that these findings may translate
into future therapeutic options to ameliorate renal injury and delay the progression of AKI
and CKD.
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