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Abstract: Joint torques of lower extremity are important clinical indicators of gait capability. This pa-
rameter can be quantified via hybrid neuromusculoskeletal modelling that combines electromyography-
driven modelling and static optimisation. The simulations rely on kinematics and external force
measurements, for example, ground reaction forces (GRF) and the corresponding centres of pressure
(COP), which are conventionally acquired using force plates. This bulky equipment, however, hinders
gait analysis in real-world environments. While this portability issue could potentially be solved
by estimating the parameters through machine learning, the effect of the estimation errors on joint
torque prediction with biomechanical models remains to be investigated. This study first estimated
GRF and COP through feedforward artificial neural networks, and then leveraged them to predict
lower-limb sagittal joint torques via (i) inverse dynamics and (ii) hybrid modelling. The approach
was evaluated on five healthy subjects, individually. The predicted torques were validated with the
measured torques, showing that hip was the most sensitive whereas ankle was the most resistive to
the GRF/COP estimates for both models, with average metrics values being 0.70 < R2 < 0.97 and
0.069 < RMSE < 0.15 (Nm/kg). This study demonstrated the feasibility of torque prediction based
on personalised (neuro)musculoskeletal modelling using statistical ground reaction estimates, thus
providing insights into potential real-world mobile joint torque quantification.

Keywords: joint torque; gait; neuromusculoskeletal modelling; inverse dynamics; machine learning;
ground reaction force; centre of pressure

1. Introduction

Three-dimensional gait analysis aimed at quantifying joint and musculotendon ki-
netics is crucial for certain medical diagnosis, motor assessment and development of
rehabilitative technologies [1–3]. Estimating joint moments through inverse dynamics
modelling in gait anaylsis is regarded as the gold standard [4,5]. This approach solves
Newton–Euler equations of motion for each rigid segment of a biomechanical model,
beginning from the most distal one [6,7]. Then, inverse dynamics-based static optimisation
or dynamic optimisation are often used to solve the redundancy problem of the muscu-
loskeletal system in order to predict individual muscle forces [8–10]. Optimisation methods
require definition of an objective function describing muscle recruitment strategies, which
has remained a challenging endeavour. To this end, electromyography (EMG) observations
are introduced to drive the model and estimate these kinetic parameters [11–15]. EMGs
are electrical muscle signal recordings originating as output of motor neurons, and thus
are informative of the neural drive to muscles [16]. Therefore, as opposed to optimisation-
based approaches, EMG-driven modelling has the benefit of leveraging direct estimation
of individual muscle contributions. Furthermore, neural control and musculoskeletal
functions are inseparable components underlying human movements. Understanding
the neuromuscular interlink is valuable for a wide range of purposes, such as designing
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rehabilitation therapies and studying gait pathology and disease prognostics [17–19]. Yet,
our understanding of this neuromuscular relationship is still limited [20]. Hence, an added
benefit of neuromusculoskeletal models is that they can help untangle the complexities of
neural drive to muscles. However, this approach has its own shortcomings. EMG signals
from deep muscles are difficult to record noninvasively, and cross-talk between muscles as
well as movement artifacts can contaminate the signals and reduce the performance of the
models [21,22]. In light of the limitations of both optimisation and EMG-driven methods,
a hybrid model has been proposed to balance the uncertainties induced by the two ap-
proaches [23]. This model compares the joint torques predicted by an EMG-driven model
and inverse dynamics, and minimises the torque differences by minimally fine-tuning the
EMG signals and generating the excitations that have not been recorded.

In gait analysis, both inverse dynamics and the hybrid model rely on kinematics
and external forces such as ground reaction force (GRF) and the corresponding centre of
pressure (COP). Conventionally, these measurements are acquired using camera-based
motion capture systems and force plates installed under the walkway, which as a concept
poses some limitations. The size and weight of these instruments constitute the constraint
of nonportability, causing real-world analyses to be almost infeasible. The high cost of the
force plates further complicates analyses with a large number of consecutive gait cycles. To
address the issues induced by force plates, past studies have attempted the use of pressure
insoles and instrumented shoes [24–28]. This type of approach alleviates the problems
and eases measurements outside the laboratory. Yet, the reliability of some insoles is still
pending considerable advancement [29], and the size of the sensors attached beneath the
shoes may cause discomfort to the users during gait, especially in long-distance investiga-
tions. Additionally, a certain kind of footwear could affect the measured GRF [30]. These
outstanding challenges have motivated researchers to estimate GRF and COP through ma-
chine learning. Specifically, marker trajectories collected with motion capture systems and
kinematics measured by such wearable sensors as inertial measurement units are employed
to drive the statistical models for the estimation of the two gait parameters [31–39]. Despite
that past literature has shown great potential of this approach to be used in real-world en-
vironments, there is still room for improvement in the design and application of statistical
models incorporating GRF and COP estimation. The main concern here is the propagation
of the resulting estimation errors through the bottom-up modelling process. Until now, the
exact impact of these errors on joint torque prediction based on either musculoskeletal or
neuromusculoskeletal models has yet to be investigated, and thus the feasibility of torque
prediction relying on GRF and COP estimates remains unclear.

Some previous studies have directly predicted joint torques via data-driven meth-
ods without relying on GRF or COP [33,37,39–41]. Their statistical models have been
generalised across subjects, which is a useful tool for clinical analysis for specific target
groups. The downside of this design is the incapability of capturing subject-specific mus-
culoskeletal and neurophysiological characteristics, which is crucial for the development
of personalised rehabilitation devices [20]. Furthermore, the black-box nature as well
has its benefits and drawbacks; it does not require thorough understanding of complex
intermediate biomechanical processes to obtain the final output, but at the same time, this
does not provide insights into profound neuromusculoskeletal interaction.

The primary aim of this study is to explore the applicability of both the inverse dynam-
ics and the hybrid neuromusculoskeletal model for sagittal joint torque prediction in less
constraining environments. This implies limiting the use of force plates and relying on mea-
surements that can eventually be obtained with fully wearable systems. We first estimated
GRF and COP with machine learning algorithms, then used these estimates to support the
prediction of joint torques via inverse dynamics and hybrid neuromusculoskeletal mod-
elling. The ‘goodness-of-fit’ of this approach was evaluated by comparing the resulting
torques with the conventionally obtained experimental ones. To the best of our knowledge,
this is the first study to investigate joint moment prediction via (neuro-)musculoskeletal
modelling with statistical GRF and COP estimates. The secondary goal here is then to
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examine the individual effect of GRF and COP estimation accuracy on the joint moments
predicted by each of the two models. The main contribution of this study lies in exploring
the paradigm that enhances the capabilities of translating personalised model-based joint
torque quantification of this type from laboratories to daily-life environments.

2. Materials and Methods
2.1. Data Collection and Preprocessing

The study has been validated on two male and three female healthy subjects
(35.2 ± 16.8 years, 1.71± 0.10 m, 71.0± 13.8 kg) from a public dataset recorded by Schreiber
and Moissenet [42]. This dataset includes optical motion tracking, force-plate measure-
ments and EMG recordings, which is regarded as a benchmark for our evaluation. Each of
the subjects performed four trials of self-paced ground-level walking in an unconstrained
fashion. For each trial, one complete stance phase of the right leg was analysed. The
data collection protocol is briefly described here in accordance to the original work for the
purpose of clarity [42]. Ground reaction forces and moments (GRFM) were collected at
1500 Hz with two force plates (OR6-5, AMTI, USA). Three-dimensional marker locations
were recorded at 100 Hz using a 10-camera system (OQUS4, Qualisys, Sweden). EMG
signals were measured at 1500 Hz (Desktop DTS, Noraxon, Scottsdale, AZ, USA) from eight
right leg muscles: soleus, tibialis anterior, gastrocnemius medialis, rectus femoris, vastus
medialis, semitendinosus, gluteus maximus and gluteus medius using bipolar surface
electrodes (Ambu Neuroline 720, Ambu, Denmark).

Marker trajectories and GRFM were passed to zero-lag second-order Butterworth low
pass filters with cutoff frequency of 8 Hz [43]. Marker locations were interpolated to the
length of GRF. COP was calculated from GRFM. To generalise these measurements among
subjects, heel marker position was taken as the reference. EMG data were high-pass filtered
at 30 Hz, full-wave rectified, and then low-pass filtered at 6 Hz, with a zero-lag fourth-order
Butterworth filter in order to obtain the EMG envelope [11]. The EMG envelopes were
normalised with respect to the peak values across the entire set of data for each subject.
Linear velocity and acceleration were calculated from the dynamic marker trajectories via
frame-by-frame differentiation.

2.2. Musculoskeletal Modelling

In order to obtain individual joint torques, modelling analysis was performed using
OpenSim [44]—an open-source biomechanical software system. A generic model presented
by Hamner, Seth and Delp [45] was linearly scaled using 44 reflective markers to match
the anthropometry of each subject. Tendon slack lengths and optimal fiber lengths of
musculotendon units (MTUs) crossing hip, knee and ankle joints from the subject-specific
model were then optimised as previously described in [46]. Corresponding joint angles
were computed from dynamic marker trajectories via inverse kinematics. Angular velocity
and acceleration were calculated from the joint angles via frame-by-frame differentiation.
Musculotendon lengths and moment arms for hip and knee flexion/extension and ankle
plantar/dorsi flexion were obtained with a muscle analysis tool. Joint torques for these
degrees of freedom (DoF), referred to as ‘the measured torques’ hereafter, were computed
via inverse dynamics.

2.3. EMG-Assisted Musculoskeletal Modeling

In contrast to inverse dynamics which only considers musculoskeletal aspects, the
EMG-assisted musculoskeletal model employed in this study consists of a neural-driven
forward dynamics model and static optimisation element [23]. This method enhances the
joint torque estimation with static optimisation by adjusting the experimental EMG signals
and synthesizing the muscle excitations that are not available. The objective function is
defined in Equation (1) [23]:

F = αEtrackMOM + βEsumEXC + γEtrackEMG (1)
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where EtrackMOM is the sum of squared differences between the estimated and the measured
joint torques, EsumEXC is the sum of squared excitations for all the MTUs that are involved,
including those with the experimental and the synthesized EMG envelopes, and EtrackEMG
is the sum of absolute differences between adjusted and experimental excitations. α, β
and γ are weighting coefficients for each of the terms. Before computing the individual
joint torques, the model parameters were tuned by minimising the difference between the
torques predicted by the EMG-driven model and the measured torques, to increase the
levels of subject specificity. Optimising ranges for individual parameters (Table 1) were
assigned according to those reported previously [11,15].

Table 1. Optimising range of parameters for neuromusculoskeletal model.

Neuromusculoskeletal Model Parameter
Range

Minimum Maximum

Tendon slack length 0.95 1.05

Optimal fibre length 0.975 1.025

Muscle strength coefficient 0.5 2

MTU activation filtering coefficients −1 1

Shape factor −5 0

As in [23], α was set as 1, and β and γ were determined such that EtrackMOM and
EtrackEMG reached the minimum. Nineteen MTUs of the model were driven by the exper-
imental EMG recordings from the muscles belonging to the corresponding innervation
zones, as described in [15] (Table 2). Moments of hip, knee and ankle DoFs for each of the
four trials were computed, with the measured data from the remaining three trials used for
calibration. The estimation was executed in the EMG-assisted mode with the Calibrated
EMG-Informed Neuromusculoskeletal modelling (CEINMS) toolbox [43].

Table 2. The recorded EMG and the MTU driven by the corresponding recorded EMG. MTU of the
model depicted was abbreviated as in OpenSim.

Experimental EMG MTU of the Model

Soleus soleus

Tibialis anterior tib_ant

Gastrocnemius medialis med_gas, lat_gas

Rectus femoris rect_fem

Vastus medialis vas_lat, vas_med, vas_int

Semitendinosus semimem, semiten

Gluteus maximus glut_max1, glut_max2, glut_max3

Gluteus medius glut_med1, glut_med2, glut_med3,
glut_min1, glut_min2, glut_min3

2.4. Ground Reaction Force and Centre of Pressure Estimation

We applied artificial neural networks (ANNs) to estimate the three-dimensional (3D)
GRF and COP in anterio-posterior (AP) and medio-lateral (ML) direction. Since it is known
that the performance of ANN models can be strongly influenced by the input suitability [47],
a subset of features was selected using Neighbourhood Component Analysis (NCA) prior
to the estimation.
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2.4.1. Feature Selection by Neighbourhood Component Analysis

NCA is a nonparametric dimensionality reduction technique which learns the Maha-
lanobis distance used in the k-nearest neighbourhood classification algorithm [48]. NCA
has been applied on kinematics, kinetics and physiological signals [49–53] and has been
shown to outperform other conventional algorithms such as principle component analysis
and reliefF [50,53]. This approach optimises the feature weights by minimising the objective
function that measures the leave-one-out prediction loss over the training data.

Analogous to the one-nearest-neighbour algorithm, NCA chooses point j as the neigh-
bour of point i depending on the distance between the two points. The kernel function
k(z) = e(−

z
σ ) is introduced such that the probability pij is inversely proportional to the

weighted distance dw where wr is the weight of feature r (Equations (2) and (3)).

pij =
k
(
dw
(
xi,xj

))
∑n

j=1,j 6=i k
(
dw
(
xi,xj

)) (2)

dw
(

xi,xj
)
=

p

∑
r=1

w2
r |xir − xjr| (3)

The average value of loss function is defined in Equation (4), in which l
(
yi, yj

)
is

the mean absolute deviation between yi and yj in this study. A regularisation term with
parameter λ is introduced in the objective function defined in Equation (5) to penalise the
overfitting behaviour of the model [54].

li =
n

∑
j=1,j 6=i

pijl
(
yi, yj

)
(4)

F(w) =
1
n

n

∑
i=1

li + λ
p

∑
r=1

w2
r (5)

For estimating each of the parameters described in Section 2.4, this algorithm was
applied to select a set of optimal features for each trial from the processed data, including
joint angles, linear velocity and acceleration, angular velocity and acceleration, and EMG
envelopes. Features with weights higher than 1% of the maximum values were selected.

2.4.2. Estimation by Artificial Neural Network

Features selected by NCA were fed into separate ANN feedforward models for GRF
and COP estimation in each direction. All the models were trained with one hidden
layer [31,55]. The model weights and biases were updated through Levenberg–Marquardt
backpropagation [56]. Hyperbolic tangent and linear activation transfer functions were
employed for the hidden and output layers, respectively. Minimum gradient was used
as stopping criteria to enhance the model generalisation. These designs align to those
of previous studies for similar applications [31,55]. For every subject, each of the four
trials was tested in turn. In each test case, the other three trials were regarded as training
data, and were partitioned into five folds randomly for cross-validation. The model
hyperparameters for each test were chosen through Bayesian optimisation by minimising
the objective function defined in Equation (6):

Fobj = max
k

(

√
∑N

n=1(yest,k − ytrue,k)
2

N
) (6)

where N is the total number of test points, k is fold number, yest,k and ytrue,k are ANN
output and measured values, respectively, for test point n at kth fold. The optimising
ranges of hyperparameters are depicted in Table 3.
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Table 3. The optimizing range for ANN model parameter.

ANN Model Parameter
Range

Minimum Maximum

Neuron number 2 20

Learning rate 0.0005 1

Epochs 500 1000

2.5. Experimental Conditions and Model Performance Analysis

GRF was normalised to body weight (BW) and COP was analysed in millimetres.
The ‘goodness-of-fit’ of GRF and COP estimates were assessed using the coefficient of
determination

(
R2) and Root Mean Squared Error (RMSE) between the predicted and the

measured values.
To investigate the overall and individual effects of estimated GRF and COP on both

non-neural and neural based sagittal torque prediction, three experimental conditions
for each type of model were established. As such, the following combinations of in-
puts were fed into both musculoskeletal and EMG-assessed models: (i) both estimated
GRF and estimated COP (EGEC-M/EGEC-N), (ii) estimated GRF and measured COP,
(EGMC-M/EGMC-N) and (iii) measured GRF and estimated COP (MGEC-M/MGEC-N).
Abbreviations of conditions with suffix ‘M’ and ‘N’ denote musculoskeletal and neuro-
musculoskeletal models, respectively. All the musculotendon and model parameters were
tuned with measured data for each subject. The same set of optimised parameters and
EMG recordings were used for all the experimental conditions. The concept of running
the entire investigating paradigm for each subject is illustrated in the schematic flowchart
(Figure 1). The torque outputs from each model were normalised to the body mass, and
compared to their respective measured values using metrics R2 and RMSE. All trial lengths
were normalised to 100 samples, with 0% and 100% corresponding to heel strike and
toe-off, respectively.
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2.6. Statistical Analysis

Shapiro–Wilk, Levene’s and Mauchly’s tests were conducted to examine the data
normality, variance homogeneity and sphericity, respectively. Whenever these assumptions
were met, a three-way mixed ANOVA was applied to determine whether there was signifi-
cant difference in both torque metrics for factors: subjects, experimental conditions and
models. In case of nonexistence of significant interaction effects among the factors, only
main effects were analysed. If significant interaction is present, focused repeated measures
ANOVA was conducted for each level of the factor(s) concerned to determine the simple
main effects. In addition, another repeated measures ANOVA was conducted with subject
means to test on the same hypotheses. In case significant difference was detected, post
hoc paired t-tests with Bonferroni correction were performed for pairwise comparison. If
the test assumptions were violated, nonparametric within-subject and between-subject
Friedman tests were conducted, followed by post hoc Dunn–Bonferroni tests. Significance
level was set at p = 0.05. All analyses were carried out with IBM SPSS (version 27, SPSS
Inc., Chicago, IL, USA).

3. Results

The average GRF and COP estimates from the ANN models across all the trials and
subjects are depicted in Figure 2. The distribution of R2 and RMSE for GRF and COP over
all the trials are shown in Figure 3. The mean R2 for vertical (V) GRF (0.97 ± 0.02) was the
highest, followed by AP GRF (0.96 ± 0.02) and then ML GRF (0.71 ± 0.19). The R2 for both
GRF and COP in ML direction had a larger variability than those in AP and V direction.
The mean R2 for AP COP (0.96 ± 0.04) was considerably higher than ML COP (0.07 ± 1.19).
The mean RMSE for V, AP and ML GRF were 4.5 ± 1.2, 1.7 ± 0.4 and 1.2 ± 1.2 % BW, while
that for AP and ML COP were 9.2 ± 3.2 and 10.6 ± 4.3 mm, respectively.
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Figure 3. Distribution of R2 (top row) and RMSE (bottom row) for GRF (left column) and COP
(right column) for all the trials. RMSE for GRF and COP in % BW and in mm, respectively.

The average joint torques computed via non-neural and neural models for all three
experimental conditions, that is, (i) EGEC-M/EGEC-N, (ii) EGMC-M/EGMC-N and (iii)
MGEC-M/MGEC-N, are illustrated in Figures 4 and 5, respectively. The R2 and RMSE of
joint torques for all the conditions are shown in Figure 6, and Tables 4 and 5. Statistical
results showed that the data violated the assumptions of ANOVA and hence Friedman and
Dunn–Bonferroni tests were conducted.

In the between-model comparison, RMSE results indicated that only a few significant
differences were detected for hip joint for each of the conditions (0.025 < p < 0.046). The
ground reaction estimates affected the two models to a similar extent at the knee joint for
EGEC and EGMC. However, there was significant difference at the knee joint for MGEC
on three subjects (p = 0.046). For ankle joint, significant difference was observed for EGEC
and MGEC on all the subjects, and for EGMC on four subjects (p = 0.046). Statistical results
from R2 showed the same trend. In summary, the two models tended to behave differently
at the knee level when measured GRF and estimated COP were employed. This was also
the case at the ankle regardless of conditions.

In the between-condition comparison, R2 and RMSE statistical results were consistent.
At hip joint, both metrics between EGEC-M and MGEC-M, and EGEC-N and MGEC-N
for Subject I and V as well as mean values were of significant difference (0.013 < p < 0.04).
At knee joint, significant difference was observed between EGEC-M and MGEC-M, and
between EGEC-N and MGEC-N for Subject V (p = 0.04), while between EGEC-M and
EGMC-M for Subject I (p = 0.04). However, subject means revealed no significant difference
for all the conditions. At ankle joint, significant difference was detected between EGEC-M
and EGMC-M, and EGEC-N and EGMC-N for Subject III and IV as well as mean values
for both measures (0.005 < p < 0.04). Furthermore, Subject II showed significant difference
in both metrics between EGMC-N and MGEC-N (p = 0.04). Generally, MGEC-M and
MGEC-N performed better than EGMC-M and EGMC-N at hip joint; however, they did
contrariwise at the ankle.
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Figure 4. Measured (blue) and estimated (red) joint torques via musculoskeletal modelling for hip (left column), knee
(middle column) and ankle (right column) for three conditions: estimated both GRF and COP (EGEC-M) (top row),
estimated GRF only (EGMC-M) (middle row) and estimated COP only (MGEC-M) (bottom row) averaged across all the
trials and subjects. Torques were normalised with respect to body mass. Data were plotted in percent of stance phase from
heel strike to toe-off. Shaded area represents one standard deviation of the subject means.
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Figure 5. Measured (blue) and estimated (red) joint torques via neuromusculoskeletal modelling for hip (left column),
knee (middle column) and ankle (right column) for three conditions: estimated both GRF and COP (EGEC-N) (top row),
estimated GRF only (EGMC-N) (middle row) and estimated COP only (MGEC-N) (bottom row) averaged across all the
trials and subjects. Torques were normalised with respect to body mass. Data were plotted in percent of stance phase from
heel strike to toe-off. Shaded area represents one standard deviation of the subject means.
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Figure 6. R2 (left column) and RMSE (right column) for hip (top row), knee (middle row) and
ankle (bottom row) for each of the following conditions: (i) estimated GRF and COP with muscu-
loskeletal model (EGEC-M), (ii) estimated GRF and COP with neuromusculoskeletal model (EGEC-
N), (iii) estimated GRF and measured COP with musculoskeletal model (EGMC-M), (iv) estimated
GRF and measured COP with neuromusculoskeletal model (EGMC-N), (v) measured GRF and
estimated COP with musculoskeletal model (MGEC-M), (vi) measured GRF and estimated COP
with neuromusculoskeletal model (MGEC-N). Asterisk indicates statistically significant difference
(p < 0.05).

Table 4. R2 of joint torques averaged across all the trials and subjects for all the conditions:
(i) estimated GRF and COP with musculoskeletal model (EGEC-M), (ii) estimated GRF and COP
with neuromusculoskeletal model (EGEC-N), (iii) estimated GRF and measured COP with muscu-
loskeletal model (EGMC-M), (iv) estimated GRF and measured COP with neuromusculoskeletal
model (EGMC-N), (v) measured GRF and estimated COP with musculoskeletal model (MGEC-M),
(vi) measured GRF and estimated COP with neuromusculoskeletal model (MGEC-N).

Condition
Joint

Hip Knee Ankle

EGEC-M 0.84 ± 0.089 0.70 ± 0.17 0.97 ± 0.029

EGEC-N 0.80 ± 0.094 0.73 ± 0.12 0.97 ± 0.024

EGMC-M 0.87 ± 0.048 0.84 ± 0.059 0.99 ± 0.0027

EGMC-N 0.83 ± 0.090 0.84 ± 0.051 1.0 ± 0.0013

MGEC-M 0.95 ± 0.028 0.78 ± 0.14 0.97 ± 0.023

MGEC-N 0.94 ± 0.028 0.82 ± 0.12 0.97 ± 0.021
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Table 5. RMSE of joint torques averaged across all the trials and subjects for all the conditions:
(i) estimated GRF and COP with musculoskeletal model (EGEC-M), (ii) estimated GRF and COP with
neuromusculoskeletal model (EGEC-N), (iii) estimated GRF and measured COP with musculoskeletal
model (EGMC-M), (iv) estimated GRF and measured COP with neuromusculoskeletal model (EGMC-
N), (v) measured GRF and estimated COP with musculoskeletal model (MGEC-M), (vi) measured
GRF and estimated COP with neuromusculoskeletal model (MGEC-N). The unit for RMSE is Nm/kg.

Condition
Joint

Hip Knee Ankle

EGEC-M 0.14 ± 0.032 0.094 ± 0.024 0.081 ± 0.023

EGEC-N 0.15 ± 0.030 0.091 ± 0.016 0.069 ± 0.026

EGMC-M 0.13 ± 0.019 0.070 ± 0.010 0.032 ± 0.0073

EGMC-N 0.14 ± 0.029 0.070 ± 0.011 0.022 ± 0.0045

MGEC-M 0.081 ± 0.018 0.079 ± 0.021 0.073 ± 0.029

MGEC-N 0.078 ± 0.018 0.073 ± 0.017 0.065 ± 0.023

4. Discussion

The primary focus of this study was to investigate the feasibility of predicting joint
torques in sagittal plane via both musculoskeletal and neuromusculoskeletal models with
reduced reliance on ground reaction measurements (force platforms). The motivation
behind this effort comes from a desire to allow subject-specific high-fidelity model-based
gait analysis to take place outside the laboratory. We applied machine learning algorithms
to estimate GRF and COP, which were then used to compute the torques via inverse
dynamics and hybrid neuromusculoskeletal modelling. Moreover, the study considered
the individual importance of GRF and COP estimation accuracy for torque prediction. To
this end, we introduced two additional experimental conditions: feeding models with
either (i) estimated GRF and measured COP or (ii) measured GRF and estimated COP. We
evaluated the accuracy of all three experimental conditions for both models with respect to
the corresponding measured values, and the proportion of measured torque variance that
was explained by the ground reaction estimates.

In the first part of this study, we estimated intrasubject 3D GRF as well as AP and
ML COP using separate ANN models. The application of GRF/COP estimation using
machine learning has been attempted by a number of studies [31–39]. Due to the different
experimental setups, equipment used, amount and type of data available, and research
goals, it is challenging to single out any of the previously applied machine learning
algorithms and highlight the most appropriate method to establish the models for the
current study. For this reason, we did not fully employ any of the aforementioned protocols,
but instead we aligned the overall network design with the general good practices available
in the literature, as detailed in Section 2.4.2. On the same grounds, it is challenging to make
head-to-head comparison between our models and previously presented ones. However,
we will still discuss the ‘goodness-of-fit’ of the ANN models as this is the investigating
factor that affects the joint torques, which are of primary concern to the study.

Our average R2 values for GRF, which were 0.96 for AP, 0.97 for V and 0.71 for ML
directions, were all slightly higher than the previously reported values ranging from
(0.92–0.94) for AP, (0.94–0.96) for V and (0.64–0.70) for ML directions [31,37,39]. Dorschky
et al. [33] estimated GRF using combination of measured and simulated training data
to solve the problem of data insufficiency for deep neural networks. This allowed them
to obtain minimum average RMSE across subjects of 3.8% BW and 10.0% BW for AP
and V GRF, respectively. In comparison, this study obtained the mean RMSEs for AP
(1.7% BW) and V (4.5% BW) GRF. Regarding COP, the observed mean RMSE here for
AP direction (9.2 mm) seemed to outperform that reported in Podobnik et al. [57] where
the corresponding value of 14.9 mm was noted. On the other hand, our average RMSE
for ML direction (10.6 mm) was higher than their reported value (9.0 mm). Moreover, in
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the current study, the error in AP was found smaller than that in ML direction, which
contradicts the findings of previous study [57]. This could be, in part, due to the fact that
we measured the COP using a different reference point. In summary, while it is difficult to
directly compare the methods of GRF/COP estimation, our models seem to be of similar
fit overall compared to those previously reported, thus making it suitable for supporting
the outlined investigation on torque prediction.

For the primary focus of this study, joint torques were predicted via both inverse
dynamics and the application of the hybrid model, using the obtained GRF and/or COP
estimates. Given the condition in which both GRF and COP were estimated (EGEC),
the RMSE results exhibited significant differences between the two models at both knee
and ankle for at least two subjects. Notwithstanding the close tracking of the hybrid
model to inverse dynamics (i.e., no significant difference between the models was ob-
served in [23]), the ground reaction estimates caused different effects on the two models
for knee and ankle torque prediction in the current study. Among all three joints, hip
was the most sensitive (RMSE = 0.14–0.15 Nm/kg) while ankle was the most resistant
(RMSE = 0.069–0.081 Nm/kg) to the GRF/COP estimates, regardless of the model type.
This finding corresponded to that of a related study [58], which conducted a sensitivity
test to examine the effect of shear GRF on joint torques. This outcome could be explained
by the fact that foot is the first body segment to be ‘solved’ in the process of inverse
dynamics calculations.

Lee and Park [39] estimated GRF and COP by relying on their biomechanical relation-
ships to centre of mass of a three-dimensional spring walking model. The ‘goodness-of-fit’
reported here for hip (R2 = 0.80–0.84) was slightly inferior to the one that they reported
(R2 = 0.85). However, this study achieved a better fit for knee (R2 = 0.70–0.73) and ankle
(R2 = 0.97), compared to those obtained by them (R2 = 0.30 for knee and R2 = 0.83 for
ankle). Ardestani et al. [40] estimated joint torques using a wavelet neural network with
eight EMGs, AP and V GRF as inputs. Mundt et al. [41] predicted three-dimensional joint
moments from kinematics and anthropometric measurements using recurrent ANN based
on long short-term memory. The ankle torque fits presented in the current study were
in agreement with those reported in the above two studies (R2 = 0.96), whereas the fits
for the knee and the hip were somewhat worse (R2 = 0.70–0.84) compared to these works
(R2 = 0.86–0.96). These good estimation results reported previously reveal, to a certain
extent, that the data-driven methods have the ability to capture relationships between
EMG/kinematics and torques. While direct estimation using data-driven methods can
bypass error accumulation rooted in GRF/COP estimation, it lacks transparency of torque
formulation and the characterisation of personalised anatomy and neurophysiology.

In addition to these investigations, the individual effects of GRF and COP estimates
on the joint torque prediction via the two models were considered. To this end, four
additional conditions (two for each model): EGMC-M, EGMC-N, MGEC-M and MGEC-N
were investigated. For hip, statistical results in two of the five subjects showed that there
was significant difference between EGEC and MGEC, suggesting that the inaccuracies
from the GRF affected torque estimates more than those from COP. This, as a trend, was
also evident in the average results. Contrariwise, the ankle torques were more sensitive
to inaccuracies of COP than those of GRF, as observed from two of the five individuals,
as well as from the average outcomes. For knee, it could not be concluded whether GRF
or COP inaccuracies had a larger effect on joint torques, as only one significant difference
was found in each of the cases. Moreover, an obvious positive relationship was observed
between R2 of AP COP and that of ankle torque. To boost the ‘goodness-of-fit’ of GRF/COP,
further research and comparison needs to be completed across a range of machine learning
protocols with the same experimental setup and datasets. It is worth noting that plantar
flexors, which are only responsible for ankle (and knee) flexion movements, were shown
to have contributions to ML GRF [59]. Hence, this study accounted for GRF in all three
directions, even though we only considered joint torques in sagittal plane.
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Due to the exploratory nature of this study, we considered only five subjects, which
limits investigations beyond those discussed here. Thus, a follow-up work on a larger
subject pool would be valuable at this point. Another point to note is that this study
used EMG recordings from eight muscles to run the neuromusculoskeletal model. While
this corresponds to the setup of previous work [60], an investigation into the number of
muscles to use for a good tradeoff between system portability and retrieved information
should be considered. Moreover, experimental EMG signals that have proved poorly
synthesized by the hybrid model [23] could be employed in future studies. To further lever-
age the advantage of underlying biomechanical models, future investigations involving
gait impaired individuals could enhance the present approach through applications of
imaging techniques (e.g., [61]). While this study mostly relied on measurements from a
marker-based motion capture system, which is regarded as a benchmark, for estimation
of ground reaction parameters, the relevant features used in the machine learning mod-
els could be obtained by inertial measurement units. Applying the presented approach
with these wearable sensors, the portability of the entire experimental setup could be
further enhanced.

This study has investigated the feasibility of sagittal joint torque prediction based
on both non-neural and neural musculoskeletal hybrid models with statistical ground
reaction estimates. This approach enables consideration of subject-specific anatomy and
neurophysiology via hybrid modelling with limited use of force plates, which favours
gait analysis in laboratory-free settings. The applied method results in the least torque
estimation error in ankle, and the most in hip for both models. Furthermore, the individual
impact of the GRF/COP estimates on joint torques has been examined. The outcome
suggests future focus on improving different ground reaction estimates, which depends on
the joint(s) of interest. This study helps pave the way towards gait analysis of this type in
daily-life activities.
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